1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 #include <asm/pdc_chassis.h> 30 #include <asm/mmzone.h> 31 #include <asm/sections.h> 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 extern int data_start; 36 37 #ifdef CONFIG_DISCONTIGMEM 38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 40 #endif 41 42 static struct resource data_resource = { 43 .name = "Kernel data", 44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 45 }; 46 47 static struct resource code_resource = { 48 .name = "Kernel code", 49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 50 }; 51 52 static struct resource pdcdata_resource = { 53 .name = "PDC data (Page Zero)", 54 .start = 0, 55 .end = 0x9ff, 56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 57 }; 58 59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 60 61 /* The following array is initialized from the firmware specific 62 * information retrieved in kernel/inventory.c. 63 */ 64 65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 66 int npmem_ranges __read_mostly; 67 68 #ifdef CONFIG_64BIT 69 #define MAX_MEM (~0UL) 70 #else /* !CONFIG_64BIT */ 71 #define MAX_MEM (3584U*1024U*1024U) 72 #endif /* !CONFIG_64BIT */ 73 74 static unsigned long mem_limit __read_mostly = MAX_MEM; 75 76 static void __init mem_limit_func(void) 77 { 78 char *cp, *end; 79 unsigned long limit; 80 81 /* We need this before __setup() functions are called */ 82 83 limit = MAX_MEM; 84 for (cp = boot_command_line; *cp; ) { 85 if (memcmp(cp, "mem=", 4) == 0) { 86 cp += 4; 87 limit = memparse(cp, &end); 88 if (end != cp) 89 break; 90 cp = end; 91 } else { 92 while (*cp != ' ' && *cp) 93 ++cp; 94 while (*cp == ' ') 95 ++cp; 96 } 97 } 98 99 if (limit < mem_limit) 100 mem_limit = limit; 101 } 102 103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 104 105 static void __init setup_bootmem(void) 106 { 107 unsigned long bootmap_size; 108 unsigned long mem_max; 109 unsigned long bootmap_pages; 110 unsigned long bootmap_start_pfn; 111 unsigned long bootmap_pfn; 112 #ifndef CONFIG_DISCONTIGMEM 113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 114 int npmem_holes; 115 #endif 116 int i, sysram_resource_count; 117 118 disable_sr_hashing(); /* Turn off space register hashing */ 119 120 /* 121 * Sort the ranges. Since the number of ranges is typically 122 * small, and performance is not an issue here, just do 123 * a simple insertion sort. 124 */ 125 126 for (i = 1; i < npmem_ranges; i++) { 127 int j; 128 129 for (j = i; j > 0; j--) { 130 unsigned long tmp; 131 132 if (pmem_ranges[j-1].start_pfn < 133 pmem_ranges[j].start_pfn) { 134 135 break; 136 } 137 tmp = pmem_ranges[j-1].start_pfn; 138 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 139 pmem_ranges[j].start_pfn = tmp; 140 tmp = pmem_ranges[j-1].pages; 141 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 142 pmem_ranges[j].pages = tmp; 143 } 144 } 145 146 #ifndef CONFIG_DISCONTIGMEM 147 /* 148 * Throw out ranges that are too far apart (controlled by 149 * MAX_GAP). 150 */ 151 152 for (i = 1; i < npmem_ranges; i++) { 153 if (pmem_ranges[i].start_pfn - 154 (pmem_ranges[i-1].start_pfn + 155 pmem_ranges[i-1].pages) > MAX_GAP) { 156 npmem_ranges = i; 157 printk("Large gap in memory detected (%ld pages). " 158 "Consider turning on CONFIG_DISCONTIGMEM\n", 159 pmem_ranges[i].start_pfn - 160 (pmem_ranges[i-1].start_pfn + 161 pmem_ranges[i-1].pages)); 162 break; 163 } 164 } 165 #endif 166 167 if (npmem_ranges > 1) { 168 169 /* Print the memory ranges */ 170 171 printk(KERN_INFO "Memory Ranges:\n"); 172 173 for (i = 0; i < npmem_ranges; i++) { 174 unsigned long start; 175 unsigned long size; 176 177 size = (pmem_ranges[i].pages << PAGE_SHIFT); 178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 179 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 180 i,start, start + (size - 1), size >> 20); 181 } 182 } 183 184 sysram_resource_count = npmem_ranges; 185 for (i = 0; i < sysram_resource_count; i++) { 186 struct resource *res = &sysram_resources[i]; 187 res->name = "System RAM"; 188 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 189 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 191 request_resource(&iomem_resource, res); 192 } 193 194 /* 195 * For 32 bit kernels we limit the amount of memory we can 196 * support, in order to preserve enough kernel address space 197 * for other purposes. For 64 bit kernels we don't normally 198 * limit the memory, but this mechanism can be used to 199 * artificially limit the amount of memory (and it is written 200 * to work with multiple memory ranges). 201 */ 202 203 mem_limit_func(); /* check for "mem=" argument */ 204 205 mem_max = 0; 206 num_physpages = 0; 207 for (i = 0; i < npmem_ranges; i++) { 208 unsigned long rsize; 209 210 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 211 if ((mem_max + rsize) > mem_limit) { 212 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 213 if (mem_max == mem_limit) 214 npmem_ranges = i; 215 else { 216 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 217 - (mem_max >> PAGE_SHIFT); 218 npmem_ranges = i + 1; 219 mem_max = mem_limit; 220 } 221 num_physpages += pmem_ranges[i].pages; 222 break; 223 } 224 num_physpages += pmem_ranges[i].pages; 225 mem_max += rsize; 226 } 227 228 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 229 230 #ifndef CONFIG_DISCONTIGMEM 231 /* Merge the ranges, keeping track of the holes */ 232 233 { 234 unsigned long end_pfn; 235 unsigned long hole_pages; 236 237 npmem_holes = 0; 238 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 239 for (i = 1; i < npmem_ranges; i++) { 240 241 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 242 if (hole_pages) { 243 pmem_holes[npmem_holes].start_pfn = end_pfn; 244 pmem_holes[npmem_holes++].pages = hole_pages; 245 end_pfn += hole_pages; 246 } 247 end_pfn += pmem_ranges[i].pages; 248 } 249 250 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 251 npmem_ranges = 1; 252 } 253 #endif 254 255 bootmap_pages = 0; 256 for (i = 0; i < npmem_ranges; i++) 257 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 258 259 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 260 261 #ifdef CONFIG_DISCONTIGMEM 262 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 263 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 264 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 265 } 266 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 267 268 for (i = 0; i < npmem_ranges; i++) 269 node_set_online(i); 270 #endif 271 272 /* 273 * Initialize and free the full range of memory in each range. 274 * Note that the only writing these routines do are to the bootmap, 275 * and we've made sure to locate the bootmap properly so that they 276 * won't be writing over anything important. 277 */ 278 279 bootmap_pfn = bootmap_start_pfn; 280 max_pfn = 0; 281 for (i = 0; i < npmem_ranges; i++) { 282 unsigned long start_pfn; 283 unsigned long npages; 284 285 start_pfn = pmem_ranges[i].start_pfn; 286 npages = pmem_ranges[i].pages; 287 288 bootmap_size = init_bootmem_node(NODE_DATA(i), 289 bootmap_pfn, 290 start_pfn, 291 (start_pfn + npages) ); 292 free_bootmem_node(NODE_DATA(i), 293 (start_pfn << PAGE_SHIFT), 294 (npages << PAGE_SHIFT) ); 295 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 296 if ((start_pfn + npages) > max_pfn) 297 max_pfn = start_pfn + npages; 298 } 299 300 /* IOMMU is always used to access "high mem" on those boxes 301 * that can support enough mem that a PCI device couldn't 302 * directly DMA to any physical addresses. 303 * ISA DMA support will need to revisit this. 304 */ 305 max_low_pfn = max_pfn; 306 307 /* bootmap sizing messed up? */ 308 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 309 310 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 311 312 #define PDC_CONSOLE_IO_IODC_SIZE 32768 313 314 reserve_bootmem_node(NODE_DATA(0), 0UL, 315 (unsigned long)(PAGE0->mem_free + 316 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 317 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 318 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 319 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 320 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 321 BOOTMEM_DEFAULT); 322 323 #ifndef CONFIG_DISCONTIGMEM 324 325 /* reserve the holes */ 326 327 for (i = 0; i < npmem_holes; i++) { 328 reserve_bootmem_node(NODE_DATA(0), 329 (pmem_holes[i].start_pfn << PAGE_SHIFT), 330 (pmem_holes[i].pages << PAGE_SHIFT), 331 BOOTMEM_DEFAULT); 332 } 333 #endif 334 335 #ifdef CONFIG_BLK_DEV_INITRD 336 if (initrd_start) { 337 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 338 if (__pa(initrd_start) < mem_max) { 339 unsigned long initrd_reserve; 340 341 if (__pa(initrd_end) > mem_max) { 342 initrd_reserve = mem_max - __pa(initrd_start); 343 } else { 344 initrd_reserve = initrd_end - initrd_start; 345 } 346 initrd_below_start_ok = 1; 347 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 348 349 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 350 initrd_reserve, BOOTMEM_DEFAULT); 351 } 352 } 353 #endif 354 355 data_resource.start = virt_to_phys(&data_start); 356 data_resource.end = virt_to_phys(_end) - 1; 357 code_resource.start = virt_to_phys(_text); 358 code_resource.end = virt_to_phys(&data_start)-1; 359 360 /* We don't know which region the kernel will be in, so try 361 * all of them. 362 */ 363 for (i = 0; i < sysram_resource_count; i++) { 364 struct resource *res = &sysram_resources[i]; 365 request_resource(res, &code_resource); 366 request_resource(res, &data_resource); 367 } 368 request_resource(&sysram_resources[0], &pdcdata_resource); 369 } 370 371 void free_initmem(void) 372 { 373 unsigned long addr, init_begin, init_end; 374 375 printk(KERN_INFO "Freeing unused kernel memory: "); 376 377 #ifdef CONFIG_DEBUG_KERNEL 378 /* Attempt to catch anyone trying to execute code here 379 * by filling the page with BRK insns. 380 * 381 * If we disable interrupts for all CPUs, then IPI stops working. 382 * Kinda breaks the global cache flushing. 383 */ 384 local_irq_disable(); 385 386 memset(__init_begin, 0x00, 387 (unsigned long)__init_end - (unsigned long)__init_begin); 388 389 flush_data_cache(); 390 asm volatile("sync" : : ); 391 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end); 392 asm volatile("sync" : : ); 393 394 local_irq_enable(); 395 #endif 396 397 /* align __init_begin and __init_end to page size, 398 ignoring linker script where we might have tried to save RAM */ 399 init_begin = PAGE_ALIGN((unsigned long)(__init_begin)); 400 init_end = PAGE_ALIGN((unsigned long)(__init_end)); 401 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 402 ClearPageReserved(virt_to_page(addr)); 403 init_page_count(virt_to_page(addr)); 404 free_page(addr); 405 num_physpages++; 406 totalram_pages++; 407 } 408 409 /* set up a new led state on systems shipped LED State panel */ 410 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 411 412 printk("%luk freed\n", (init_end - init_begin) >> 10); 413 } 414 415 416 #ifdef CONFIG_DEBUG_RODATA 417 void mark_rodata_ro(void) 418 { 419 /* rodata memory was already mapped with KERNEL_RO access rights by 420 pagetable_init() and map_pages(). No need to do additional stuff here */ 421 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 422 (unsigned long)(__end_rodata - __start_rodata) >> 10); 423 } 424 #endif 425 426 427 /* 428 * Just an arbitrary offset to serve as a "hole" between mapping areas 429 * (between top of physical memory and a potential pcxl dma mapping 430 * area, and below the vmalloc mapping area). 431 * 432 * The current 32K value just means that there will be a 32K "hole" 433 * between mapping areas. That means that any out-of-bounds memory 434 * accesses will hopefully be caught. The vmalloc() routines leaves 435 * a hole of 4kB between each vmalloced area for the same reason. 436 */ 437 438 /* Leave room for gateway page expansion */ 439 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 440 #error KERNEL_MAP_START is in gateway reserved region 441 #endif 442 #define MAP_START (KERNEL_MAP_START) 443 444 #define VM_MAP_OFFSET (32*1024) 445 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 446 & ~(VM_MAP_OFFSET-1))) 447 448 void *vmalloc_start __read_mostly; 449 EXPORT_SYMBOL(vmalloc_start); 450 451 #ifdef CONFIG_PA11 452 unsigned long pcxl_dma_start __read_mostly; 453 #endif 454 455 void __init mem_init(void) 456 { 457 int codesize, reservedpages, datasize, initsize; 458 459 /* Do sanity checks on page table constants */ 460 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 461 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 462 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 463 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 464 > BITS_PER_LONG); 465 466 high_memory = __va((max_pfn << PAGE_SHIFT)); 467 468 #ifndef CONFIG_DISCONTIGMEM 469 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 470 totalram_pages += free_all_bootmem(); 471 #else 472 { 473 int i; 474 475 for (i = 0; i < npmem_ranges; i++) 476 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 477 } 478 #endif 479 480 codesize = (unsigned long)_etext - (unsigned long)_text; 481 datasize = (unsigned long)_edata - (unsigned long)_etext; 482 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 483 484 reservedpages = 0; 485 { 486 unsigned long pfn; 487 #ifdef CONFIG_DISCONTIGMEM 488 int i; 489 490 for (i = 0; i < npmem_ranges; i++) { 491 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 492 if (PageReserved(pfn_to_page(pfn))) 493 reservedpages++; 494 } 495 } 496 #else /* !CONFIG_DISCONTIGMEM */ 497 for (pfn = 0; pfn < max_pfn; pfn++) { 498 /* 499 * Only count reserved RAM pages 500 */ 501 if (PageReserved(pfn_to_page(pfn))) 502 reservedpages++; 503 } 504 #endif 505 } 506 507 #ifdef CONFIG_PA11 508 if (hppa_dma_ops == &pcxl_dma_ops) { 509 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 510 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 511 } else { 512 pcxl_dma_start = 0; 513 vmalloc_start = SET_MAP_OFFSET(MAP_START); 514 } 515 #else 516 vmalloc_start = SET_MAP_OFFSET(MAP_START); 517 #endif 518 519 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 520 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 521 num_physpages << (PAGE_SHIFT-10), 522 codesize >> 10, 523 reservedpages << (PAGE_SHIFT-10), 524 datasize >> 10, 525 initsize >> 10 526 ); 527 528 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 529 printk("virtual kernel memory layout:\n" 530 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 531 " memory : 0x%p - 0x%p (%4ld MB)\n" 532 " .init : 0x%p - 0x%p (%4ld kB)\n" 533 " .data : 0x%p - 0x%p (%4ld kB)\n" 534 " .text : 0x%p - 0x%p (%4ld kB)\n", 535 536 (void*)VMALLOC_START, (void*)VMALLOC_END, 537 (VMALLOC_END - VMALLOC_START) >> 20, 538 539 __va(0), high_memory, 540 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 541 542 __init_begin, __init_end, 543 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 544 545 _etext, _edata, 546 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 547 548 _text, _etext, 549 ((unsigned long)_etext - (unsigned long)_text) >> 10); 550 #endif 551 } 552 553 unsigned long *empty_zero_page __read_mostly; 554 EXPORT_SYMBOL(empty_zero_page); 555 556 void show_mem(void) 557 { 558 int i,free = 0,total = 0,reserved = 0; 559 int shared = 0, cached = 0; 560 561 printk(KERN_INFO "Mem-info:\n"); 562 show_free_areas(); 563 #ifndef CONFIG_DISCONTIGMEM 564 i = max_mapnr; 565 while (i-- > 0) { 566 total++; 567 if (PageReserved(mem_map+i)) 568 reserved++; 569 else if (PageSwapCache(mem_map+i)) 570 cached++; 571 else if (!page_count(&mem_map[i])) 572 free++; 573 else 574 shared += page_count(&mem_map[i]) - 1; 575 } 576 #else 577 for (i = 0; i < npmem_ranges; i++) { 578 int j; 579 580 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 581 struct page *p; 582 unsigned long flags; 583 584 pgdat_resize_lock(NODE_DATA(i), &flags); 585 p = nid_page_nr(i, j) - node_start_pfn(i); 586 587 total++; 588 if (PageReserved(p)) 589 reserved++; 590 else if (PageSwapCache(p)) 591 cached++; 592 else if (!page_count(p)) 593 free++; 594 else 595 shared += page_count(p) - 1; 596 pgdat_resize_unlock(NODE_DATA(i), &flags); 597 } 598 } 599 #endif 600 printk(KERN_INFO "%d pages of RAM\n", total); 601 printk(KERN_INFO "%d reserved pages\n", reserved); 602 printk(KERN_INFO "%d pages shared\n", shared); 603 printk(KERN_INFO "%d pages swap cached\n", cached); 604 605 606 #ifdef CONFIG_DISCONTIGMEM 607 { 608 struct zonelist *zl; 609 int i, j; 610 611 for (i = 0; i < npmem_ranges; i++) { 612 zl = node_zonelist(i, 0); 613 for (j = 0; j < MAX_NR_ZONES; j++) { 614 struct zoneref *z; 615 struct zone *zone; 616 617 printk("Zone list for zone %d on node %d: ", j, i); 618 for_each_zone_zonelist(zone, z, zl, j) 619 printk("[%d/%s] ", zone_to_nid(zone), 620 zone->name); 621 printk("\n"); 622 } 623 } 624 } 625 #endif 626 } 627 628 629 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 630 { 631 pgd_t *pg_dir; 632 pmd_t *pmd; 633 pte_t *pg_table; 634 unsigned long end_paddr; 635 unsigned long start_pmd; 636 unsigned long start_pte; 637 unsigned long tmp1; 638 unsigned long tmp2; 639 unsigned long address; 640 unsigned long ro_start; 641 unsigned long ro_end; 642 unsigned long fv_addr; 643 unsigned long gw_addr; 644 extern const unsigned long fault_vector_20; 645 extern void * const linux_gateway_page; 646 647 ro_start = __pa((unsigned long)_text); 648 ro_end = __pa((unsigned long)&data_start); 649 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 650 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 651 652 end_paddr = start_paddr + size; 653 654 pg_dir = pgd_offset_k(start_vaddr); 655 656 #if PTRS_PER_PMD == 1 657 start_pmd = 0; 658 #else 659 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 660 #endif 661 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 662 663 address = start_paddr; 664 while (address < end_paddr) { 665 #if PTRS_PER_PMD == 1 666 pmd = (pmd_t *)__pa(pg_dir); 667 #else 668 pmd = (pmd_t *)pgd_address(*pg_dir); 669 670 /* 671 * pmd is physical at this point 672 */ 673 674 if (!pmd) { 675 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 676 pmd = (pmd_t *) __pa(pmd); 677 } 678 679 pgd_populate(NULL, pg_dir, __va(pmd)); 680 #endif 681 pg_dir++; 682 683 /* now change pmd to kernel virtual addresses */ 684 685 pmd = (pmd_t *)__va(pmd) + start_pmd; 686 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 687 688 /* 689 * pg_table is physical at this point 690 */ 691 692 pg_table = (pte_t *)pmd_address(*pmd); 693 if (!pg_table) { 694 pg_table = (pte_t *) 695 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 696 pg_table = (pte_t *) __pa(pg_table); 697 } 698 699 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 700 701 /* now change pg_table to kernel virtual addresses */ 702 703 pg_table = (pte_t *) __va(pg_table) + start_pte; 704 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 705 pte_t pte; 706 707 /* 708 * Map the fault vector writable so we can 709 * write the HPMC checksum. 710 */ 711 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 712 if (address >= ro_start && address < ro_end 713 && address != fv_addr 714 && address != gw_addr) 715 pte = __mk_pte(address, PAGE_KERNEL_RO); 716 else 717 #endif 718 pte = __mk_pte(address, pgprot); 719 720 if (address >= end_paddr) 721 pte_val(pte) = 0; 722 723 set_pte(pg_table, pte); 724 725 address += PAGE_SIZE; 726 } 727 start_pte = 0; 728 729 if (address >= end_paddr) 730 break; 731 } 732 start_pmd = 0; 733 } 734 } 735 736 /* 737 * pagetable_init() sets up the page tables 738 * 739 * Note that gateway_init() places the Linux gateway page at page 0. 740 * Since gateway pages cannot be dereferenced this has the desirable 741 * side effect of trapping those pesky NULL-reference errors in the 742 * kernel. 743 */ 744 static void __init pagetable_init(void) 745 { 746 int range; 747 748 /* Map each physical memory range to its kernel vaddr */ 749 750 for (range = 0; range < npmem_ranges; range++) { 751 unsigned long start_paddr; 752 unsigned long end_paddr; 753 unsigned long size; 754 755 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 756 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 757 size = pmem_ranges[range].pages << PAGE_SHIFT; 758 759 map_pages((unsigned long)__va(start_paddr), start_paddr, 760 size, PAGE_KERNEL); 761 } 762 763 #ifdef CONFIG_BLK_DEV_INITRD 764 if (initrd_end && initrd_end > mem_limit) { 765 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 766 map_pages(initrd_start, __pa(initrd_start), 767 initrd_end - initrd_start, PAGE_KERNEL); 768 } 769 #endif 770 771 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 772 memset(empty_zero_page, 0, PAGE_SIZE); 773 } 774 775 static void __init gateway_init(void) 776 { 777 unsigned long linux_gateway_page_addr; 778 /* FIXME: This is 'const' in order to trick the compiler 779 into not treating it as DP-relative data. */ 780 extern void * const linux_gateway_page; 781 782 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 783 784 /* 785 * Setup Linux Gateway page. 786 * 787 * The Linux gateway page will reside in kernel space (on virtual 788 * page 0), so it doesn't need to be aliased into user space. 789 */ 790 791 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 792 PAGE_SIZE, PAGE_GATEWAY); 793 } 794 795 #ifdef CONFIG_HPUX 796 void 797 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 798 { 799 pgd_t *pg_dir; 800 pmd_t *pmd; 801 pte_t *pg_table; 802 unsigned long start_pmd; 803 unsigned long start_pte; 804 unsigned long address; 805 unsigned long hpux_gw_page_addr; 806 /* FIXME: This is 'const' in order to trick the compiler 807 into not treating it as DP-relative data. */ 808 extern void * const hpux_gateway_page; 809 810 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 811 812 /* 813 * Setup HP-UX Gateway page. 814 * 815 * The HP-UX gateway page resides in the user address space, 816 * so it needs to be aliased into each process. 817 */ 818 819 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 820 821 #if PTRS_PER_PMD == 1 822 start_pmd = 0; 823 #else 824 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 825 #endif 826 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 827 828 address = __pa(&hpux_gateway_page); 829 #if PTRS_PER_PMD == 1 830 pmd = (pmd_t *)__pa(pg_dir); 831 #else 832 pmd = (pmd_t *) pgd_address(*pg_dir); 833 834 /* 835 * pmd is physical at this point 836 */ 837 838 if (!pmd) { 839 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 840 pmd = (pmd_t *) __pa(pmd); 841 } 842 843 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 844 #endif 845 /* now change pmd to kernel virtual addresses */ 846 847 pmd = (pmd_t *)__va(pmd) + start_pmd; 848 849 /* 850 * pg_table is physical at this point 851 */ 852 853 pg_table = (pte_t *) pmd_address(*pmd); 854 if (!pg_table) 855 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 856 857 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 858 859 /* now change pg_table to kernel virtual addresses */ 860 861 pg_table = (pte_t *) __va(pg_table) + start_pte; 862 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 863 } 864 EXPORT_SYMBOL(map_hpux_gateway_page); 865 #endif 866 867 void __init paging_init(void) 868 { 869 int i; 870 871 setup_bootmem(); 872 pagetable_init(); 873 gateway_init(); 874 flush_cache_all_local(); /* start with known state */ 875 flush_tlb_all_local(NULL); 876 877 for (i = 0; i < npmem_ranges; i++) { 878 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 879 880 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 881 882 #ifdef CONFIG_DISCONTIGMEM 883 /* Need to initialize the pfnnid_map before we can initialize 884 the zone */ 885 { 886 int j; 887 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 888 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 889 j++) { 890 pfnnid_map[j] = i; 891 } 892 } 893 #endif 894 895 free_area_init_node(i, zones_size, 896 pmem_ranges[i].start_pfn, NULL); 897 } 898 } 899 900 #ifdef CONFIG_PA20 901 902 /* 903 * Currently, all PA20 chips have 18 bit protection IDs, which is the 904 * limiting factor (space ids are 32 bits). 905 */ 906 907 #define NR_SPACE_IDS 262144 908 909 #else 910 911 /* 912 * Currently we have a one-to-one relationship between space IDs and 913 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 914 * support 15 bit protection IDs, so that is the limiting factor. 915 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 916 * probably not worth the effort for a special case here. 917 */ 918 919 #define NR_SPACE_IDS 32768 920 921 #endif /* !CONFIG_PA20 */ 922 923 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 924 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 925 926 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 927 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 928 static unsigned long space_id_index; 929 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 930 static unsigned long dirty_space_ids = 0; 931 932 static DEFINE_SPINLOCK(sid_lock); 933 934 unsigned long alloc_sid(void) 935 { 936 unsigned long index; 937 938 spin_lock(&sid_lock); 939 940 if (free_space_ids == 0) { 941 if (dirty_space_ids != 0) { 942 spin_unlock(&sid_lock); 943 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 944 spin_lock(&sid_lock); 945 } 946 BUG_ON(free_space_ids == 0); 947 } 948 949 free_space_ids--; 950 951 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 952 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 953 space_id_index = index; 954 955 spin_unlock(&sid_lock); 956 957 return index << SPACEID_SHIFT; 958 } 959 960 void free_sid(unsigned long spaceid) 961 { 962 unsigned long index = spaceid >> SPACEID_SHIFT; 963 unsigned long *dirty_space_offset; 964 965 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 966 index &= (BITS_PER_LONG - 1); 967 968 spin_lock(&sid_lock); 969 970 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 971 972 *dirty_space_offset |= (1L << index); 973 dirty_space_ids++; 974 975 spin_unlock(&sid_lock); 976 } 977 978 979 #ifdef CONFIG_SMP 980 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 981 { 982 int i; 983 984 /* NOTE: sid_lock must be held upon entry */ 985 986 *ndirtyptr = dirty_space_ids; 987 if (dirty_space_ids != 0) { 988 for (i = 0; i < SID_ARRAY_SIZE; i++) { 989 dirty_array[i] = dirty_space_id[i]; 990 dirty_space_id[i] = 0; 991 } 992 dirty_space_ids = 0; 993 } 994 995 return; 996 } 997 998 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 999 { 1000 int i; 1001 1002 /* NOTE: sid_lock must be held upon entry */ 1003 1004 if (ndirty != 0) { 1005 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1006 space_id[i] ^= dirty_array[i]; 1007 } 1008 1009 free_space_ids += ndirty; 1010 space_id_index = 0; 1011 } 1012 } 1013 1014 #else /* CONFIG_SMP */ 1015 1016 static void recycle_sids(void) 1017 { 1018 int i; 1019 1020 /* NOTE: sid_lock must be held upon entry */ 1021 1022 if (dirty_space_ids != 0) { 1023 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1024 space_id[i] ^= dirty_space_id[i]; 1025 dirty_space_id[i] = 0; 1026 } 1027 1028 free_space_ids += dirty_space_ids; 1029 dirty_space_ids = 0; 1030 space_id_index = 0; 1031 } 1032 } 1033 #endif 1034 1035 /* 1036 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1037 * purged, we can safely reuse the space ids that were released but 1038 * not flushed from the tlb. 1039 */ 1040 1041 #ifdef CONFIG_SMP 1042 1043 static unsigned long recycle_ndirty; 1044 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1045 static unsigned int recycle_inuse; 1046 1047 void flush_tlb_all(void) 1048 { 1049 int do_recycle; 1050 1051 do_recycle = 0; 1052 spin_lock(&sid_lock); 1053 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1054 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1055 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1056 recycle_inuse++; 1057 do_recycle++; 1058 } 1059 spin_unlock(&sid_lock); 1060 on_each_cpu(flush_tlb_all_local, NULL, 1); 1061 if (do_recycle) { 1062 spin_lock(&sid_lock); 1063 recycle_sids(recycle_ndirty,recycle_dirty_array); 1064 recycle_inuse = 0; 1065 spin_unlock(&sid_lock); 1066 } 1067 } 1068 #else 1069 void flush_tlb_all(void) 1070 { 1071 spin_lock(&sid_lock); 1072 flush_tlb_all_local(NULL); 1073 recycle_sids(); 1074 spin_unlock(&sid_lock); 1075 } 1076 #endif 1077 1078 #ifdef CONFIG_BLK_DEV_INITRD 1079 void free_initrd_mem(unsigned long start, unsigned long end) 1080 { 1081 if (start >= end) 1082 return; 1083 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1084 for (; start < end; start += PAGE_SIZE) { 1085 ClearPageReserved(virt_to_page(start)); 1086 init_page_count(virt_to_page(start)); 1087 free_page(start); 1088 num_physpages++; 1089 totalram_pages++; 1090 } 1091 } 1092 #endif 1093