1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 26 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 34 extern int data_start; 35 36 #ifdef CONFIG_DISCONTIGMEM 37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 38 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 39 #endif 40 41 static struct resource data_resource = { 42 .name = "Kernel data", 43 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 44 }; 45 46 static struct resource code_resource = { 47 .name = "Kernel code", 48 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 49 }; 50 51 static struct resource pdcdata_resource = { 52 .name = "PDC data (Page Zero)", 53 .start = 0, 54 .end = 0x9ff, 55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 56 }; 57 58 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 59 60 /* The following array is initialized from the firmware specific 61 * information retrieved in kernel/inventory.c. 62 */ 63 64 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 65 int npmem_ranges __read_mostly; 66 67 #ifdef CONFIG_64BIT 68 #define MAX_MEM (~0UL) 69 #else /* !CONFIG_64BIT */ 70 #define MAX_MEM (3584U*1024U*1024U) 71 #endif /* !CONFIG_64BIT */ 72 73 static unsigned long mem_limit __read_mostly = MAX_MEM; 74 75 static void __init mem_limit_func(void) 76 { 77 char *cp, *end; 78 unsigned long limit; 79 80 /* We need this before __setup() functions are called */ 81 82 limit = MAX_MEM; 83 for (cp = boot_command_line; *cp; ) { 84 if (memcmp(cp, "mem=", 4) == 0) { 85 cp += 4; 86 limit = memparse(cp, &end); 87 if (end != cp) 88 break; 89 cp = end; 90 } else { 91 while (*cp != ' ' && *cp) 92 ++cp; 93 while (*cp == ' ') 94 ++cp; 95 } 96 } 97 98 if (limit < mem_limit) 99 mem_limit = limit; 100 } 101 102 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 103 104 static void __init setup_bootmem(void) 105 { 106 unsigned long bootmap_size; 107 unsigned long mem_max; 108 unsigned long bootmap_pages; 109 unsigned long bootmap_start_pfn; 110 unsigned long bootmap_pfn; 111 #ifndef CONFIG_DISCONTIGMEM 112 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 113 int npmem_holes; 114 #endif 115 int i, sysram_resource_count; 116 117 disable_sr_hashing(); /* Turn off space register hashing */ 118 119 /* 120 * Sort the ranges. Since the number of ranges is typically 121 * small, and performance is not an issue here, just do 122 * a simple insertion sort. 123 */ 124 125 for (i = 1; i < npmem_ranges; i++) { 126 int j; 127 128 for (j = i; j > 0; j--) { 129 unsigned long tmp; 130 131 if (pmem_ranges[j-1].start_pfn < 132 pmem_ranges[j].start_pfn) { 133 134 break; 135 } 136 tmp = pmem_ranges[j-1].start_pfn; 137 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 138 pmem_ranges[j].start_pfn = tmp; 139 tmp = pmem_ranges[j-1].pages; 140 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 141 pmem_ranges[j].pages = tmp; 142 } 143 } 144 145 #ifndef CONFIG_DISCONTIGMEM 146 /* 147 * Throw out ranges that are too far apart (controlled by 148 * MAX_GAP). 149 */ 150 151 for (i = 1; i < npmem_ranges; i++) { 152 if (pmem_ranges[i].start_pfn - 153 (pmem_ranges[i-1].start_pfn + 154 pmem_ranges[i-1].pages) > MAX_GAP) { 155 npmem_ranges = i; 156 printk("Large gap in memory detected (%ld pages). " 157 "Consider turning on CONFIG_DISCONTIGMEM\n", 158 pmem_ranges[i].start_pfn - 159 (pmem_ranges[i-1].start_pfn + 160 pmem_ranges[i-1].pages)); 161 break; 162 } 163 } 164 #endif 165 166 if (npmem_ranges > 1) { 167 168 /* Print the memory ranges */ 169 170 printk(KERN_INFO "Memory Ranges:\n"); 171 172 for (i = 0; i < npmem_ranges; i++) { 173 unsigned long start; 174 unsigned long size; 175 176 size = (pmem_ranges[i].pages << PAGE_SHIFT); 177 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 178 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 179 i,start, start + (size - 1), size >> 20); 180 } 181 } 182 183 sysram_resource_count = npmem_ranges; 184 for (i = 0; i < sysram_resource_count; i++) { 185 struct resource *res = &sysram_resources[i]; 186 res->name = "System RAM"; 187 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 188 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 189 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 190 request_resource(&iomem_resource, res); 191 } 192 193 /* 194 * For 32 bit kernels we limit the amount of memory we can 195 * support, in order to preserve enough kernel address space 196 * for other purposes. For 64 bit kernels we don't normally 197 * limit the memory, but this mechanism can be used to 198 * artificially limit the amount of memory (and it is written 199 * to work with multiple memory ranges). 200 */ 201 202 mem_limit_func(); /* check for "mem=" argument */ 203 204 mem_max = 0; 205 num_physpages = 0; 206 for (i = 0; i < npmem_ranges; i++) { 207 unsigned long rsize; 208 209 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 210 if ((mem_max + rsize) > mem_limit) { 211 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 212 if (mem_max == mem_limit) 213 npmem_ranges = i; 214 else { 215 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 216 - (mem_max >> PAGE_SHIFT); 217 npmem_ranges = i + 1; 218 mem_max = mem_limit; 219 } 220 num_physpages += pmem_ranges[i].pages; 221 break; 222 } 223 num_physpages += pmem_ranges[i].pages; 224 mem_max += rsize; 225 } 226 227 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 228 229 #ifndef CONFIG_DISCONTIGMEM 230 /* Merge the ranges, keeping track of the holes */ 231 232 { 233 unsigned long end_pfn; 234 unsigned long hole_pages; 235 236 npmem_holes = 0; 237 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 238 for (i = 1; i < npmem_ranges; i++) { 239 240 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 241 if (hole_pages) { 242 pmem_holes[npmem_holes].start_pfn = end_pfn; 243 pmem_holes[npmem_holes++].pages = hole_pages; 244 end_pfn += hole_pages; 245 } 246 end_pfn += pmem_ranges[i].pages; 247 } 248 249 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 250 npmem_ranges = 1; 251 } 252 #endif 253 254 bootmap_pages = 0; 255 for (i = 0; i < npmem_ranges; i++) 256 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 257 258 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 259 260 #ifdef CONFIG_DISCONTIGMEM 261 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 262 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 263 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 264 } 265 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 266 267 for (i = 0; i < npmem_ranges; i++) { 268 node_set_state(i, N_NORMAL_MEMORY); 269 node_set_online(i); 270 } 271 #endif 272 273 /* 274 * Initialize and free the full range of memory in each range. 275 * Note that the only writing these routines do are to the bootmap, 276 * and we've made sure to locate the bootmap properly so that they 277 * won't be writing over anything important. 278 */ 279 280 bootmap_pfn = bootmap_start_pfn; 281 max_pfn = 0; 282 for (i = 0; i < npmem_ranges; i++) { 283 unsigned long start_pfn; 284 unsigned long npages; 285 286 start_pfn = pmem_ranges[i].start_pfn; 287 npages = pmem_ranges[i].pages; 288 289 bootmap_size = init_bootmem_node(NODE_DATA(i), 290 bootmap_pfn, 291 start_pfn, 292 (start_pfn + npages) ); 293 free_bootmem_node(NODE_DATA(i), 294 (start_pfn << PAGE_SHIFT), 295 (npages << PAGE_SHIFT) ); 296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 297 if ((start_pfn + npages) > max_pfn) 298 max_pfn = start_pfn + npages; 299 } 300 301 /* IOMMU is always used to access "high mem" on those boxes 302 * that can support enough mem that a PCI device couldn't 303 * directly DMA to any physical addresses. 304 * ISA DMA support will need to revisit this. 305 */ 306 max_low_pfn = max_pfn; 307 308 /* bootmap sizing messed up? */ 309 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 310 311 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 312 313 #define PDC_CONSOLE_IO_IODC_SIZE 32768 314 315 reserve_bootmem_node(NODE_DATA(0), 0UL, 316 (unsigned long)(PAGE0->mem_free + 317 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 318 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 319 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 320 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 321 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 322 BOOTMEM_DEFAULT); 323 324 #ifndef CONFIG_DISCONTIGMEM 325 326 /* reserve the holes */ 327 328 for (i = 0; i < npmem_holes; i++) { 329 reserve_bootmem_node(NODE_DATA(0), 330 (pmem_holes[i].start_pfn << PAGE_SHIFT), 331 (pmem_holes[i].pages << PAGE_SHIFT), 332 BOOTMEM_DEFAULT); 333 } 334 #endif 335 336 #ifdef CONFIG_BLK_DEV_INITRD 337 if (initrd_start) { 338 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 339 if (__pa(initrd_start) < mem_max) { 340 unsigned long initrd_reserve; 341 342 if (__pa(initrd_end) > mem_max) { 343 initrd_reserve = mem_max - __pa(initrd_start); 344 } else { 345 initrd_reserve = initrd_end - initrd_start; 346 } 347 initrd_below_start_ok = 1; 348 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 349 350 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 351 initrd_reserve, BOOTMEM_DEFAULT); 352 } 353 } 354 #endif 355 356 data_resource.start = virt_to_phys(&data_start); 357 data_resource.end = virt_to_phys(_end) - 1; 358 code_resource.start = virt_to_phys(_text); 359 code_resource.end = virt_to_phys(&data_start)-1; 360 361 /* We don't know which region the kernel will be in, so try 362 * all of them. 363 */ 364 for (i = 0; i < sysram_resource_count; i++) { 365 struct resource *res = &sysram_resources[i]; 366 request_resource(res, &code_resource); 367 request_resource(res, &data_resource); 368 } 369 request_resource(&sysram_resources[0], &pdcdata_resource); 370 } 371 372 static void __init map_pages(unsigned long start_vaddr, 373 unsigned long start_paddr, unsigned long size, 374 pgprot_t pgprot, int force) 375 { 376 pgd_t *pg_dir; 377 pmd_t *pmd; 378 pte_t *pg_table; 379 unsigned long end_paddr; 380 unsigned long start_pmd; 381 unsigned long start_pte; 382 unsigned long tmp1; 383 unsigned long tmp2; 384 unsigned long address; 385 unsigned long vaddr; 386 unsigned long ro_start; 387 unsigned long ro_end; 388 unsigned long fv_addr; 389 unsigned long gw_addr; 390 extern const unsigned long fault_vector_20; 391 extern void * const linux_gateway_page; 392 393 ro_start = __pa((unsigned long)_text); 394 ro_end = __pa((unsigned long)&data_start); 395 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 396 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 397 398 end_paddr = start_paddr + size; 399 400 pg_dir = pgd_offset_k(start_vaddr); 401 402 #if PTRS_PER_PMD == 1 403 start_pmd = 0; 404 #else 405 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 406 #endif 407 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 408 409 address = start_paddr; 410 vaddr = start_vaddr; 411 while (address < end_paddr) { 412 #if PTRS_PER_PMD == 1 413 pmd = (pmd_t *)__pa(pg_dir); 414 #else 415 pmd = (pmd_t *)pgd_address(*pg_dir); 416 417 /* 418 * pmd is physical at this point 419 */ 420 421 if (!pmd) { 422 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER); 423 pmd = (pmd_t *) __pa(pmd); 424 } 425 426 pgd_populate(NULL, pg_dir, __va(pmd)); 427 #endif 428 pg_dir++; 429 430 /* now change pmd to kernel virtual addresses */ 431 432 pmd = (pmd_t *)__va(pmd) + start_pmd; 433 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 434 435 /* 436 * pg_table is physical at this point 437 */ 438 439 pg_table = (pte_t *)pmd_address(*pmd); 440 if (!pg_table) { 441 pg_table = (pte_t *) 442 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); 443 pg_table = (pte_t *) __pa(pg_table); 444 } 445 446 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 447 448 /* now change pg_table to kernel virtual addresses */ 449 450 pg_table = (pte_t *) __va(pg_table) + start_pte; 451 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 452 pte_t pte; 453 454 /* 455 * Map the fault vector writable so we can 456 * write the HPMC checksum. 457 */ 458 if (force) 459 pte = __mk_pte(address, pgprot); 460 else if (core_kernel_text(vaddr) && 461 address != fv_addr) 462 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 463 else 464 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 465 if (address >= ro_start && address < ro_end 466 && address != fv_addr 467 && address != gw_addr) 468 pte = __mk_pte(address, PAGE_KERNEL_RO); 469 else 470 #endif 471 pte = __mk_pte(address, pgprot); 472 473 if (address >= end_paddr) { 474 if (force) 475 break; 476 else 477 pte_val(pte) = 0; 478 } 479 480 set_pte(pg_table, pte); 481 482 address += PAGE_SIZE; 483 vaddr += PAGE_SIZE; 484 } 485 start_pte = 0; 486 487 if (address >= end_paddr) 488 break; 489 } 490 start_pmd = 0; 491 } 492 } 493 494 void free_initmem(void) 495 { 496 unsigned long addr; 497 unsigned long init_begin = (unsigned long)__init_begin; 498 unsigned long init_end = (unsigned long)__init_end; 499 500 /* The init text pages are marked R-X. We have to 501 * flush the icache and mark them RW- 502 * 503 * This is tricky, because map_pages is in the init section. 504 * Do a dummy remap of the data section first (the data 505 * section is already PAGE_KERNEL) to pull in the TLB entries 506 * for map_kernel */ 507 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 508 PAGE_KERNEL_RWX, 1); 509 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 510 * map_pages */ 511 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 512 PAGE_KERNEL, 1); 513 514 /* force the kernel to see the new TLB entries */ 515 __flush_tlb_range(0, init_begin, init_end); 516 /* Attempt to catch anyone trying to execute code here 517 * by filling the page with BRK insns. 518 */ 519 memset((void *)init_begin, 0x00, init_end - init_begin); 520 /* finally dump all the instructions which were cached, since the 521 * pages are no-longer executable */ 522 flush_icache_range(init_begin, init_end); 523 524 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 525 ClearPageReserved(virt_to_page(addr)); 526 init_page_count(virt_to_page(addr)); 527 free_page(addr); 528 num_physpages++; 529 totalram_pages++; 530 } 531 532 /* set up a new led state on systems shipped LED State panel */ 533 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 534 535 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n", 536 (init_end - init_begin) >> 10); 537 } 538 539 540 #ifdef CONFIG_DEBUG_RODATA 541 void mark_rodata_ro(void) 542 { 543 /* rodata memory was already mapped with KERNEL_RO access rights by 544 pagetable_init() and map_pages(). No need to do additional stuff here */ 545 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 546 (unsigned long)(__end_rodata - __start_rodata) >> 10); 547 } 548 #endif 549 550 551 /* 552 * Just an arbitrary offset to serve as a "hole" between mapping areas 553 * (between top of physical memory and a potential pcxl dma mapping 554 * area, and below the vmalloc mapping area). 555 * 556 * The current 32K value just means that there will be a 32K "hole" 557 * between mapping areas. That means that any out-of-bounds memory 558 * accesses will hopefully be caught. The vmalloc() routines leaves 559 * a hole of 4kB between each vmalloced area for the same reason. 560 */ 561 562 /* Leave room for gateway page expansion */ 563 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 564 #error KERNEL_MAP_START is in gateway reserved region 565 #endif 566 #define MAP_START (KERNEL_MAP_START) 567 568 #define VM_MAP_OFFSET (32*1024) 569 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 570 & ~(VM_MAP_OFFSET-1))) 571 572 void *parisc_vmalloc_start __read_mostly; 573 EXPORT_SYMBOL(parisc_vmalloc_start); 574 575 #ifdef CONFIG_PA11 576 unsigned long pcxl_dma_start __read_mostly; 577 #endif 578 579 void __init mem_init(void) 580 { 581 int codesize, reservedpages, datasize, initsize; 582 583 /* Do sanity checks on page table constants */ 584 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 585 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 586 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 587 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 588 > BITS_PER_LONG); 589 590 high_memory = __va((max_pfn << PAGE_SHIFT)); 591 592 #ifndef CONFIG_DISCONTIGMEM 593 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 594 totalram_pages += free_all_bootmem(); 595 #else 596 { 597 int i; 598 599 for (i = 0; i < npmem_ranges; i++) 600 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 601 } 602 #endif 603 604 codesize = (unsigned long)_etext - (unsigned long)_text; 605 datasize = (unsigned long)_edata - (unsigned long)_etext; 606 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 607 608 reservedpages = 0; 609 { 610 unsigned long pfn; 611 #ifdef CONFIG_DISCONTIGMEM 612 int i; 613 614 for (i = 0; i < npmem_ranges; i++) { 615 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 616 if (PageReserved(pfn_to_page(pfn))) 617 reservedpages++; 618 } 619 } 620 #else /* !CONFIG_DISCONTIGMEM */ 621 for (pfn = 0; pfn < max_pfn; pfn++) { 622 /* 623 * Only count reserved RAM pages 624 */ 625 if (PageReserved(pfn_to_page(pfn))) 626 reservedpages++; 627 } 628 #endif 629 } 630 631 #ifdef CONFIG_PA11 632 if (hppa_dma_ops == &pcxl_dma_ops) { 633 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 634 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 635 + PCXL_DMA_MAP_SIZE); 636 } else { 637 pcxl_dma_start = 0; 638 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 639 } 640 #else 641 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 642 #endif 643 644 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 645 nr_free_pages() << (PAGE_SHIFT-10), 646 num_physpages << (PAGE_SHIFT-10), 647 codesize >> 10, 648 reservedpages << (PAGE_SHIFT-10), 649 datasize >> 10, 650 initsize >> 10 651 ); 652 653 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 654 printk("virtual kernel memory layout:\n" 655 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 656 " memory : 0x%p - 0x%p (%4ld MB)\n" 657 " .init : 0x%p - 0x%p (%4ld kB)\n" 658 " .data : 0x%p - 0x%p (%4ld kB)\n" 659 " .text : 0x%p - 0x%p (%4ld kB)\n", 660 661 (void*)VMALLOC_START, (void*)VMALLOC_END, 662 (VMALLOC_END - VMALLOC_START) >> 20, 663 664 __va(0), high_memory, 665 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 666 667 __init_begin, __init_end, 668 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 669 670 _etext, _edata, 671 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 672 673 _text, _etext, 674 ((unsigned long)_etext - (unsigned long)_text) >> 10); 675 #endif 676 } 677 678 unsigned long *empty_zero_page __read_mostly; 679 EXPORT_SYMBOL(empty_zero_page); 680 681 void show_mem(unsigned int filter) 682 { 683 int i,free = 0,total = 0,reserved = 0; 684 int shared = 0, cached = 0; 685 686 printk(KERN_INFO "Mem-info:\n"); 687 show_free_areas(filter); 688 #ifndef CONFIG_DISCONTIGMEM 689 i = max_mapnr; 690 while (i-- > 0) { 691 total++; 692 if (PageReserved(mem_map+i)) 693 reserved++; 694 else if (PageSwapCache(mem_map+i)) 695 cached++; 696 else if (!page_count(&mem_map[i])) 697 free++; 698 else 699 shared += page_count(&mem_map[i]) - 1; 700 } 701 #else 702 for (i = 0; i < npmem_ranges; i++) { 703 int j; 704 705 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 706 struct page *p; 707 unsigned long flags; 708 709 pgdat_resize_lock(NODE_DATA(i), &flags); 710 p = nid_page_nr(i, j) - node_start_pfn(i); 711 712 total++; 713 if (PageReserved(p)) 714 reserved++; 715 else if (PageSwapCache(p)) 716 cached++; 717 else if (!page_count(p)) 718 free++; 719 else 720 shared += page_count(p) - 1; 721 pgdat_resize_unlock(NODE_DATA(i), &flags); 722 } 723 } 724 #endif 725 printk(KERN_INFO "%d pages of RAM\n", total); 726 printk(KERN_INFO "%d reserved pages\n", reserved); 727 printk(KERN_INFO "%d pages shared\n", shared); 728 printk(KERN_INFO "%d pages swap cached\n", cached); 729 730 731 #ifdef CONFIG_DISCONTIGMEM 732 { 733 struct zonelist *zl; 734 int i, j; 735 736 for (i = 0; i < npmem_ranges; i++) { 737 zl = node_zonelist(i, 0); 738 for (j = 0; j < MAX_NR_ZONES; j++) { 739 struct zoneref *z; 740 struct zone *zone; 741 742 printk("Zone list for zone %d on node %d: ", j, i); 743 for_each_zone_zonelist(zone, z, zl, j) 744 printk("[%d/%s] ", zone_to_nid(zone), 745 zone->name); 746 printk("\n"); 747 } 748 } 749 } 750 #endif 751 } 752 753 /* 754 * pagetable_init() sets up the page tables 755 * 756 * Note that gateway_init() places the Linux gateway page at page 0. 757 * Since gateway pages cannot be dereferenced this has the desirable 758 * side effect of trapping those pesky NULL-reference errors in the 759 * kernel. 760 */ 761 static void __init pagetable_init(void) 762 { 763 int range; 764 765 /* Map each physical memory range to its kernel vaddr */ 766 767 for (range = 0; range < npmem_ranges; range++) { 768 unsigned long start_paddr; 769 unsigned long end_paddr; 770 unsigned long size; 771 772 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 773 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 774 size = pmem_ranges[range].pages << PAGE_SHIFT; 775 776 map_pages((unsigned long)__va(start_paddr), start_paddr, 777 size, PAGE_KERNEL, 0); 778 } 779 780 #ifdef CONFIG_BLK_DEV_INITRD 781 if (initrd_end && initrd_end > mem_limit) { 782 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 783 map_pages(initrd_start, __pa(initrd_start), 784 initrd_end - initrd_start, PAGE_KERNEL, 0); 785 } 786 #endif 787 788 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 789 memset(empty_zero_page, 0, PAGE_SIZE); 790 } 791 792 static void __init gateway_init(void) 793 { 794 unsigned long linux_gateway_page_addr; 795 /* FIXME: This is 'const' in order to trick the compiler 796 into not treating it as DP-relative data. */ 797 extern void * const linux_gateway_page; 798 799 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 800 801 /* 802 * Setup Linux Gateway page. 803 * 804 * The Linux gateway page will reside in kernel space (on virtual 805 * page 0), so it doesn't need to be aliased into user space. 806 */ 807 808 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 809 PAGE_SIZE, PAGE_GATEWAY, 1); 810 } 811 812 #ifdef CONFIG_HPUX 813 void 814 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 815 { 816 pgd_t *pg_dir; 817 pmd_t *pmd; 818 pte_t *pg_table; 819 unsigned long start_pmd; 820 unsigned long start_pte; 821 unsigned long address; 822 unsigned long hpux_gw_page_addr; 823 /* FIXME: This is 'const' in order to trick the compiler 824 into not treating it as DP-relative data. */ 825 extern void * const hpux_gateway_page; 826 827 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 828 829 /* 830 * Setup HP-UX Gateway page. 831 * 832 * The HP-UX gateway page resides in the user address space, 833 * so it needs to be aliased into each process. 834 */ 835 836 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 837 838 #if PTRS_PER_PMD == 1 839 start_pmd = 0; 840 #else 841 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 842 #endif 843 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 844 845 address = __pa(&hpux_gateway_page); 846 #if PTRS_PER_PMD == 1 847 pmd = (pmd_t *)__pa(pg_dir); 848 #else 849 pmd = (pmd_t *) pgd_address(*pg_dir); 850 851 /* 852 * pmd is physical at this point 853 */ 854 855 if (!pmd) { 856 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 857 pmd = (pmd_t *) __pa(pmd); 858 } 859 860 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 861 #endif 862 /* now change pmd to kernel virtual addresses */ 863 864 pmd = (pmd_t *)__va(pmd) + start_pmd; 865 866 /* 867 * pg_table is physical at this point 868 */ 869 870 pg_table = (pte_t *) pmd_address(*pmd); 871 if (!pg_table) 872 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 873 874 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 875 876 /* now change pg_table to kernel virtual addresses */ 877 878 pg_table = (pte_t *) __va(pg_table) + start_pte; 879 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 880 } 881 EXPORT_SYMBOL(map_hpux_gateway_page); 882 #endif 883 884 void __init paging_init(void) 885 { 886 int i; 887 888 setup_bootmem(); 889 pagetable_init(); 890 gateway_init(); 891 flush_cache_all_local(); /* start with known state */ 892 flush_tlb_all_local(NULL); 893 894 for (i = 0; i < npmem_ranges; i++) { 895 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 896 897 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 898 899 #ifdef CONFIG_DISCONTIGMEM 900 /* Need to initialize the pfnnid_map before we can initialize 901 the zone */ 902 { 903 int j; 904 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 905 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 906 j++) { 907 pfnnid_map[j] = i; 908 } 909 } 910 #endif 911 912 free_area_init_node(i, zones_size, 913 pmem_ranges[i].start_pfn, NULL); 914 } 915 } 916 917 #ifdef CONFIG_PA20 918 919 /* 920 * Currently, all PA20 chips have 18 bit protection IDs, which is the 921 * limiting factor (space ids are 32 bits). 922 */ 923 924 #define NR_SPACE_IDS 262144 925 926 #else 927 928 /* 929 * Currently we have a one-to-one relationship between space IDs and 930 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 931 * support 15 bit protection IDs, so that is the limiting factor. 932 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 933 * probably not worth the effort for a special case here. 934 */ 935 936 #define NR_SPACE_IDS 32768 937 938 #endif /* !CONFIG_PA20 */ 939 940 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 941 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 942 943 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 944 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 945 static unsigned long space_id_index; 946 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 947 static unsigned long dirty_space_ids = 0; 948 949 static DEFINE_SPINLOCK(sid_lock); 950 951 unsigned long alloc_sid(void) 952 { 953 unsigned long index; 954 955 spin_lock(&sid_lock); 956 957 if (free_space_ids == 0) { 958 if (dirty_space_ids != 0) { 959 spin_unlock(&sid_lock); 960 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 961 spin_lock(&sid_lock); 962 } 963 BUG_ON(free_space_ids == 0); 964 } 965 966 free_space_ids--; 967 968 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 969 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 970 space_id_index = index; 971 972 spin_unlock(&sid_lock); 973 974 return index << SPACEID_SHIFT; 975 } 976 977 void free_sid(unsigned long spaceid) 978 { 979 unsigned long index = spaceid >> SPACEID_SHIFT; 980 unsigned long *dirty_space_offset; 981 982 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 983 index &= (BITS_PER_LONG - 1); 984 985 spin_lock(&sid_lock); 986 987 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 988 989 *dirty_space_offset |= (1L << index); 990 dirty_space_ids++; 991 992 spin_unlock(&sid_lock); 993 } 994 995 996 #ifdef CONFIG_SMP 997 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 998 { 999 int i; 1000 1001 /* NOTE: sid_lock must be held upon entry */ 1002 1003 *ndirtyptr = dirty_space_ids; 1004 if (dirty_space_ids != 0) { 1005 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1006 dirty_array[i] = dirty_space_id[i]; 1007 dirty_space_id[i] = 0; 1008 } 1009 dirty_space_ids = 0; 1010 } 1011 1012 return; 1013 } 1014 1015 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 1016 { 1017 int i; 1018 1019 /* NOTE: sid_lock must be held upon entry */ 1020 1021 if (ndirty != 0) { 1022 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1023 space_id[i] ^= dirty_array[i]; 1024 } 1025 1026 free_space_ids += ndirty; 1027 space_id_index = 0; 1028 } 1029 } 1030 1031 #else /* CONFIG_SMP */ 1032 1033 static void recycle_sids(void) 1034 { 1035 int i; 1036 1037 /* NOTE: sid_lock must be held upon entry */ 1038 1039 if (dirty_space_ids != 0) { 1040 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1041 space_id[i] ^= dirty_space_id[i]; 1042 dirty_space_id[i] = 0; 1043 } 1044 1045 free_space_ids += dirty_space_ids; 1046 dirty_space_ids = 0; 1047 space_id_index = 0; 1048 } 1049 } 1050 #endif 1051 1052 /* 1053 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1054 * purged, we can safely reuse the space ids that were released but 1055 * not flushed from the tlb. 1056 */ 1057 1058 #ifdef CONFIG_SMP 1059 1060 static unsigned long recycle_ndirty; 1061 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1062 static unsigned int recycle_inuse; 1063 1064 void flush_tlb_all(void) 1065 { 1066 int do_recycle; 1067 1068 do_recycle = 0; 1069 spin_lock(&sid_lock); 1070 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1071 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1072 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1073 recycle_inuse++; 1074 do_recycle++; 1075 } 1076 spin_unlock(&sid_lock); 1077 on_each_cpu(flush_tlb_all_local, NULL, 1); 1078 if (do_recycle) { 1079 spin_lock(&sid_lock); 1080 recycle_sids(recycle_ndirty,recycle_dirty_array); 1081 recycle_inuse = 0; 1082 spin_unlock(&sid_lock); 1083 } 1084 } 1085 #else 1086 void flush_tlb_all(void) 1087 { 1088 spin_lock(&sid_lock); 1089 flush_tlb_all_local(NULL); 1090 recycle_sids(); 1091 spin_unlock(&sid_lock); 1092 } 1093 #endif 1094 1095 #ifdef CONFIG_BLK_DEV_INITRD 1096 void free_initrd_mem(unsigned long start, unsigned long end) 1097 { 1098 if (start >= end) 1099 return; 1100 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1101 for (; start < end; start += PAGE_SIZE) { 1102 ClearPageReserved(virt_to_page(start)); 1103 init_page_count(virt_to_page(start)); 1104 free_page(start); 1105 num_physpages++; 1106 totalram_pages++; 1107 } 1108 } 1109 #endif 1110