xref: /openbmc/linux/arch/parisc/mm/init.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995	Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>	/* for node_online_map */
25 #include <linux/pagemap.h>	/* for release_pages and page_cache_release */
26 
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 
34 extern int  data_start;
35 
36 #ifdef CONFIG_DISCONTIGMEM
37 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
38 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
39 #endif
40 
41 static struct resource data_resource = {
42 	.name	= "Kernel data",
43 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
44 };
45 
46 static struct resource code_resource = {
47 	.name	= "Kernel code",
48 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
49 };
50 
51 static struct resource pdcdata_resource = {
52 	.name	= "PDC data (Page Zero)",
53 	.start	= 0,
54 	.end	= 0x9ff,
55 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57 
58 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
59 
60 /* The following array is initialized from the firmware specific
61  * information retrieved in kernel/inventory.c.
62  */
63 
64 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
65 int npmem_ranges __read_mostly;
66 
67 #ifdef CONFIG_64BIT
68 #define MAX_MEM         (~0UL)
69 #else /* !CONFIG_64BIT */
70 #define MAX_MEM         (3584U*1024U*1024U)
71 #endif /* !CONFIG_64BIT */
72 
73 static unsigned long mem_limit __read_mostly = MAX_MEM;
74 
75 static void __init mem_limit_func(void)
76 {
77 	char *cp, *end;
78 	unsigned long limit;
79 
80 	/* We need this before __setup() functions are called */
81 
82 	limit = MAX_MEM;
83 	for (cp = boot_command_line; *cp; ) {
84 		if (memcmp(cp, "mem=", 4) == 0) {
85 			cp += 4;
86 			limit = memparse(cp, &end);
87 			if (end != cp)
88 				break;
89 			cp = end;
90 		} else {
91 			while (*cp != ' ' && *cp)
92 				++cp;
93 			while (*cp == ' ')
94 				++cp;
95 		}
96 	}
97 
98 	if (limit < mem_limit)
99 		mem_limit = limit;
100 }
101 
102 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
103 
104 static void __init setup_bootmem(void)
105 {
106 	unsigned long bootmap_size;
107 	unsigned long mem_max;
108 	unsigned long bootmap_pages;
109 	unsigned long bootmap_start_pfn;
110 	unsigned long bootmap_pfn;
111 #ifndef CONFIG_DISCONTIGMEM
112 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
113 	int npmem_holes;
114 #endif
115 	int i, sysram_resource_count;
116 
117 	disable_sr_hashing(); /* Turn off space register hashing */
118 
119 	/*
120 	 * Sort the ranges. Since the number of ranges is typically
121 	 * small, and performance is not an issue here, just do
122 	 * a simple insertion sort.
123 	 */
124 
125 	for (i = 1; i < npmem_ranges; i++) {
126 		int j;
127 
128 		for (j = i; j > 0; j--) {
129 			unsigned long tmp;
130 
131 			if (pmem_ranges[j-1].start_pfn <
132 			    pmem_ranges[j].start_pfn) {
133 
134 				break;
135 			}
136 			tmp = pmem_ranges[j-1].start_pfn;
137 			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
138 			pmem_ranges[j].start_pfn = tmp;
139 			tmp = pmem_ranges[j-1].pages;
140 			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
141 			pmem_ranges[j].pages = tmp;
142 		}
143 	}
144 
145 #ifndef CONFIG_DISCONTIGMEM
146 	/*
147 	 * Throw out ranges that are too far apart (controlled by
148 	 * MAX_GAP).
149 	 */
150 
151 	for (i = 1; i < npmem_ranges; i++) {
152 		if (pmem_ranges[i].start_pfn -
153 			(pmem_ranges[i-1].start_pfn +
154 			 pmem_ranges[i-1].pages) > MAX_GAP) {
155 			npmem_ranges = i;
156 			printk("Large gap in memory detected (%ld pages). "
157 			       "Consider turning on CONFIG_DISCONTIGMEM\n",
158 			       pmem_ranges[i].start_pfn -
159 			       (pmem_ranges[i-1].start_pfn +
160 			        pmem_ranges[i-1].pages));
161 			break;
162 		}
163 	}
164 #endif
165 
166 	if (npmem_ranges > 1) {
167 
168 		/* Print the memory ranges */
169 
170 		printk(KERN_INFO "Memory Ranges:\n");
171 
172 		for (i = 0; i < npmem_ranges; i++) {
173 			unsigned long start;
174 			unsigned long size;
175 
176 			size = (pmem_ranges[i].pages << PAGE_SHIFT);
177 			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
178 			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
179 				i,start, start + (size - 1), size >> 20);
180 		}
181 	}
182 
183 	sysram_resource_count = npmem_ranges;
184 	for (i = 0; i < sysram_resource_count; i++) {
185 		struct resource *res = &sysram_resources[i];
186 		res->name = "System RAM";
187 		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
188 		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
189 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
190 		request_resource(&iomem_resource, res);
191 	}
192 
193 	/*
194 	 * For 32 bit kernels we limit the amount of memory we can
195 	 * support, in order to preserve enough kernel address space
196 	 * for other purposes. For 64 bit kernels we don't normally
197 	 * limit the memory, but this mechanism can be used to
198 	 * artificially limit the amount of memory (and it is written
199 	 * to work with multiple memory ranges).
200 	 */
201 
202 	mem_limit_func();       /* check for "mem=" argument */
203 
204 	mem_max = 0;
205 	num_physpages = 0;
206 	for (i = 0; i < npmem_ranges; i++) {
207 		unsigned long rsize;
208 
209 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
210 		if ((mem_max + rsize) > mem_limit) {
211 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
212 			if (mem_max == mem_limit)
213 				npmem_ranges = i;
214 			else {
215 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
216 						       - (mem_max >> PAGE_SHIFT);
217 				npmem_ranges = i + 1;
218 				mem_max = mem_limit;
219 			}
220 	        num_physpages += pmem_ranges[i].pages;
221 			break;
222 		}
223 	    num_physpages += pmem_ranges[i].pages;
224 		mem_max += rsize;
225 	}
226 
227 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
228 
229 #ifndef CONFIG_DISCONTIGMEM
230 	/* Merge the ranges, keeping track of the holes */
231 
232 	{
233 		unsigned long end_pfn;
234 		unsigned long hole_pages;
235 
236 		npmem_holes = 0;
237 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
238 		for (i = 1; i < npmem_ranges; i++) {
239 
240 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
241 			if (hole_pages) {
242 				pmem_holes[npmem_holes].start_pfn = end_pfn;
243 				pmem_holes[npmem_holes++].pages = hole_pages;
244 				end_pfn += hole_pages;
245 			}
246 			end_pfn += pmem_ranges[i].pages;
247 		}
248 
249 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
250 		npmem_ranges = 1;
251 	}
252 #endif
253 
254 	bootmap_pages = 0;
255 	for (i = 0; i < npmem_ranges; i++)
256 		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
257 
258 	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
259 
260 #ifdef CONFIG_DISCONTIGMEM
261 	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
262 		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
263 		NODE_DATA(i)->bdata = &bootmem_node_data[i];
264 	}
265 	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
266 
267 	for (i = 0; i < npmem_ranges; i++) {
268 		node_set_state(i, N_NORMAL_MEMORY);
269 		node_set_online(i);
270 	}
271 #endif
272 
273 	/*
274 	 * Initialize and free the full range of memory in each range.
275 	 * Note that the only writing these routines do are to the bootmap,
276 	 * and we've made sure to locate the bootmap properly so that they
277 	 * won't be writing over anything important.
278 	 */
279 
280 	bootmap_pfn = bootmap_start_pfn;
281 	max_pfn = 0;
282 	for (i = 0; i < npmem_ranges; i++) {
283 		unsigned long start_pfn;
284 		unsigned long npages;
285 
286 		start_pfn = pmem_ranges[i].start_pfn;
287 		npages = pmem_ranges[i].pages;
288 
289 		bootmap_size = init_bootmem_node(NODE_DATA(i),
290 						bootmap_pfn,
291 						start_pfn,
292 						(start_pfn + npages) );
293 		free_bootmem_node(NODE_DATA(i),
294 				  (start_pfn << PAGE_SHIFT),
295 				  (npages << PAGE_SHIFT) );
296 		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 		if ((start_pfn + npages) > max_pfn)
298 			max_pfn = start_pfn + npages;
299 	}
300 
301 	/* IOMMU is always used to access "high mem" on those boxes
302 	 * that can support enough mem that a PCI device couldn't
303 	 * directly DMA to any physical addresses.
304 	 * ISA DMA support will need to revisit this.
305 	 */
306 	max_low_pfn = max_pfn;
307 
308 	/* bootmap sizing messed up? */
309 	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
310 
311 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312 
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
314 
315 	reserve_bootmem_node(NODE_DATA(0), 0UL,
316 			(unsigned long)(PAGE0->mem_free +
317 				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
318 	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319 			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
320 	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321 			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
322 			BOOTMEM_DEFAULT);
323 
324 #ifndef CONFIG_DISCONTIGMEM
325 
326 	/* reserve the holes */
327 
328 	for (i = 0; i < npmem_holes; i++) {
329 		reserve_bootmem_node(NODE_DATA(0),
330 				(pmem_holes[i].start_pfn << PAGE_SHIFT),
331 				(pmem_holes[i].pages << PAGE_SHIFT),
332 				BOOTMEM_DEFAULT);
333 	}
334 #endif
335 
336 #ifdef CONFIG_BLK_DEV_INITRD
337 	if (initrd_start) {
338 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339 		if (__pa(initrd_start) < mem_max) {
340 			unsigned long initrd_reserve;
341 
342 			if (__pa(initrd_end) > mem_max) {
343 				initrd_reserve = mem_max - __pa(initrd_start);
344 			} else {
345 				initrd_reserve = initrd_end - initrd_start;
346 			}
347 			initrd_below_start_ok = 1;
348 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349 
350 			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
351 					initrd_reserve, BOOTMEM_DEFAULT);
352 		}
353 	}
354 #endif
355 
356 	data_resource.start =  virt_to_phys(&data_start);
357 	data_resource.end = virt_to_phys(_end) - 1;
358 	code_resource.start = virt_to_phys(_text);
359 	code_resource.end = virt_to_phys(&data_start)-1;
360 
361 	/* We don't know which region the kernel will be in, so try
362 	 * all of them.
363 	 */
364 	for (i = 0; i < sysram_resource_count; i++) {
365 		struct resource *res = &sysram_resources[i];
366 		request_resource(res, &code_resource);
367 		request_resource(res, &data_resource);
368 	}
369 	request_resource(&sysram_resources[0], &pdcdata_resource);
370 }
371 
372 static void __init map_pages(unsigned long start_vaddr,
373 			     unsigned long start_paddr, unsigned long size,
374 			     pgprot_t pgprot, int force)
375 {
376 	pgd_t *pg_dir;
377 	pmd_t *pmd;
378 	pte_t *pg_table;
379 	unsigned long end_paddr;
380 	unsigned long start_pmd;
381 	unsigned long start_pte;
382 	unsigned long tmp1;
383 	unsigned long tmp2;
384 	unsigned long address;
385 	unsigned long vaddr;
386 	unsigned long ro_start;
387 	unsigned long ro_end;
388 	unsigned long fv_addr;
389 	unsigned long gw_addr;
390 	extern const unsigned long fault_vector_20;
391 	extern void * const linux_gateway_page;
392 
393 	ro_start = __pa((unsigned long)_text);
394 	ro_end   = __pa((unsigned long)&data_start);
395 	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
396 	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
397 
398 	end_paddr = start_paddr + size;
399 
400 	pg_dir = pgd_offset_k(start_vaddr);
401 
402 #if PTRS_PER_PMD == 1
403 	start_pmd = 0;
404 #else
405 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
406 #endif
407 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
408 
409 	address = start_paddr;
410 	vaddr = start_vaddr;
411 	while (address < end_paddr) {
412 #if PTRS_PER_PMD == 1
413 		pmd = (pmd_t *)__pa(pg_dir);
414 #else
415 		pmd = (pmd_t *)pgd_address(*pg_dir);
416 
417 		/*
418 		 * pmd is physical at this point
419 		 */
420 
421 		if (!pmd) {
422 			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
423 			pmd = (pmd_t *) __pa(pmd);
424 		}
425 
426 		pgd_populate(NULL, pg_dir, __va(pmd));
427 #endif
428 		pg_dir++;
429 
430 		/* now change pmd to kernel virtual addresses */
431 
432 		pmd = (pmd_t *)__va(pmd) + start_pmd;
433 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
434 
435 			/*
436 			 * pg_table is physical at this point
437 			 */
438 
439 			pg_table = (pte_t *)pmd_address(*pmd);
440 			if (!pg_table) {
441 				pg_table = (pte_t *)
442 					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
443 				pg_table = (pte_t *) __pa(pg_table);
444 			}
445 
446 			pmd_populate_kernel(NULL, pmd, __va(pg_table));
447 
448 			/* now change pg_table to kernel virtual addresses */
449 
450 			pg_table = (pte_t *) __va(pg_table) + start_pte;
451 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
452 				pte_t pte;
453 
454 				/*
455 				 * Map the fault vector writable so we can
456 				 * write the HPMC checksum.
457 				 */
458 				if (force)
459 					pte =  __mk_pte(address, pgprot);
460 				else if (core_kernel_text(vaddr) &&
461 					 address != fv_addr)
462 					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
463 				else
464 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
465 				if (address >= ro_start && address < ro_end
466 							&& address != fv_addr
467 							&& address != gw_addr)
468 					pte = __mk_pte(address, PAGE_KERNEL_RO);
469 				else
470 #endif
471 					pte = __mk_pte(address, pgprot);
472 
473 				if (address >= end_paddr) {
474 					if (force)
475 						break;
476 					else
477 						pte_val(pte) = 0;
478 				}
479 
480 				set_pte(pg_table, pte);
481 
482 				address += PAGE_SIZE;
483 				vaddr += PAGE_SIZE;
484 			}
485 			start_pte = 0;
486 
487 			if (address >= end_paddr)
488 			    break;
489 		}
490 		start_pmd = 0;
491 	}
492 }
493 
494 void free_initmem(void)
495 {
496 	unsigned long addr;
497 	unsigned long init_begin = (unsigned long)__init_begin;
498 	unsigned long init_end = (unsigned long)__init_end;
499 
500 	/* The init text pages are marked R-X.  We have to
501 	 * flush the icache and mark them RW-
502 	 *
503 	 * This is tricky, because map_pages is in the init section.
504 	 * Do a dummy remap of the data section first (the data
505 	 * section is already PAGE_KERNEL) to pull in the TLB entries
506 	 * for map_kernel */
507 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
508 		  PAGE_KERNEL_RWX, 1);
509 	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
510 	 * map_pages */
511 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
512 		  PAGE_KERNEL, 1);
513 
514 	/* force the kernel to see the new TLB entries */
515 	__flush_tlb_range(0, init_begin, init_end);
516 	/* Attempt to catch anyone trying to execute code here
517 	 * by filling the page with BRK insns.
518 	 */
519 	memset((void *)init_begin, 0x00, init_end - init_begin);
520 	/* finally dump all the instructions which were cached, since the
521 	 * pages are no-longer executable */
522 	flush_icache_range(init_begin, init_end);
523 
524 	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
525 		ClearPageReserved(virt_to_page(addr));
526 		init_page_count(virt_to_page(addr));
527 		free_page(addr);
528 		num_physpages++;
529 		totalram_pages++;
530 	}
531 
532 	/* set up a new led state on systems shipped LED State panel */
533 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
534 
535 	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
536 		(init_end - init_begin) >> 10);
537 }
538 
539 
540 #ifdef CONFIG_DEBUG_RODATA
541 void mark_rodata_ro(void)
542 {
543 	/* rodata memory was already mapped with KERNEL_RO access rights by
544            pagetable_init() and map_pages(). No need to do additional stuff here */
545 	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
546 		(unsigned long)(__end_rodata - __start_rodata) >> 10);
547 }
548 #endif
549 
550 
551 /*
552  * Just an arbitrary offset to serve as a "hole" between mapping areas
553  * (between top of physical memory and a potential pcxl dma mapping
554  * area, and below the vmalloc mapping area).
555  *
556  * The current 32K value just means that there will be a 32K "hole"
557  * between mapping areas. That means that  any out-of-bounds memory
558  * accesses will hopefully be caught. The vmalloc() routines leaves
559  * a hole of 4kB between each vmalloced area for the same reason.
560  */
561 
562  /* Leave room for gateway page expansion */
563 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
564 #error KERNEL_MAP_START is in gateway reserved region
565 #endif
566 #define MAP_START (KERNEL_MAP_START)
567 
568 #define VM_MAP_OFFSET  (32*1024)
569 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
570 				     & ~(VM_MAP_OFFSET-1)))
571 
572 void *parisc_vmalloc_start __read_mostly;
573 EXPORT_SYMBOL(parisc_vmalloc_start);
574 
575 #ifdef CONFIG_PA11
576 unsigned long pcxl_dma_start __read_mostly;
577 #endif
578 
579 void __init mem_init(void)
580 {
581 	int codesize, reservedpages, datasize, initsize;
582 
583 	/* Do sanity checks on page table constants */
584 	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585 	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586 	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587 	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588 			> BITS_PER_LONG);
589 
590 	high_memory = __va((max_pfn << PAGE_SHIFT));
591 
592 #ifndef CONFIG_DISCONTIGMEM
593 	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
594 	totalram_pages += free_all_bootmem();
595 #else
596 	{
597 		int i;
598 
599 		for (i = 0; i < npmem_ranges; i++)
600 			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
601 	}
602 #endif
603 
604 	codesize = (unsigned long)_etext - (unsigned long)_text;
605 	datasize = (unsigned long)_edata - (unsigned long)_etext;
606 	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
607 
608 	reservedpages = 0;
609 {
610 	unsigned long pfn;
611 #ifdef CONFIG_DISCONTIGMEM
612 	int i;
613 
614 	for (i = 0; i < npmem_ranges; i++) {
615 		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
616 			if (PageReserved(pfn_to_page(pfn)))
617 				reservedpages++;
618 		}
619 	}
620 #else /* !CONFIG_DISCONTIGMEM */
621 	for (pfn = 0; pfn < max_pfn; pfn++) {
622 		/*
623 		 * Only count reserved RAM pages
624 		 */
625 		if (PageReserved(pfn_to_page(pfn)))
626 			reservedpages++;
627 	}
628 #endif
629 }
630 
631 #ifdef CONFIG_PA11
632 	if (hppa_dma_ops == &pcxl_dma_ops) {
633 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
634 		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
635 						+ PCXL_DMA_MAP_SIZE);
636 	} else {
637 		pcxl_dma_start = 0;
638 		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
639 	}
640 #else
641 	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
642 #endif
643 
644 	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
645 		nr_free_pages() << (PAGE_SHIFT-10),
646 		num_physpages << (PAGE_SHIFT-10),
647 		codesize >> 10,
648 		reservedpages << (PAGE_SHIFT-10),
649 		datasize >> 10,
650 		initsize >> 10
651 	);
652 
653 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
654 	printk("virtual kernel memory layout:\n"
655 	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
656 	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
657 	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
658 	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
659 	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
660 
661 	       (void*)VMALLOC_START, (void*)VMALLOC_END,
662 	       (VMALLOC_END - VMALLOC_START) >> 20,
663 
664 	       __va(0), high_memory,
665 	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
666 
667 	       __init_begin, __init_end,
668 	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
669 
670 	       _etext, _edata,
671 	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
672 
673 	       _text, _etext,
674 	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
675 #endif
676 }
677 
678 unsigned long *empty_zero_page __read_mostly;
679 EXPORT_SYMBOL(empty_zero_page);
680 
681 void show_mem(unsigned int filter)
682 {
683 	int i,free = 0,total = 0,reserved = 0;
684 	int shared = 0, cached = 0;
685 
686 	printk(KERN_INFO "Mem-info:\n");
687 	show_free_areas(filter);
688 #ifndef CONFIG_DISCONTIGMEM
689 	i = max_mapnr;
690 	while (i-- > 0) {
691 		total++;
692 		if (PageReserved(mem_map+i))
693 			reserved++;
694 		else if (PageSwapCache(mem_map+i))
695 			cached++;
696 		else if (!page_count(&mem_map[i]))
697 			free++;
698 		else
699 			shared += page_count(&mem_map[i]) - 1;
700 	}
701 #else
702 	for (i = 0; i < npmem_ranges; i++) {
703 		int j;
704 
705 		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
706 			struct page *p;
707 			unsigned long flags;
708 
709 			pgdat_resize_lock(NODE_DATA(i), &flags);
710 			p = nid_page_nr(i, j) - node_start_pfn(i);
711 
712 			total++;
713 			if (PageReserved(p))
714 				reserved++;
715 			else if (PageSwapCache(p))
716 				cached++;
717 			else if (!page_count(p))
718 				free++;
719 			else
720 				shared += page_count(p) - 1;
721 			pgdat_resize_unlock(NODE_DATA(i), &flags);
722         	}
723 	}
724 #endif
725 	printk(KERN_INFO "%d pages of RAM\n", total);
726 	printk(KERN_INFO "%d reserved pages\n", reserved);
727 	printk(KERN_INFO "%d pages shared\n", shared);
728 	printk(KERN_INFO "%d pages swap cached\n", cached);
729 
730 
731 #ifdef CONFIG_DISCONTIGMEM
732 	{
733 		struct zonelist *zl;
734 		int i, j;
735 
736 		for (i = 0; i < npmem_ranges; i++) {
737 			zl = node_zonelist(i, 0);
738 			for (j = 0; j < MAX_NR_ZONES; j++) {
739 				struct zoneref *z;
740 				struct zone *zone;
741 
742 				printk("Zone list for zone %d on node %d: ", j, i);
743 				for_each_zone_zonelist(zone, z, zl, j)
744 					printk("[%d/%s] ", zone_to_nid(zone),
745 								zone->name);
746 				printk("\n");
747 			}
748 		}
749 	}
750 #endif
751 }
752 
753 /*
754  * pagetable_init() sets up the page tables
755  *
756  * Note that gateway_init() places the Linux gateway page at page 0.
757  * Since gateway pages cannot be dereferenced this has the desirable
758  * side effect of trapping those pesky NULL-reference errors in the
759  * kernel.
760  */
761 static void __init pagetable_init(void)
762 {
763 	int range;
764 
765 	/* Map each physical memory range to its kernel vaddr */
766 
767 	for (range = 0; range < npmem_ranges; range++) {
768 		unsigned long start_paddr;
769 		unsigned long end_paddr;
770 		unsigned long size;
771 
772 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
773 		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
774 		size = pmem_ranges[range].pages << PAGE_SHIFT;
775 
776 		map_pages((unsigned long)__va(start_paddr), start_paddr,
777 			  size, PAGE_KERNEL, 0);
778 	}
779 
780 #ifdef CONFIG_BLK_DEV_INITRD
781 	if (initrd_end && initrd_end > mem_limit) {
782 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
783 		map_pages(initrd_start, __pa(initrd_start),
784 			  initrd_end - initrd_start, PAGE_KERNEL, 0);
785 	}
786 #endif
787 
788 	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
789 	memset(empty_zero_page, 0, PAGE_SIZE);
790 }
791 
792 static void __init gateway_init(void)
793 {
794 	unsigned long linux_gateway_page_addr;
795 	/* FIXME: This is 'const' in order to trick the compiler
796 	   into not treating it as DP-relative data. */
797 	extern void * const linux_gateway_page;
798 
799 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
800 
801 	/*
802 	 * Setup Linux Gateway page.
803 	 *
804 	 * The Linux gateway page will reside in kernel space (on virtual
805 	 * page 0), so it doesn't need to be aliased into user space.
806 	 */
807 
808 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
809 		  PAGE_SIZE, PAGE_GATEWAY, 1);
810 }
811 
812 #ifdef CONFIG_HPUX
813 void
814 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
815 {
816 	pgd_t *pg_dir;
817 	pmd_t *pmd;
818 	pte_t *pg_table;
819 	unsigned long start_pmd;
820 	unsigned long start_pte;
821 	unsigned long address;
822 	unsigned long hpux_gw_page_addr;
823 	/* FIXME: This is 'const' in order to trick the compiler
824 	   into not treating it as DP-relative data. */
825 	extern void * const hpux_gateway_page;
826 
827 	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
828 
829 	/*
830 	 * Setup HP-UX Gateway page.
831 	 *
832 	 * The HP-UX gateway page resides in the user address space,
833 	 * so it needs to be aliased into each process.
834 	 */
835 
836 	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
837 
838 #if PTRS_PER_PMD == 1
839 	start_pmd = 0;
840 #else
841 	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
842 #endif
843 	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
844 
845 	address = __pa(&hpux_gateway_page);
846 #if PTRS_PER_PMD == 1
847 	pmd = (pmd_t *)__pa(pg_dir);
848 #else
849 	pmd = (pmd_t *) pgd_address(*pg_dir);
850 
851 	/*
852 	 * pmd is physical at this point
853 	 */
854 
855 	if (!pmd) {
856 		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
857 		pmd = (pmd_t *) __pa(pmd);
858 	}
859 
860 	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
861 #endif
862 	/* now change pmd to kernel virtual addresses */
863 
864 	pmd = (pmd_t *)__va(pmd) + start_pmd;
865 
866 	/*
867 	 * pg_table is physical at this point
868 	 */
869 
870 	pg_table = (pte_t *) pmd_address(*pmd);
871 	if (!pg_table)
872 		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
873 
874 	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
875 
876 	/* now change pg_table to kernel virtual addresses */
877 
878 	pg_table = (pte_t *) __va(pg_table) + start_pte;
879 	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
880 }
881 EXPORT_SYMBOL(map_hpux_gateway_page);
882 #endif
883 
884 void __init paging_init(void)
885 {
886 	int i;
887 
888 	setup_bootmem();
889 	pagetable_init();
890 	gateway_init();
891 	flush_cache_all_local(); /* start with known state */
892 	flush_tlb_all_local(NULL);
893 
894 	for (i = 0; i < npmem_ranges; i++) {
895 		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
896 
897 		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
898 
899 #ifdef CONFIG_DISCONTIGMEM
900 		/* Need to initialize the pfnnid_map before we can initialize
901 		   the zone */
902 		{
903 		    int j;
904 		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
905 			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
906 			 j++) {
907 			pfnnid_map[j] = i;
908 		    }
909 		}
910 #endif
911 
912 		free_area_init_node(i, zones_size,
913 				pmem_ranges[i].start_pfn, NULL);
914 	}
915 }
916 
917 #ifdef CONFIG_PA20
918 
919 /*
920  * Currently, all PA20 chips have 18 bit protection IDs, which is the
921  * limiting factor (space ids are 32 bits).
922  */
923 
924 #define NR_SPACE_IDS 262144
925 
926 #else
927 
928 /*
929  * Currently we have a one-to-one relationship between space IDs and
930  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
931  * support 15 bit protection IDs, so that is the limiting factor.
932  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
933  * probably not worth the effort for a special case here.
934  */
935 
936 #define NR_SPACE_IDS 32768
937 
938 #endif  /* !CONFIG_PA20 */
939 
940 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
941 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
942 
943 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
944 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
945 static unsigned long space_id_index;
946 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
947 static unsigned long dirty_space_ids = 0;
948 
949 static DEFINE_SPINLOCK(sid_lock);
950 
951 unsigned long alloc_sid(void)
952 {
953 	unsigned long index;
954 
955 	spin_lock(&sid_lock);
956 
957 	if (free_space_ids == 0) {
958 		if (dirty_space_ids != 0) {
959 			spin_unlock(&sid_lock);
960 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
961 			spin_lock(&sid_lock);
962 		}
963 		BUG_ON(free_space_ids == 0);
964 	}
965 
966 	free_space_ids--;
967 
968 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
969 	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
970 	space_id_index = index;
971 
972 	spin_unlock(&sid_lock);
973 
974 	return index << SPACEID_SHIFT;
975 }
976 
977 void free_sid(unsigned long spaceid)
978 {
979 	unsigned long index = spaceid >> SPACEID_SHIFT;
980 	unsigned long *dirty_space_offset;
981 
982 	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
983 	index &= (BITS_PER_LONG - 1);
984 
985 	spin_lock(&sid_lock);
986 
987 	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
988 
989 	*dirty_space_offset |= (1L << index);
990 	dirty_space_ids++;
991 
992 	spin_unlock(&sid_lock);
993 }
994 
995 
996 #ifdef CONFIG_SMP
997 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
998 {
999 	int i;
1000 
1001 	/* NOTE: sid_lock must be held upon entry */
1002 
1003 	*ndirtyptr = dirty_space_ids;
1004 	if (dirty_space_ids != 0) {
1005 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
1006 		dirty_array[i] = dirty_space_id[i];
1007 		dirty_space_id[i] = 0;
1008 	    }
1009 	    dirty_space_ids = 0;
1010 	}
1011 
1012 	return;
1013 }
1014 
1015 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1016 {
1017 	int i;
1018 
1019 	/* NOTE: sid_lock must be held upon entry */
1020 
1021 	if (ndirty != 0) {
1022 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1023 			space_id[i] ^= dirty_array[i];
1024 		}
1025 
1026 		free_space_ids += ndirty;
1027 		space_id_index = 0;
1028 	}
1029 }
1030 
1031 #else /* CONFIG_SMP */
1032 
1033 static void recycle_sids(void)
1034 {
1035 	int i;
1036 
1037 	/* NOTE: sid_lock must be held upon entry */
1038 
1039 	if (dirty_space_ids != 0) {
1040 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1041 			space_id[i] ^= dirty_space_id[i];
1042 			dirty_space_id[i] = 0;
1043 		}
1044 
1045 		free_space_ids += dirty_space_ids;
1046 		dirty_space_ids = 0;
1047 		space_id_index = 0;
1048 	}
1049 }
1050 #endif
1051 
1052 /*
1053  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1054  * purged, we can safely reuse the space ids that were released but
1055  * not flushed from the tlb.
1056  */
1057 
1058 #ifdef CONFIG_SMP
1059 
1060 static unsigned long recycle_ndirty;
1061 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1062 static unsigned int recycle_inuse;
1063 
1064 void flush_tlb_all(void)
1065 {
1066 	int do_recycle;
1067 
1068 	do_recycle = 0;
1069 	spin_lock(&sid_lock);
1070 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1071 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1072 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1073 	    recycle_inuse++;
1074 	    do_recycle++;
1075 	}
1076 	spin_unlock(&sid_lock);
1077 	on_each_cpu(flush_tlb_all_local, NULL, 1);
1078 	if (do_recycle) {
1079 	    spin_lock(&sid_lock);
1080 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1081 	    recycle_inuse = 0;
1082 	    spin_unlock(&sid_lock);
1083 	}
1084 }
1085 #else
1086 void flush_tlb_all(void)
1087 {
1088 	spin_lock(&sid_lock);
1089 	flush_tlb_all_local(NULL);
1090 	recycle_sids();
1091 	spin_unlock(&sid_lock);
1092 }
1093 #endif
1094 
1095 #ifdef CONFIG_BLK_DEV_INITRD
1096 void free_initrd_mem(unsigned long start, unsigned long end)
1097 {
1098 	if (start >= end)
1099 		return;
1100 	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1101 	for (; start < end; start += PAGE_SIZE) {
1102 		ClearPageReserved(virt_to_page(start));
1103 		init_page_count(virt_to_page(start));
1104 		free_page(start);
1105 		num_physpages++;
1106 		totalram_pages++;
1107 	}
1108 }
1109 #endif
1110