1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 #include <asm/pdc_chassis.h> 30 #include <asm/mmzone.h> 31 #include <asm/sections.h> 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 extern int data_start; 36 37 #ifdef CONFIG_DISCONTIGMEM 38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 40 #endif 41 42 static struct resource data_resource = { 43 .name = "Kernel data", 44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 45 }; 46 47 static struct resource code_resource = { 48 .name = "Kernel code", 49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 50 }; 51 52 static struct resource pdcdata_resource = { 53 .name = "PDC data (Page Zero)", 54 .start = 0, 55 .end = 0x9ff, 56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 57 }; 58 59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 60 61 /* The following array is initialized from the firmware specific 62 * information retrieved in kernel/inventory.c. 63 */ 64 65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 66 int npmem_ranges __read_mostly; 67 68 #ifdef CONFIG_64BIT 69 #define MAX_MEM (~0UL) 70 #else /* !CONFIG_64BIT */ 71 #define MAX_MEM (3584U*1024U*1024U) 72 #endif /* !CONFIG_64BIT */ 73 74 static unsigned long mem_limit __read_mostly = MAX_MEM; 75 76 static void __init mem_limit_func(void) 77 { 78 char *cp, *end; 79 unsigned long limit; 80 81 /* We need this before __setup() functions are called */ 82 83 limit = MAX_MEM; 84 for (cp = boot_command_line; *cp; ) { 85 if (memcmp(cp, "mem=", 4) == 0) { 86 cp += 4; 87 limit = memparse(cp, &end); 88 if (end != cp) 89 break; 90 cp = end; 91 } else { 92 while (*cp != ' ' && *cp) 93 ++cp; 94 while (*cp == ' ') 95 ++cp; 96 } 97 } 98 99 if (limit < mem_limit) 100 mem_limit = limit; 101 } 102 103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 104 105 static void __init setup_bootmem(void) 106 { 107 unsigned long bootmap_size; 108 unsigned long mem_max; 109 unsigned long bootmap_pages; 110 unsigned long bootmap_start_pfn; 111 unsigned long bootmap_pfn; 112 #ifndef CONFIG_DISCONTIGMEM 113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 114 int npmem_holes; 115 #endif 116 int i, sysram_resource_count; 117 118 disable_sr_hashing(); /* Turn off space register hashing */ 119 120 /* 121 * Sort the ranges. Since the number of ranges is typically 122 * small, and performance is not an issue here, just do 123 * a simple insertion sort. 124 */ 125 126 for (i = 1; i < npmem_ranges; i++) { 127 int j; 128 129 for (j = i; j > 0; j--) { 130 unsigned long tmp; 131 132 if (pmem_ranges[j-1].start_pfn < 133 pmem_ranges[j].start_pfn) { 134 135 break; 136 } 137 tmp = pmem_ranges[j-1].start_pfn; 138 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 139 pmem_ranges[j].start_pfn = tmp; 140 tmp = pmem_ranges[j-1].pages; 141 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 142 pmem_ranges[j].pages = tmp; 143 } 144 } 145 146 #ifndef CONFIG_DISCONTIGMEM 147 /* 148 * Throw out ranges that are too far apart (controlled by 149 * MAX_GAP). 150 */ 151 152 for (i = 1; i < npmem_ranges; i++) { 153 if (pmem_ranges[i].start_pfn - 154 (pmem_ranges[i-1].start_pfn + 155 pmem_ranges[i-1].pages) > MAX_GAP) { 156 npmem_ranges = i; 157 printk("Large gap in memory detected (%ld pages). " 158 "Consider turning on CONFIG_DISCONTIGMEM\n", 159 pmem_ranges[i].start_pfn - 160 (pmem_ranges[i-1].start_pfn + 161 pmem_ranges[i-1].pages)); 162 break; 163 } 164 } 165 #endif 166 167 if (npmem_ranges > 1) { 168 169 /* Print the memory ranges */ 170 171 printk(KERN_INFO "Memory Ranges:\n"); 172 173 for (i = 0; i < npmem_ranges; i++) { 174 unsigned long start; 175 unsigned long size; 176 177 size = (pmem_ranges[i].pages << PAGE_SHIFT); 178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 179 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 180 i,start, start + (size - 1), size >> 20); 181 } 182 } 183 184 sysram_resource_count = npmem_ranges; 185 for (i = 0; i < sysram_resource_count; i++) { 186 struct resource *res = &sysram_resources[i]; 187 res->name = "System RAM"; 188 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 189 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 191 request_resource(&iomem_resource, res); 192 } 193 194 /* 195 * For 32 bit kernels we limit the amount of memory we can 196 * support, in order to preserve enough kernel address space 197 * for other purposes. For 64 bit kernels we don't normally 198 * limit the memory, but this mechanism can be used to 199 * artificially limit the amount of memory (and it is written 200 * to work with multiple memory ranges). 201 */ 202 203 mem_limit_func(); /* check for "mem=" argument */ 204 205 mem_max = 0; 206 num_physpages = 0; 207 for (i = 0; i < npmem_ranges; i++) { 208 unsigned long rsize; 209 210 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 211 if ((mem_max + rsize) > mem_limit) { 212 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 213 if (mem_max == mem_limit) 214 npmem_ranges = i; 215 else { 216 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 217 - (mem_max >> PAGE_SHIFT); 218 npmem_ranges = i + 1; 219 mem_max = mem_limit; 220 } 221 num_physpages += pmem_ranges[i].pages; 222 break; 223 } 224 num_physpages += pmem_ranges[i].pages; 225 mem_max += rsize; 226 } 227 228 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 229 230 #ifndef CONFIG_DISCONTIGMEM 231 /* Merge the ranges, keeping track of the holes */ 232 233 { 234 unsigned long end_pfn; 235 unsigned long hole_pages; 236 237 npmem_holes = 0; 238 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 239 for (i = 1; i < npmem_ranges; i++) { 240 241 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 242 if (hole_pages) { 243 pmem_holes[npmem_holes].start_pfn = end_pfn; 244 pmem_holes[npmem_holes++].pages = hole_pages; 245 end_pfn += hole_pages; 246 } 247 end_pfn += pmem_ranges[i].pages; 248 } 249 250 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 251 npmem_ranges = 1; 252 } 253 #endif 254 255 bootmap_pages = 0; 256 for (i = 0; i < npmem_ranges; i++) 257 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 258 259 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 260 261 #ifdef CONFIG_DISCONTIGMEM 262 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 263 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 264 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 265 } 266 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 267 268 for (i = 0; i < npmem_ranges; i++) 269 node_set_online(i); 270 #endif 271 272 /* 273 * Initialize and free the full range of memory in each range. 274 * Note that the only writing these routines do are to the bootmap, 275 * and we've made sure to locate the bootmap properly so that they 276 * won't be writing over anything important. 277 */ 278 279 bootmap_pfn = bootmap_start_pfn; 280 max_pfn = 0; 281 for (i = 0; i < npmem_ranges; i++) { 282 unsigned long start_pfn; 283 unsigned long npages; 284 285 start_pfn = pmem_ranges[i].start_pfn; 286 npages = pmem_ranges[i].pages; 287 288 bootmap_size = init_bootmem_node(NODE_DATA(i), 289 bootmap_pfn, 290 start_pfn, 291 (start_pfn + npages) ); 292 free_bootmem_node(NODE_DATA(i), 293 (start_pfn << PAGE_SHIFT), 294 (npages << PAGE_SHIFT) ); 295 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 296 if ((start_pfn + npages) > max_pfn) 297 max_pfn = start_pfn + npages; 298 } 299 300 /* IOMMU is always used to access "high mem" on those boxes 301 * that can support enough mem that a PCI device couldn't 302 * directly DMA to any physical addresses. 303 * ISA DMA support will need to revisit this. 304 */ 305 max_low_pfn = max_pfn; 306 307 /* bootmap sizing messed up? */ 308 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 309 310 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 311 312 #define PDC_CONSOLE_IO_IODC_SIZE 32768 313 314 reserve_bootmem_node(NODE_DATA(0), 0UL, 315 (unsigned long)(PAGE0->mem_free + 316 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 317 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 318 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 319 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 320 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 321 BOOTMEM_DEFAULT); 322 323 #ifndef CONFIG_DISCONTIGMEM 324 325 /* reserve the holes */ 326 327 for (i = 0; i < npmem_holes; i++) { 328 reserve_bootmem_node(NODE_DATA(0), 329 (pmem_holes[i].start_pfn << PAGE_SHIFT), 330 (pmem_holes[i].pages << PAGE_SHIFT), 331 BOOTMEM_DEFAULT); 332 } 333 #endif 334 335 #ifdef CONFIG_BLK_DEV_INITRD 336 if (initrd_start) { 337 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 338 if (__pa(initrd_start) < mem_max) { 339 unsigned long initrd_reserve; 340 341 if (__pa(initrd_end) > mem_max) { 342 initrd_reserve = mem_max - __pa(initrd_start); 343 } else { 344 initrd_reserve = initrd_end - initrd_start; 345 } 346 initrd_below_start_ok = 1; 347 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 348 349 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 350 initrd_reserve, BOOTMEM_DEFAULT); 351 } 352 } 353 #endif 354 355 data_resource.start = virt_to_phys(&data_start); 356 data_resource.end = virt_to_phys(_end) - 1; 357 code_resource.start = virt_to_phys(_text); 358 code_resource.end = virt_to_phys(&data_start)-1; 359 360 /* We don't know which region the kernel will be in, so try 361 * all of them. 362 */ 363 for (i = 0; i < sysram_resource_count; i++) { 364 struct resource *res = &sysram_resources[i]; 365 request_resource(res, &code_resource); 366 request_resource(res, &data_resource); 367 } 368 request_resource(&sysram_resources[0], &pdcdata_resource); 369 } 370 371 void free_initmem(void) 372 { 373 unsigned long addr, init_begin, init_end; 374 375 printk(KERN_INFO "Freeing unused kernel memory: "); 376 377 #ifdef CONFIG_DEBUG_KERNEL 378 /* Attempt to catch anyone trying to execute code here 379 * by filling the page with BRK insns. 380 * 381 * If we disable interrupts for all CPUs, then IPI stops working. 382 * Kinda breaks the global cache flushing. 383 */ 384 local_irq_disable(); 385 386 memset(__init_begin, 0x00, 387 (unsigned long)__init_end - (unsigned long)__init_begin); 388 389 flush_data_cache(); 390 asm volatile("sync" : : ); 391 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end); 392 asm volatile("sync" : : ); 393 394 local_irq_enable(); 395 #endif 396 397 /* align __init_begin and __init_end to page size, 398 ignoring linker script where we might have tried to save RAM */ 399 init_begin = PAGE_ALIGN((unsigned long)(__init_begin)); 400 init_end = PAGE_ALIGN((unsigned long)(__init_end)); 401 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 402 ClearPageReserved(virt_to_page(addr)); 403 init_page_count(virt_to_page(addr)); 404 free_page(addr); 405 num_physpages++; 406 totalram_pages++; 407 } 408 409 /* set up a new led state on systems shipped LED State panel */ 410 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 411 412 printk("%luk freed\n", (init_end - init_begin) >> 10); 413 } 414 415 416 #ifdef CONFIG_DEBUG_RODATA 417 void mark_rodata_ro(void) 418 { 419 /* rodata memory was already mapped with KERNEL_RO access rights by 420 pagetable_init() and map_pages(). No need to do additional stuff here */ 421 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 422 (unsigned long)(__end_rodata - __start_rodata) >> 10); 423 } 424 #endif 425 426 427 /* 428 * Just an arbitrary offset to serve as a "hole" between mapping areas 429 * (between top of physical memory and a potential pcxl dma mapping 430 * area, and below the vmalloc mapping area). 431 * 432 * The current 32K value just means that there will be a 32K "hole" 433 * between mapping areas. That means that any out-of-bounds memory 434 * accesses will hopefully be caught. The vmalloc() routines leaves 435 * a hole of 4kB between each vmalloced area for the same reason. 436 */ 437 438 /* Leave room for gateway page expansion */ 439 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 440 #error KERNEL_MAP_START is in gateway reserved region 441 #endif 442 #define MAP_START (KERNEL_MAP_START) 443 444 #define VM_MAP_OFFSET (32*1024) 445 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 446 & ~(VM_MAP_OFFSET-1))) 447 448 void *vmalloc_start __read_mostly; 449 EXPORT_SYMBOL(vmalloc_start); 450 451 #ifdef CONFIG_PA11 452 unsigned long pcxl_dma_start __read_mostly; 453 #endif 454 455 void __init mem_init(void) 456 { 457 int codesize, reservedpages, datasize, initsize; 458 459 high_memory = __va((max_pfn << PAGE_SHIFT)); 460 461 #ifndef CONFIG_DISCONTIGMEM 462 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 463 totalram_pages += free_all_bootmem(); 464 #else 465 { 466 int i; 467 468 for (i = 0; i < npmem_ranges; i++) 469 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 470 } 471 #endif 472 473 codesize = (unsigned long)_etext - (unsigned long)_text; 474 datasize = (unsigned long)_edata - (unsigned long)_etext; 475 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 476 477 reservedpages = 0; 478 { 479 unsigned long pfn; 480 #ifdef CONFIG_DISCONTIGMEM 481 int i; 482 483 for (i = 0; i < npmem_ranges; i++) { 484 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 485 if (PageReserved(pfn_to_page(pfn))) 486 reservedpages++; 487 } 488 } 489 #else /* !CONFIG_DISCONTIGMEM */ 490 for (pfn = 0; pfn < max_pfn; pfn++) { 491 /* 492 * Only count reserved RAM pages 493 */ 494 if (PageReserved(pfn_to_page(pfn))) 495 reservedpages++; 496 } 497 #endif 498 } 499 500 #ifdef CONFIG_PA11 501 if (hppa_dma_ops == &pcxl_dma_ops) { 502 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 503 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 504 } else { 505 pcxl_dma_start = 0; 506 vmalloc_start = SET_MAP_OFFSET(MAP_START); 507 } 508 #else 509 vmalloc_start = SET_MAP_OFFSET(MAP_START); 510 #endif 511 512 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 513 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 514 num_physpages << (PAGE_SHIFT-10), 515 codesize >> 10, 516 reservedpages << (PAGE_SHIFT-10), 517 datasize >> 10, 518 initsize >> 10 519 ); 520 521 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 522 printk("virtual kernel memory layout:\n" 523 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 524 " memory : 0x%p - 0x%p (%4ld MB)\n" 525 " .init : 0x%p - 0x%p (%4ld kB)\n" 526 " .data : 0x%p - 0x%p (%4ld kB)\n" 527 " .text : 0x%p - 0x%p (%4ld kB)\n", 528 529 (void*)VMALLOC_START, (void*)VMALLOC_END, 530 (VMALLOC_END - VMALLOC_START) >> 20, 531 532 __va(0), high_memory, 533 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 534 535 __init_begin, __init_end, 536 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 537 538 _etext, _edata, 539 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 540 541 _text, _etext, 542 ((unsigned long)_etext - (unsigned long)_text) >> 10); 543 #endif 544 } 545 546 unsigned long *empty_zero_page __read_mostly; 547 EXPORT_SYMBOL(empty_zero_page); 548 549 void show_mem(void) 550 { 551 int i,free = 0,total = 0,reserved = 0; 552 int shared = 0, cached = 0; 553 554 printk(KERN_INFO "Mem-info:\n"); 555 show_free_areas(); 556 #ifndef CONFIG_DISCONTIGMEM 557 i = max_mapnr; 558 while (i-- > 0) { 559 total++; 560 if (PageReserved(mem_map+i)) 561 reserved++; 562 else if (PageSwapCache(mem_map+i)) 563 cached++; 564 else if (!page_count(&mem_map[i])) 565 free++; 566 else 567 shared += page_count(&mem_map[i]) - 1; 568 } 569 #else 570 for (i = 0; i < npmem_ranges; i++) { 571 int j; 572 573 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 574 struct page *p; 575 unsigned long flags; 576 577 pgdat_resize_lock(NODE_DATA(i), &flags); 578 p = nid_page_nr(i, j) - node_start_pfn(i); 579 580 total++; 581 if (PageReserved(p)) 582 reserved++; 583 else if (PageSwapCache(p)) 584 cached++; 585 else if (!page_count(p)) 586 free++; 587 else 588 shared += page_count(p) - 1; 589 pgdat_resize_unlock(NODE_DATA(i), &flags); 590 } 591 } 592 #endif 593 printk(KERN_INFO "%d pages of RAM\n", total); 594 printk(KERN_INFO "%d reserved pages\n", reserved); 595 printk(KERN_INFO "%d pages shared\n", shared); 596 printk(KERN_INFO "%d pages swap cached\n", cached); 597 598 599 #ifdef CONFIG_DISCONTIGMEM 600 { 601 struct zonelist *zl; 602 int i, j; 603 604 for (i = 0; i < npmem_ranges; i++) { 605 zl = node_zonelist(i, 0); 606 for (j = 0; j < MAX_NR_ZONES; j++) { 607 struct zoneref *z; 608 struct zone *zone; 609 610 printk("Zone list for zone %d on node %d: ", j, i); 611 for_each_zone_zonelist(zone, z, zl, j) 612 printk("[%d/%s] ", zone_to_nid(zone), 613 zone->name); 614 printk("\n"); 615 } 616 } 617 } 618 #endif 619 } 620 621 622 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 623 { 624 pgd_t *pg_dir; 625 pmd_t *pmd; 626 pte_t *pg_table; 627 unsigned long end_paddr; 628 unsigned long start_pmd; 629 unsigned long start_pte; 630 unsigned long tmp1; 631 unsigned long tmp2; 632 unsigned long address; 633 unsigned long ro_start; 634 unsigned long ro_end; 635 unsigned long fv_addr; 636 unsigned long gw_addr; 637 extern const unsigned long fault_vector_20; 638 extern void * const linux_gateway_page; 639 640 ro_start = __pa((unsigned long)_text); 641 ro_end = __pa((unsigned long)&data_start); 642 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 643 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 644 645 end_paddr = start_paddr + size; 646 647 pg_dir = pgd_offset_k(start_vaddr); 648 649 #if PTRS_PER_PMD == 1 650 start_pmd = 0; 651 #else 652 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 653 #endif 654 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 655 656 address = start_paddr; 657 while (address < end_paddr) { 658 #if PTRS_PER_PMD == 1 659 pmd = (pmd_t *)__pa(pg_dir); 660 #else 661 pmd = (pmd_t *)pgd_address(*pg_dir); 662 663 /* 664 * pmd is physical at this point 665 */ 666 667 if (!pmd) { 668 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 669 pmd = (pmd_t *) __pa(pmd); 670 } 671 672 pgd_populate(NULL, pg_dir, __va(pmd)); 673 #endif 674 pg_dir++; 675 676 /* now change pmd to kernel virtual addresses */ 677 678 pmd = (pmd_t *)__va(pmd) + start_pmd; 679 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 680 681 /* 682 * pg_table is physical at this point 683 */ 684 685 pg_table = (pte_t *)pmd_address(*pmd); 686 if (!pg_table) { 687 pg_table = (pte_t *) 688 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 689 pg_table = (pte_t *) __pa(pg_table); 690 } 691 692 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 693 694 /* now change pg_table to kernel virtual addresses */ 695 696 pg_table = (pte_t *) __va(pg_table) + start_pte; 697 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 698 pte_t pte; 699 700 /* 701 * Map the fault vector writable so we can 702 * write the HPMC checksum. 703 */ 704 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 705 if (address >= ro_start && address < ro_end 706 && address != fv_addr 707 && address != gw_addr) 708 pte = __mk_pte(address, PAGE_KERNEL_RO); 709 else 710 #endif 711 pte = __mk_pte(address, pgprot); 712 713 if (address >= end_paddr) 714 pte_val(pte) = 0; 715 716 set_pte(pg_table, pte); 717 718 address += PAGE_SIZE; 719 } 720 start_pte = 0; 721 722 if (address >= end_paddr) 723 break; 724 } 725 start_pmd = 0; 726 } 727 } 728 729 /* 730 * pagetable_init() sets up the page tables 731 * 732 * Note that gateway_init() places the Linux gateway page at page 0. 733 * Since gateway pages cannot be dereferenced this has the desirable 734 * side effect of trapping those pesky NULL-reference errors in the 735 * kernel. 736 */ 737 static void __init pagetable_init(void) 738 { 739 int range; 740 741 /* Map each physical memory range to its kernel vaddr */ 742 743 for (range = 0; range < npmem_ranges; range++) { 744 unsigned long start_paddr; 745 unsigned long end_paddr; 746 unsigned long size; 747 748 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 749 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 750 size = pmem_ranges[range].pages << PAGE_SHIFT; 751 752 map_pages((unsigned long)__va(start_paddr), start_paddr, 753 size, PAGE_KERNEL); 754 } 755 756 #ifdef CONFIG_BLK_DEV_INITRD 757 if (initrd_end && initrd_end > mem_limit) { 758 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 759 map_pages(initrd_start, __pa(initrd_start), 760 initrd_end - initrd_start, PAGE_KERNEL); 761 } 762 #endif 763 764 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 765 memset(empty_zero_page, 0, PAGE_SIZE); 766 } 767 768 static void __init gateway_init(void) 769 { 770 unsigned long linux_gateway_page_addr; 771 /* FIXME: This is 'const' in order to trick the compiler 772 into not treating it as DP-relative data. */ 773 extern void * const linux_gateway_page; 774 775 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 776 777 /* 778 * Setup Linux Gateway page. 779 * 780 * The Linux gateway page will reside in kernel space (on virtual 781 * page 0), so it doesn't need to be aliased into user space. 782 */ 783 784 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 785 PAGE_SIZE, PAGE_GATEWAY); 786 } 787 788 #ifdef CONFIG_HPUX 789 void 790 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 791 { 792 pgd_t *pg_dir; 793 pmd_t *pmd; 794 pte_t *pg_table; 795 unsigned long start_pmd; 796 unsigned long start_pte; 797 unsigned long address; 798 unsigned long hpux_gw_page_addr; 799 /* FIXME: This is 'const' in order to trick the compiler 800 into not treating it as DP-relative data. */ 801 extern void * const hpux_gateway_page; 802 803 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 804 805 /* 806 * Setup HP-UX Gateway page. 807 * 808 * The HP-UX gateway page resides in the user address space, 809 * so it needs to be aliased into each process. 810 */ 811 812 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 813 814 #if PTRS_PER_PMD == 1 815 start_pmd = 0; 816 #else 817 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 818 #endif 819 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 820 821 address = __pa(&hpux_gateway_page); 822 #if PTRS_PER_PMD == 1 823 pmd = (pmd_t *)__pa(pg_dir); 824 #else 825 pmd = (pmd_t *) pgd_address(*pg_dir); 826 827 /* 828 * pmd is physical at this point 829 */ 830 831 if (!pmd) { 832 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 833 pmd = (pmd_t *) __pa(pmd); 834 } 835 836 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 837 #endif 838 /* now change pmd to kernel virtual addresses */ 839 840 pmd = (pmd_t *)__va(pmd) + start_pmd; 841 842 /* 843 * pg_table is physical at this point 844 */ 845 846 pg_table = (pte_t *) pmd_address(*pmd); 847 if (!pg_table) 848 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 849 850 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 851 852 /* now change pg_table to kernel virtual addresses */ 853 854 pg_table = (pte_t *) __va(pg_table) + start_pte; 855 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 856 } 857 EXPORT_SYMBOL(map_hpux_gateway_page); 858 #endif 859 860 void __init paging_init(void) 861 { 862 int i; 863 864 setup_bootmem(); 865 pagetable_init(); 866 gateway_init(); 867 flush_cache_all_local(); /* start with known state */ 868 flush_tlb_all_local(NULL); 869 870 for (i = 0; i < npmem_ranges; i++) { 871 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 872 873 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 874 875 #ifdef CONFIG_DISCONTIGMEM 876 /* Need to initialize the pfnnid_map before we can initialize 877 the zone */ 878 { 879 int j; 880 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 881 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 882 j++) { 883 pfnnid_map[j] = i; 884 } 885 } 886 #endif 887 888 free_area_init_node(i, zones_size, 889 pmem_ranges[i].start_pfn, NULL); 890 } 891 } 892 893 #ifdef CONFIG_PA20 894 895 /* 896 * Currently, all PA20 chips have 18 bit protection IDs, which is the 897 * limiting factor (space ids are 32 bits). 898 */ 899 900 #define NR_SPACE_IDS 262144 901 902 #else 903 904 /* 905 * Currently we have a one-to-one relationship between space IDs and 906 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 907 * support 15 bit protection IDs, so that is the limiting factor. 908 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 909 * probably not worth the effort for a special case here. 910 */ 911 912 #define NR_SPACE_IDS 32768 913 914 #endif /* !CONFIG_PA20 */ 915 916 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 917 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 918 919 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 920 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 921 static unsigned long space_id_index; 922 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 923 static unsigned long dirty_space_ids = 0; 924 925 static DEFINE_SPINLOCK(sid_lock); 926 927 unsigned long alloc_sid(void) 928 { 929 unsigned long index; 930 931 spin_lock(&sid_lock); 932 933 if (free_space_ids == 0) { 934 if (dirty_space_ids != 0) { 935 spin_unlock(&sid_lock); 936 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 937 spin_lock(&sid_lock); 938 } 939 BUG_ON(free_space_ids == 0); 940 } 941 942 free_space_ids--; 943 944 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 945 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 946 space_id_index = index; 947 948 spin_unlock(&sid_lock); 949 950 return index << SPACEID_SHIFT; 951 } 952 953 void free_sid(unsigned long spaceid) 954 { 955 unsigned long index = spaceid >> SPACEID_SHIFT; 956 unsigned long *dirty_space_offset; 957 958 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 959 index &= (BITS_PER_LONG - 1); 960 961 spin_lock(&sid_lock); 962 963 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 964 965 *dirty_space_offset |= (1L << index); 966 dirty_space_ids++; 967 968 spin_unlock(&sid_lock); 969 } 970 971 972 #ifdef CONFIG_SMP 973 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 974 { 975 int i; 976 977 /* NOTE: sid_lock must be held upon entry */ 978 979 *ndirtyptr = dirty_space_ids; 980 if (dirty_space_ids != 0) { 981 for (i = 0; i < SID_ARRAY_SIZE; i++) { 982 dirty_array[i] = dirty_space_id[i]; 983 dirty_space_id[i] = 0; 984 } 985 dirty_space_ids = 0; 986 } 987 988 return; 989 } 990 991 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 992 { 993 int i; 994 995 /* NOTE: sid_lock must be held upon entry */ 996 997 if (ndirty != 0) { 998 for (i = 0; i < SID_ARRAY_SIZE; i++) { 999 space_id[i] ^= dirty_array[i]; 1000 } 1001 1002 free_space_ids += ndirty; 1003 space_id_index = 0; 1004 } 1005 } 1006 1007 #else /* CONFIG_SMP */ 1008 1009 static void recycle_sids(void) 1010 { 1011 int i; 1012 1013 /* NOTE: sid_lock must be held upon entry */ 1014 1015 if (dirty_space_ids != 0) { 1016 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1017 space_id[i] ^= dirty_space_id[i]; 1018 dirty_space_id[i] = 0; 1019 } 1020 1021 free_space_ids += dirty_space_ids; 1022 dirty_space_ids = 0; 1023 space_id_index = 0; 1024 } 1025 } 1026 #endif 1027 1028 /* 1029 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1030 * purged, we can safely reuse the space ids that were released but 1031 * not flushed from the tlb. 1032 */ 1033 1034 #ifdef CONFIG_SMP 1035 1036 static unsigned long recycle_ndirty; 1037 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1038 static unsigned int recycle_inuse; 1039 1040 void flush_tlb_all(void) 1041 { 1042 int do_recycle; 1043 1044 do_recycle = 0; 1045 spin_lock(&sid_lock); 1046 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1047 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1048 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1049 recycle_inuse++; 1050 do_recycle++; 1051 } 1052 spin_unlock(&sid_lock); 1053 on_each_cpu(flush_tlb_all_local, NULL, 1); 1054 if (do_recycle) { 1055 spin_lock(&sid_lock); 1056 recycle_sids(recycle_ndirty,recycle_dirty_array); 1057 recycle_inuse = 0; 1058 spin_unlock(&sid_lock); 1059 } 1060 } 1061 #else 1062 void flush_tlb_all(void) 1063 { 1064 spin_lock(&sid_lock); 1065 flush_tlb_all_local(NULL); 1066 recycle_sids(); 1067 spin_unlock(&sid_lock); 1068 } 1069 #endif 1070 1071 #ifdef CONFIG_BLK_DEV_INITRD 1072 void free_initrd_mem(unsigned long start, unsigned long end) 1073 { 1074 if (start >= end) 1075 return; 1076 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1077 for (; start < end; start += PAGE_SIZE) { 1078 ClearPageReserved(virt_to_page(start)); 1079 init_page_count(virt_to_page(start)); 1080 free_page(start); 1081 num_physpages++; 1082 totalram_pages++; 1083 } 1084 } 1085 #endif 1086