xref: /openbmc/linux/arch/parisc/mm/init.c (revision dace1453)
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995	Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006 Helge Deller (deller@gmx.de)
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h>	/* for node_online_map */
24 #include <linux/pagemap.h>	/* for release_pages and page_cache_release */
25 
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
30 #include <asm/sections.h>
31 
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 
34 extern char _text;	/* start of kernel code, defined by linker */
35 extern int  data_start;
36 extern char _end;	/* end of BSS, defined by linker */
37 extern char __init_begin, __init_end;
38 
39 #ifdef CONFIG_DISCONTIGMEM
40 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
41 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
42 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
43 #endif
44 
45 static struct resource data_resource = {
46 	.name	= "Kernel data",
47 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
48 };
49 
50 static struct resource code_resource = {
51 	.name	= "Kernel code",
52 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
53 };
54 
55 static struct resource pdcdata_resource = {
56 	.name	= "PDC data (Page Zero)",
57 	.start	= 0,
58 	.end	= 0x9ff,
59 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
60 };
61 
62 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
63 
64 /* The following array is initialized from the firmware specific
65  * information retrieved in kernel/inventory.c.
66  */
67 
68 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
69 int npmem_ranges __read_mostly;
70 
71 #ifdef __LP64__
72 #define MAX_MEM         (~0UL)
73 #else /* !__LP64__ */
74 #define MAX_MEM         (3584U*1024U*1024U)
75 #endif /* !__LP64__ */
76 
77 static unsigned long mem_limit __read_mostly = MAX_MEM;
78 
79 static void __init mem_limit_func(void)
80 {
81 	char *cp, *end;
82 	unsigned long limit;
83 	extern char saved_command_line[];
84 
85 	/* We need this before __setup() functions are called */
86 
87 	limit = MAX_MEM;
88 	for (cp = saved_command_line; *cp; ) {
89 		if (memcmp(cp, "mem=", 4) == 0) {
90 			cp += 4;
91 			limit = memparse(cp, &end);
92 			if (end != cp)
93 				break;
94 			cp = end;
95 		} else {
96 			while (*cp != ' ' && *cp)
97 				++cp;
98 			while (*cp == ' ')
99 				++cp;
100 		}
101 	}
102 
103 	if (limit < mem_limit)
104 		mem_limit = limit;
105 }
106 
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108 
109 static void __init setup_bootmem(void)
110 {
111 	unsigned long bootmap_size;
112 	unsigned long mem_max;
113 	unsigned long bootmap_pages;
114 	unsigned long bootmap_start_pfn;
115 	unsigned long bootmap_pfn;
116 #ifndef CONFIG_DISCONTIGMEM
117 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
118 	int npmem_holes;
119 #endif
120 	int i, sysram_resource_count;
121 
122 	disable_sr_hashing(); /* Turn off space register hashing */
123 
124 	/*
125 	 * Sort the ranges. Since the number of ranges is typically
126 	 * small, and performance is not an issue here, just do
127 	 * a simple insertion sort.
128 	 */
129 
130 	for (i = 1; i < npmem_ranges; i++) {
131 		int j;
132 
133 		for (j = i; j > 0; j--) {
134 			unsigned long tmp;
135 
136 			if (pmem_ranges[j-1].start_pfn <
137 			    pmem_ranges[j].start_pfn) {
138 
139 				break;
140 			}
141 			tmp = pmem_ranges[j-1].start_pfn;
142 			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
143 			pmem_ranges[j].start_pfn = tmp;
144 			tmp = pmem_ranges[j-1].pages;
145 			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
146 			pmem_ranges[j].pages = tmp;
147 		}
148 	}
149 
150 #ifndef CONFIG_DISCONTIGMEM
151 	/*
152 	 * Throw out ranges that are too far apart (controlled by
153 	 * MAX_GAP).
154 	 */
155 
156 	for (i = 1; i < npmem_ranges; i++) {
157 		if (pmem_ranges[i].start_pfn -
158 			(pmem_ranges[i-1].start_pfn +
159 			 pmem_ranges[i-1].pages) > MAX_GAP) {
160 			npmem_ranges = i;
161 			printk("Large gap in memory detected (%ld pages). "
162 			       "Consider turning on CONFIG_DISCONTIGMEM\n",
163 			       pmem_ranges[i].start_pfn -
164 			       (pmem_ranges[i-1].start_pfn +
165 			        pmem_ranges[i-1].pages));
166 			break;
167 		}
168 	}
169 #endif
170 
171 	if (npmem_ranges > 1) {
172 
173 		/* Print the memory ranges */
174 
175 		printk(KERN_INFO "Memory Ranges:\n");
176 
177 		for (i = 0; i < npmem_ranges; i++) {
178 			unsigned long start;
179 			unsigned long size;
180 
181 			size = (pmem_ranges[i].pages << PAGE_SHIFT);
182 			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
183 			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
184 				i,start, start + (size - 1), size >> 20);
185 		}
186 	}
187 
188 	sysram_resource_count = npmem_ranges;
189 	for (i = 0; i < sysram_resource_count; i++) {
190 		struct resource *res = &sysram_resources[i];
191 		res->name = "System RAM";
192 		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
193 		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
194 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
195 		request_resource(&iomem_resource, res);
196 	}
197 
198 	/*
199 	 * For 32 bit kernels we limit the amount of memory we can
200 	 * support, in order to preserve enough kernel address space
201 	 * for other purposes. For 64 bit kernels we don't normally
202 	 * limit the memory, but this mechanism can be used to
203 	 * artificially limit the amount of memory (and it is written
204 	 * to work with multiple memory ranges).
205 	 */
206 
207 	mem_limit_func();       /* check for "mem=" argument */
208 
209 	mem_max = 0;
210 	num_physpages = 0;
211 	for (i = 0; i < npmem_ranges; i++) {
212 		unsigned long rsize;
213 
214 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
215 		if ((mem_max + rsize) > mem_limit) {
216 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
217 			if (mem_max == mem_limit)
218 				npmem_ranges = i;
219 			else {
220 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
221 						       - (mem_max >> PAGE_SHIFT);
222 				npmem_ranges = i + 1;
223 				mem_max = mem_limit;
224 			}
225 	        num_physpages += pmem_ranges[i].pages;
226 			break;
227 		}
228 	    num_physpages += pmem_ranges[i].pages;
229 		mem_max += rsize;
230 	}
231 
232 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
233 
234 #ifndef CONFIG_DISCONTIGMEM
235 	/* Merge the ranges, keeping track of the holes */
236 
237 	{
238 		unsigned long end_pfn;
239 		unsigned long hole_pages;
240 
241 		npmem_holes = 0;
242 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
243 		for (i = 1; i < npmem_ranges; i++) {
244 
245 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
246 			if (hole_pages) {
247 				pmem_holes[npmem_holes].start_pfn = end_pfn;
248 				pmem_holes[npmem_holes++].pages = hole_pages;
249 				end_pfn += hole_pages;
250 			}
251 			end_pfn += pmem_ranges[i].pages;
252 		}
253 
254 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
255 		npmem_ranges = 1;
256 	}
257 #endif
258 
259 	bootmap_pages = 0;
260 	for (i = 0; i < npmem_ranges; i++)
261 		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
262 
263 	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
264 
265 #ifdef CONFIG_DISCONTIGMEM
266 	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
267 		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
268 		NODE_DATA(i)->bdata = &bmem_data[i];
269 	}
270 	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
271 
272 	for (i = 0; i < npmem_ranges; i++)
273 		node_set_online(i);
274 #endif
275 
276 	/*
277 	 * Initialize and free the full range of memory in each range.
278 	 * Note that the only writing these routines do are to the bootmap,
279 	 * and we've made sure to locate the bootmap properly so that they
280 	 * won't be writing over anything important.
281 	 */
282 
283 	bootmap_pfn = bootmap_start_pfn;
284 	max_pfn = 0;
285 	for (i = 0; i < npmem_ranges; i++) {
286 		unsigned long start_pfn;
287 		unsigned long npages;
288 
289 		start_pfn = pmem_ranges[i].start_pfn;
290 		npages = pmem_ranges[i].pages;
291 
292 		bootmap_size = init_bootmem_node(NODE_DATA(i),
293 						bootmap_pfn,
294 						start_pfn,
295 						(start_pfn + npages) );
296 		free_bootmem_node(NODE_DATA(i),
297 				  (start_pfn << PAGE_SHIFT),
298 				  (npages << PAGE_SHIFT) );
299 		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
300 		if ((start_pfn + npages) > max_pfn)
301 			max_pfn = start_pfn + npages;
302 	}
303 
304 	/* IOMMU is always used to access "high mem" on those boxes
305 	 * that can support enough mem that a PCI device couldn't
306 	 * directly DMA to any physical addresses.
307 	 * ISA DMA support will need to revisit this.
308 	 */
309 	max_low_pfn = max_pfn;
310 
311 	if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
312 		printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
313 		BUG();
314 	}
315 
316 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
317 
318 #define PDC_CONSOLE_IO_IODC_SIZE 32768
319 
320 	reserve_bootmem_node(NODE_DATA(0), 0UL,
321 			(unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
322 	reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
323 			(unsigned long)(&_end - &_text));
324 	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
325 			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
326 
327 #ifndef CONFIG_DISCONTIGMEM
328 
329 	/* reserve the holes */
330 
331 	for (i = 0; i < npmem_holes; i++) {
332 		reserve_bootmem_node(NODE_DATA(0),
333 				(pmem_holes[i].start_pfn << PAGE_SHIFT),
334 				(pmem_holes[i].pages << PAGE_SHIFT));
335 	}
336 #endif
337 
338 #ifdef CONFIG_BLK_DEV_INITRD
339 	if (initrd_start) {
340 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
341 		if (__pa(initrd_start) < mem_max) {
342 			unsigned long initrd_reserve;
343 
344 			if (__pa(initrd_end) > mem_max) {
345 				initrd_reserve = mem_max - __pa(initrd_start);
346 			} else {
347 				initrd_reserve = initrd_end - initrd_start;
348 			}
349 			initrd_below_start_ok = 1;
350 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
351 
352 			reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
353 		}
354 	}
355 #endif
356 
357 	data_resource.start =  virt_to_phys(&data_start);
358 	data_resource.end = virt_to_phys(&_end)-1;
359 	code_resource.start = virt_to_phys(&_text);
360 	code_resource.end = virt_to_phys(&data_start)-1;
361 
362 	/* We don't know which region the kernel will be in, so try
363 	 * all of them.
364 	 */
365 	for (i = 0; i < sysram_resource_count; i++) {
366 		struct resource *res = &sysram_resources[i];
367 		request_resource(res, &code_resource);
368 		request_resource(res, &data_resource);
369 	}
370 	request_resource(&sysram_resources[0], &pdcdata_resource);
371 }
372 
373 void free_initmem(void)
374 {
375 	unsigned long addr, init_begin, init_end;
376 
377 	printk(KERN_INFO "Freeing unused kernel memory: ");
378 
379 #ifdef CONFIG_DEBUG_KERNEL
380 	/* Attempt to catch anyone trying to execute code here
381 	 * by filling the page with BRK insns.
382 	 *
383 	 * If we disable interrupts for all CPUs, then IPI stops working.
384 	 * Kinda breaks the global cache flushing.
385 	 */
386 	local_irq_disable();
387 
388 	memset(&__init_begin, 0x00,
389 		(unsigned long)&__init_end - (unsigned long)&__init_begin);
390 
391 	flush_data_cache();
392 	asm volatile("sync" : : );
393 	flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
394 	asm volatile("sync" : : );
395 
396 	local_irq_enable();
397 #endif
398 
399 	/* align __init_begin and __init_end to page size,
400 	   ignoring linker script where we might have tried to save RAM */
401 	init_begin = PAGE_ALIGN((unsigned long)(&__init_begin));
402 	init_end   = PAGE_ALIGN((unsigned long)(&__init_end));
403 	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
404 		ClearPageReserved(virt_to_page(addr));
405 		init_page_count(virt_to_page(addr));
406 		free_page(addr);
407 		num_physpages++;
408 		totalram_pages++;
409 	}
410 
411 	/* set up a new led state on systems shipped LED State panel */
412 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
413 
414 	printk("%luk freed\n", (init_end - init_begin) >> 10);
415 }
416 
417 
418 #ifdef CONFIG_DEBUG_RODATA
419 void mark_rodata_ro(void)
420 {
421 	/* rodata memory was already mapped with KERNEL_RO access rights by
422            pagetable_init() and map_pages(). No need to do additional stuff here */
423 	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
424 		(unsigned long)(__end_rodata - __start_rodata) >> 10);
425 }
426 #endif
427 
428 
429 /*
430  * Just an arbitrary offset to serve as a "hole" between mapping areas
431  * (between top of physical memory and a potential pcxl dma mapping
432  * area, and below the vmalloc mapping area).
433  *
434  * The current 32K value just means that there will be a 32K "hole"
435  * between mapping areas. That means that  any out-of-bounds memory
436  * accesses will hopefully be caught. The vmalloc() routines leaves
437  * a hole of 4kB between each vmalloced area for the same reason.
438  */
439 
440  /* Leave room for gateway page expansion */
441 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
442 #error KERNEL_MAP_START is in gateway reserved region
443 #endif
444 #define MAP_START (KERNEL_MAP_START)
445 
446 #define VM_MAP_OFFSET  (32*1024)
447 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
448 				     & ~(VM_MAP_OFFSET-1)))
449 
450 void *vmalloc_start __read_mostly;
451 EXPORT_SYMBOL(vmalloc_start);
452 
453 #ifdef CONFIG_PA11
454 unsigned long pcxl_dma_start __read_mostly;
455 #endif
456 
457 void __init mem_init(void)
458 {
459 	high_memory = __va((max_pfn << PAGE_SHIFT));
460 
461 #ifndef CONFIG_DISCONTIGMEM
462 	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
463 	totalram_pages += free_all_bootmem();
464 #else
465 	{
466 		int i;
467 
468 		for (i = 0; i < npmem_ranges; i++)
469 			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
470 	}
471 #endif
472 
473 	printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
474 
475 #ifdef CONFIG_PA11
476 	if (hppa_dma_ops == &pcxl_dma_ops) {
477 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
478 		vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
479 	} else {
480 		pcxl_dma_start = 0;
481 		vmalloc_start = SET_MAP_OFFSET(MAP_START);
482 	}
483 #else
484 	vmalloc_start = SET_MAP_OFFSET(MAP_START);
485 #endif
486 
487 }
488 
489 unsigned long *empty_zero_page __read_mostly;
490 
491 void show_mem(void)
492 {
493 	int i,free = 0,total = 0,reserved = 0;
494 	int shared = 0, cached = 0;
495 
496 	printk(KERN_INFO "Mem-info:\n");
497 	show_free_areas();
498 	printk(KERN_INFO "Free swap:	 %6ldkB\n",
499 				nr_swap_pages<<(PAGE_SHIFT-10));
500 #ifndef CONFIG_DISCONTIGMEM
501 	i = max_mapnr;
502 	while (i-- > 0) {
503 		total++;
504 		if (PageReserved(mem_map+i))
505 			reserved++;
506 		else if (PageSwapCache(mem_map+i))
507 			cached++;
508 		else if (!page_count(&mem_map[i]))
509 			free++;
510 		else
511 			shared += page_count(&mem_map[i]) - 1;
512 	}
513 #else
514 	for (i = 0; i < npmem_ranges; i++) {
515 		int j;
516 
517 		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
518 			struct page *p;
519 			unsigned long flags;
520 
521 			pgdat_resize_lock(NODE_DATA(i), &flags);
522 			p = nid_page_nr(i, j) - node_start_pfn(i);
523 
524 			total++;
525 			if (PageReserved(p))
526 				reserved++;
527 			else if (PageSwapCache(p))
528 				cached++;
529 			else if (!page_count(p))
530 				free++;
531 			else
532 				shared += page_count(p) - 1;
533 			pgdat_resize_unlock(NODE_DATA(i), &flags);
534         	}
535 	}
536 #endif
537 	printk(KERN_INFO "%d pages of RAM\n", total);
538 	printk(KERN_INFO "%d reserved pages\n", reserved);
539 	printk(KERN_INFO "%d pages shared\n", shared);
540 	printk(KERN_INFO "%d pages swap cached\n", cached);
541 
542 
543 #ifdef CONFIG_DISCONTIGMEM
544 	{
545 		struct zonelist *zl;
546 		int i, j, k;
547 
548 		for (i = 0; i < npmem_ranges; i++) {
549 			for (j = 0; j < MAX_NR_ZONES; j++) {
550 				zl = NODE_DATA(i)->node_zonelists + j;
551 
552 				printk("Zone list for zone %d on node %d: ", j, i);
553 				for (k = 0; zl->zones[k] != NULL; k++)
554 					printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
555 				printk("\n");
556 			}
557 		}
558 	}
559 #endif
560 }
561 
562 
563 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
564 {
565 	pgd_t *pg_dir;
566 	pmd_t *pmd;
567 	pte_t *pg_table;
568 	unsigned long end_paddr;
569 	unsigned long start_pmd;
570 	unsigned long start_pte;
571 	unsigned long tmp1;
572 	unsigned long tmp2;
573 	unsigned long address;
574 	unsigned long ro_start;
575 	unsigned long ro_end;
576 	unsigned long fv_addr;
577 	unsigned long gw_addr;
578 	extern const unsigned long fault_vector_20;
579 	extern void * const linux_gateway_page;
580 
581 	ro_start = __pa((unsigned long)&_text);
582 	ro_end   = __pa((unsigned long)&data_start);
583 	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
584 	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
585 
586 	end_paddr = start_paddr + size;
587 
588 	pg_dir = pgd_offset_k(start_vaddr);
589 
590 #if PTRS_PER_PMD == 1
591 	start_pmd = 0;
592 #else
593 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
594 #endif
595 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
596 
597 	address = start_paddr;
598 	while (address < end_paddr) {
599 #if PTRS_PER_PMD == 1
600 		pmd = (pmd_t *)__pa(pg_dir);
601 #else
602 		pmd = (pmd_t *)pgd_address(*pg_dir);
603 
604 		/*
605 		 * pmd is physical at this point
606 		 */
607 
608 		if (!pmd) {
609 			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
610 			pmd = (pmd_t *) __pa(pmd);
611 		}
612 
613 		pgd_populate(NULL, pg_dir, __va(pmd));
614 #endif
615 		pg_dir++;
616 
617 		/* now change pmd to kernel virtual addresses */
618 
619 		pmd = (pmd_t *)__va(pmd) + start_pmd;
620 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
621 
622 			/*
623 			 * pg_table is physical at this point
624 			 */
625 
626 			pg_table = (pte_t *)pmd_address(*pmd);
627 			if (!pg_table) {
628 				pg_table = (pte_t *)
629 					alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
630 				pg_table = (pte_t *) __pa(pg_table);
631 			}
632 
633 			pmd_populate_kernel(NULL, pmd, __va(pg_table));
634 
635 			/* now change pg_table to kernel virtual addresses */
636 
637 			pg_table = (pte_t *) __va(pg_table) + start_pte;
638 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
639 				pte_t pte;
640 
641 				/*
642 				 * Map the fault vector writable so we can
643 				 * write the HPMC checksum.
644 				 */
645 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
646 				if (address >= ro_start && address < ro_end
647 							&& address != fv_addr
648 							&& address != gw_addr)
649 				    pte = __mk_pte(address, PAGE_KERNEL_RO);
650 				else
651 #endif
652 				    pte = __mk_pte(address, pgprot);
653 
654 				if (address >= end_paddr)
655 					pte_val(pte) = 0;
656 
657 				set_pte(pg_table, pte);
658 
659 				address += PAGE_SIZE;
660 			}
661 			start_pte = 0;
662 
663 			if (address >= end_paddr)
664 			    break;
665 		}
666 		start_pmd = 0;
667 	}
668 }
669 
670 /*
671  * pagetable_init() sets up the page tables
672  *
673  * Note that gateway_init() places the Linux gateway page at page 0.
674  * Since gateway pages cannot be dereferenced this has the desirable
675  * side effect of trapping those pesky NULL-reference errors in the
676  * kernel.
677  */
678 static void __init pagetable_init(void)
679 {
680 	int range;
681 
682 	/* Map each physical memory range to its kernel vaddr */
683 
684 	for (range = 0; range < npmem_ranges; range++) {
685 		unsigned long start_paddr;
686 		unsigned long end_paddr;
687 		unsigned long size;
688 
689 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
690 		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
691 		size = pmem_ranges[range].pages << PAGE_SHIFT;
692 
693 		map_pages((unsigned long)__va(start_paddr), start_paddr,
694 			size, PAGE_KERNEL);
695 	}
696 
697 #ifdef CONFIG_BLK_DEV_INITRD
698 	if (initrd_end && initrd_end > mem_limit) {
699 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
700 		map_pages(initrd_start, __pa(initrd_start),
701 			initrd_end - initrd_start, PAGE_KERNEL);
702 	}
703 #endif
704 
705 	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
706 	memset(empty_zero_page, 0, PAGE_SIZE);
707 }
708 
709 static void __init gateway_init(void)
710 {
711 	unsigned long linux_gateway_page_addr;
712 	/* FIXME: This is 'const' in order to trick the compiler
713 	   into not treating it as DP-relative data. */
714 	extern void * const linux_gateway_page;
715 
716 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
717 
718 	/*
719 	 * Setup Linux Gateway page.
720 	 *
721 	 * The Linux gateway page will reside in kernel space (on virtual
722 	 * page 0), so it doesn't need to be aliased into user space.
723 	 */
724 
725 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
726 		PAGE_SIZE, PAGE_GATEWAY);
727 }
728 
729 #ifdef CONFIG_HPUX
730 void
731 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
732 {
733 	pgd_t *pg_dir;
734 	pmd_t *pmd;
735 	pte_t *pg_table;
736 	unsigned long start_pmd;
737 	unsigned long start_pte;
738 	unsigned long address;
739 	unsigned long hpux_gw_page_addr;
740 	/* FIXME: This is 'const' in order to trick the compiler
741 	   into not treating it as DP-relative data. */
742 	extern void * const hpux_gateway_page;
743 
744 	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
745 
746 	/*
747 	 * Setup HP-UX Gateway page.
748 	 *
749 	 * The HP-UX gateway page resides in the user address space,
750 	 * so it needs to be aliased into each process.
751 	 */
752 
753 	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
754 
755 #if PTRS_PER_PMD == 1
756 	start_pmd = 0;
757 #else
758 	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
759 #endif
760 	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
761 
762 	address = __pa(&hpux_gateway_page);
763 #if PTRS_PER_PMD == 1
764 	pmd = (pmd_t *)__pa(pg_dir);
765 #else
766 	pmd = (pmd_t *) pgd_address(*pg_dir);
767 
768 	/*
769 	 * pmd is physical at this point
770 	 */
771 
772 	if (!pmd) {
773 		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
774 		pmd = (pmd_t *) __pa(pmd);
775 	}
776 
777 	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
778 #endif
779 	/* now change pmd to kernel virtual addresses */
780 
781 	pmd = (pmd_t *)__va(pmd) + start_pmd;
782 
783 	/*
784 	 * pg_table is physical at this point
785 	 */
786 
787 	pg_table = (pte_t *) pmd_address(*pmd);
788 	if (!pg_table)
789 		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
790 
791 	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
792 
793 	/* now change pg_table to kernel virtual addresses */
794 
795 	pg_table = (pte_t *) __va(pg_table) + start_pte;
796 	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
797 }
798 EXPORT_SYMBOL(map_hpux_gateway_page);
799 #endif
800 
801 void __init paging_init(void)
802 {
803 	int i;
804 
805 	setup_bootmem();
806 	pagetable_init();
807 	gateway_init();
808 	flush_cache_all_local(); /* start with known state */
809 	flush_tlb_all_local(NULL);
810 
811 	for (i = 0; i < npmem_ranges; i++) {
812 		unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
813 
814 		/* We have an IOMMU, so all memory can go into a single
815 		   ZONE_DMA zone. */
816 		zones_size[ZONE_DMA] = pmem_ranges[i].pages;
817 
818 #ifdef CONFIG_DISCONTIGMEM
819 		/* Need to initialize the pfnnid_map before we can initialize
820 		   the zone */
821 		{
822 		    int j;
823 		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
824 			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
825 			 j++) {
826 			pfnnid_map[j] = i;
827 		    }
828 		}
829 #endif
830 
831 		free_area_init_node(i, NODE_DATA(i), zones_size,
832 				pmem_ranges[i].start_pfn, NULL);
833 	}
834 }
835 
836 #ifdef CONFIG_PA20
837 
838 /*
839  * Currently, all PA20 chips have 18 bit protection id's, which is the
840  * limiting factor (space ids are 32 bits).
841  */
842 
843 #define NR_SPACE_IDS 262144
844 
845 #else
846 
847 /*
848  * Currently we have a one-to-one relationship between space id's and
849  * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
850  * support 15 bit protection id's, so that is the limiting factor.
851  * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
852  * probably not worth the effort for a special case here.
853  */
854 
855 #define NR_SPACE_IDS 32768
856 
857 #endif  /* !CONFIG_PA20 */
858 
859 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
860 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
861 
862 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
863 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
864 static unsigned long space_id_index;
865 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
866 static unsigned long dirty_space_ids = 0;
867 
868 static DEFINE_SPINLOCK(sid_lock);
869 
870 unsigned long alloc_sid(void)
871 {
872 	unsigned long index;
873 
874 	spin_lock(&sid_lock);
875 
876 	if (free_space_ids == 0) {
877 		if (dirty_space_ids != 0) {
878 			spin_unlock(&sid_lock);
879 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
880 			spin_lock(&sid_lock);
881 		}
882 		BUG_ON(free_space_ids == 0);
883 	}
884 
885 	free_space_ids--;
886 
887 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
888 	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
889 	space_id_index = index;
890 
891 	spin_unlock(&sid_lock);
892 
893 	return index << SPACEID_SHIFT;
894 }
895 
896 void free_sid(unsigned long spaceid)
897 {
898 	unsigned long index = spaceid >> SPACEID_SHIFT;
899 	unsigned long *dirty_space_offset;
900 
901 	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
902 	index &= (BITS_PER_LONG - 1);
903 
904 	spin_lock(&sid_lock);
905 
906 	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
907 
908 	*dirty_space_offset |= (1L << index);
909 	dirty_space_ids++;
910 
911 	spin_unlock(&sid_lock);
912 }
913 
914 
915 #ifdef CONFIG_SMP
916 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
917 {
918 	int i;
919 
920 	/* NOTE: sid_lock must be held upon entry */
921 
922 	*ndirtyptr = dirty_space_ids;
923 	if (dirty_space_ids != 0) {
924 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
925 		dirty_array[i] = dirty_space_id[i];
926 		dirty_space_id[i] = 0;
927 	    }
928 	    dirty_space_ids = 0;
929 	}
930 
931 	return;
932 }
933 
934 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
935 {
936 	int i;
937 
938 	/* NOTE: sid_lock must be held upon entry */
939 
940 	if (ndirty != 0) {
941 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
942 			space_id[i] ^= dirty_array[i];
943 		}
944 
945 		free_space_ids += ndirty;
946 		space_id_index = 0;
947 	}
948 }
949 
950 #else /* CONFIG_SMP */
951 
952 static void recycle_sids(void)
953 {
954 	int i;
955 
956 	/* NOTE: sid_lock must be held upon entry */
957 
958 	if (dirty_space_ids != 0) {
959 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
960 			space_id[i] ^= dirty_space_id[i];
961 			dirty_space_id[i] = 0;
962 		}
963 
964 		free_space_ids += dirty_space_ids;
965 		dirty_space_ids = 0;
966 		space_id_index = 0;
967 	}
968 }
969 #endif
970 
971 /*
972  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
973  * purged, we can safely reuse the space ids that were released but
974  * not flushed from the tlb.
975  */
976 
977 #ifdef CONFIG_SMP
978 
979 static unsigned long recycle_ndirty;
980 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
981 static unsigned int recycle_inuse;
982 
983 void flush_tlb_all(void)
984 {
985 	int do_recycle;
986 
987 	do_recycle = 0;
988 	spin_lock(&sid_lock);
989 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
990 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
991 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
992 	    recycle_inuse++;
993 	    do_recycle++;
994 	}
995 	spin_unlock(&sid_lock);
996 	on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
997 	if (do_recycle) {
998 	    spin_lock(&sid_lock);
999 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1000 	    recycle_inuse = 0;
1001 	    spin_unlock(&sid_lock);
1002 	}
1003 }
1004 #else
1005 void flush_tlb_all(void)
1006 {
1007 	spin_lock(&sid_lock);
1008 	flush_tlb_all_local(NULL);
1009 	recycle_sids();
1010 	spin_unlock(&sid_lock);
1011 }
1012 #endif
1013 
1014 #ifdef CONFIG_BLK_DEV_INITRD
1015 void free_initrd_mem(unsigned long start, unsigned long end)
1016 {
1017 	if (start >= end)
1018 		return;
1019 	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1020 	for (; start < end; start += PAGE_SIZE) {
1021 		ClearPageReserved(virt_to_page(start));
1022 		init_page_count(virt_to_page(start));
1023 		free_page(start);
1024 		num_physpages++;
1025 		totalram_pages++;
1026 	}
1027 }
1028 #endif
1029