1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 #include <asm/pdc_chassis.h> 30 #include <asm/mmzone.h> 31 #include <asm/sections.h> 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 extern int data_start; 36 37 #ifdef CONFIG_DISCONTIGMEM 38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 39 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly; 40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 41 #endif 42 43 static struct resource data_resource = { 44 .name = "Kernel data", 45 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 46 }; 47 48 static struct resource code_resource = { 49 .name = "Kernel code", 50 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 51 }; 52 53 static struct resource pdcdata_resource = { 54 .name = "PDC data (Page Zero)", 55 .start = 0, 56 .end = 0x9ff, 57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 58 }; 59 60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 61 62 /* The following array is initialized from the firmware specific 63 * information retrieved in kernel/inventory.c. 64 */ 65 66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 67 int npmem_ranges __read_mostly; 68 69 #ifdef CONFIG_64BIT 70 #define MAX_MEM (~0UL) 71 #else /* !CONFIG_64BIT */ 72 #define MAX_MEM (3584U*1024U*1024U) 73 #endif /* !CONFIG_64BIT */ 74 75 static unsigned long mem_limit __read_mostly = MAX_MEM; 76 77 static void __init mem_limit_func(void) 78 { 79 char *cp, *end; 80 unsigned long limit; 81 82 /* We need this before __setup() functions are called */ 83 84 limit = MAX_MEM; 85 for (cp = boot_command_line; *cp; ) { 86 if (memcmp(cp, "mem=", 4) == 0) { 87 cp += 4; 88 limit = memparse(cp, &end); 89 if (end != cp) 90 break; 91 cp = end; 92 } else { 93 while (*cp != ' ' && *cp) 94 ++cp; 95 while (*cp == ' ') 96 ++cp; 97 } 98 } 99 100 if (limit < mem_limit) 101 mem_limit = limit; 102 } 103 104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 105 106 static void __init setup_bootmem(void) 107 { 108 unsigned long bootmap_size; 109 unsigned long mem_max; 110 unsigned long bootmap_pages; 111 unsigned long bootmap_start_pfn; 112 unsigned long bootmap_pfn; 113 #ifndef CONFIG_DISCONTIGMEM 114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 115 int npmem_holes; 116 #endif 117 int i, sysram_resource_count; 118 119 disable_sr_hashing(); /* Turn off space register hashing */ 120 121 /* 122 * Sort the ranges. Since the number of ranges is typically 123 * small, and performance is not an issue here, just do 124 * a simple insertion sort. 125 */ 126 127 for (i = 1; i < npmem_ranges; i++) { 128 int j; 129 130 for (j = i; j > 0; j--) { 131 unsigned long tmp; 132 133 if (pmem_ranges[j-1].start_pfn < 134 pmem_ranges[j].start_pfn) { 135 136 break; 137 } 138 tmp = pmem_ranges[j-1].start_pfn; 139 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 140 pmem_ranges[j].start_pfn = tmp; 141 tmp = pmem_ranges[j-1].pages; 142 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 143 pmem_ranges[j].pages = tmp; 144 } 145 } 146 147 #ifndef CONFIG_DISCONTIGMEM 148 /* 149 * Throw out ranges that are too far apart (controlled by 150 * MAX_GAP). 151 */ 152 153 for (i = 1; i < npmem_ranges; i++) { 154 if (pmem_ranges[i].start_pfn - 155 (pmem_ranges[i-1].start_pfn + 156 pmem_ranges[i-1].pages) > MAX_GAP) { 157 npmem_ranges = i; 158 printk("Large gap in memory detected (%ld pages). " 159 "Consider turning on CONFIG_DISCONTIGMEM\n", 160 pmem_ranges[i].start_pfn - 161 (pmem_ranges[i-1].start_pfn + 162 pmem_ranges[i-1].pages)); 163 break; 164 } 165 } 166 #endif 167 168 if (npmem_ranges > 1) { 169 170 /* Print the memory ranges */ 171 172 printk(KERN_INFO "Memory Ranges:\n"); 173 174 for (i = 0; i < npmem_ranges; i++) { 175 unsigned long start; 176 unsigned long size; 177 178 size = (pmem_ranges[i].pages << PAGE_SHIFT); 179 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 180 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 181 i,start, start + (size - 1), size >> 20); 182 } 183 } 184 185 sysram_resource_count = npmem_ranges; 186 for (i = 0; i < sysram_resource_count; i++) { 187 struct resource *res = &sysram_resources[i]; 188 res->name = "System RAM"; 189 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 190 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 192 request_resource(&iomem_resource, res); 193 } 194 195 /* 196 * For 32 bit kernels we limit the amount of memory we can 197 * support, in order to preserve enough kernel address space 198 * for other purposes. For 64 bit kernels we don't normally 199 * limit the memory, but this mechanism can be used to 200 * artificially limit the amount of memory (and it is written 201 * to work with multiple memory ranges). 202 */ 203 204 mem_limit_func(); /* check for "mem=" argument */ 205 206 mem_max = 0; 207 num_physpages = 0; 208 for (i = 0; i < npmem_ranges; i++) { 209 unsigned long rsize; 210 211 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 212 if ((mem_max + rsize) > mem_limit) { 213 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 214 if (mem_max == mem_limit) 215 npmem_ranges = i; 216 else { 217 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 218 - (mem_max >> PAGE_SHIFT); 219 npmem_ranges = i + 1; 220 mem_max = mem_limit; 221 } 222 num_physpages += pmem_ranges[i].pages; 223 break; 224 } 225 num_physpages += pmem_ranges[i].pages; 226 mem_max += rsize; 227 } 228 229 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 230 231 #ifndef CONFIG_DISCONTIGMEM 232 /* Merge the ranges, keeping track of the holes */ 233 234 { 235 unsigned long end_pfn; 236 unsigned long hole_pages; 237 238 npmem_holes = 0; 239 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 240 for (i = 1; i < npmem_ranges; i++) { 241 242 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 243 if (hole_pages) { 244 pmem_holes[npmem_holes].start_pfn = end_pfn; 245 pmem_holes[npmem_holes++].pages = hole_pages; 246 end_pfn += hole_pages; 247 } 248 end_pfn += pmem_ranges[i].pages; 249 } 250 251 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 252 npmem_ranges = 1; 253 } 254 #endif 255 256 bootmap_pages = 0; 257 for (i = 0; i < npmem_ranges; i++) 258 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 259 260 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 261 262 #ifdef CONFIG_DISCONTIGMEM 263 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 264 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 265 NODE_DATA(i)->bdata = &bmem_data[i]; 266 } 267 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 268 269 for (i = 0; i < npmem_ranges; i++) 270 node_set_online(i); 271 #endif 272 273 /* 274 * Initialize and free the full range of memory in each range. 275 * Note that the only writing these routines do are to the bootmap, 276 * and we've made sure to locate the bootmap properly so that they 277 * won't be writing over anything important. 278 */ 279 280 bootmap_pfn = bootmap_start_pfn; 281 max_pfn = 0; 282 for (i = 0; i < npmem_ranges; i++) { 283 unsigned long start_pfn; 284 unsigned long npages; 285 286 start_pfn = pmem_ranges[i].start_pfn; 287 npages = pmem_ranges[i].pages; 288 289 bootmap_size = init_bootmem_node(NODE_DATA(i), 290 bootmap_pfn, 291 start_pfn, 292 (start_pfn + npages) ); 293 free_bootmem_node(NODE_DATA(i), 294 (start_pfn << PAGE_SHIFT), 295 (npages << PAGE_SHIFT) ); 296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 297 if ((start_pfn + npages) > max_pfn) 298 max_pfn = start_pfn + npages; 299 } 300 301 /* IOMMU is always used to access "high mem" on those boxes 302 * that can support enough mem that a PCI device couldn't 303 * directly DMA to any physical addresses. 304 * ISA DMA support will need to revisit this. 305 */ 306 max_low_pfn = max_pfn; 307 308 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) { 309 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n"); 310 BUG(); 311 } 312 313 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 314 315 #define PDC_CONSOLE_IO_IODC_SIZE 32768 316 317 reserve_bootmem_node(NODE_DATA(0), 0UL, 318 (unsigned long)(PAGE0->mem_free + 319 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 320 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 321 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 322 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 323 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 324 BOOTMEM_DEFAULT); 325 326 #ifndef CONFIG_DISCONTIGMEM 327 328 /* reserve the holes */ 329 330 for (i = 0; i < npmem_holes; i++) { 331 reserve_bootmem_node(NODE_DATA(0), 332 (pmem_holes[i].start_pfn << PAGE_SHIFT), 333 (pmem_holes[i].pages << PAGE_SHIFT), 334 BOOTMEM_DEFAULT); 335 } 336 #endif 337 338 #ifdef CONFIG_BLK_DEV_INITRD 339 if (initrd_start) { 340 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 341 if (__pa(initrd_start) < mem_max) { 342 unsigned long initrd_reserve; 343 344 if (__pa(initrd_end) > mem_max) { 345 initrd_reserve = mem_max - __pa(initrd_start); 346 } else { 347 initrd_reserve = initrd_end - initrd_start; 348 } 349 initrd_below_start_ok = 1; 350 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 351 352 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 353 initrd_reserve, BOOTMEM_DEFAULT); 354 } 355 } 356 #endif 357 358 data_resource.start = virt_to_phys(&data_start); 359 data_resource.end = virt_to_phys(_end) - 1; 360 code_resource.start = virt_to_phys(_text); 361 code_resource.end = virt_to_phys(&data_start)-1; 362 363 /* We don't know which region the kernel will be in, so try 364 * all of them. 365 */ 366 for (i = 0; i < sysram_resource_count; i++) { 367 struct resource *res = &sysram_resources[i]; 368 request_resource(res, &code_resource); 369 request_resource(res, &data_resource); 370 } 371 request_resource(&sysram_resources[0], &pdcdata_resource); 372 } 373 374 void free_initmem(void) 375 { 376 unsigned long addr, init_begin, init_end; 377 378 printk(KERN_INFO "Freeing unused kernel memory: "); 379 380 #ifdef CONFIG_DEBUG_KERNEL 381 /* Attempt to catch anyone trying to execute code here 382 * by filling the page with BRK insns. 383 * 384 * If we disable interrupts for all CPUs, then IPI stops working. 385 * Kinda breaks the global cache flushing. 386 */ 387 local_irq_disable(); 388 389 memset(__init_begin, 0x00, 390 (unsigned long)__init_end - (unsigned long)__init_begin); 391 392 flush_data_cache(); 393 asm volatile("sync" : : ); 394 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end); 395 asm volatile("sync" : : ); 396 397 local_irq_enable(); 398 #endif 399 400 /* align __init_begin and __init_end to page size, 401 ignoring linker script where we might have tried to save RAM */ 402 init_begin = PAGE_ALIGN((unsigned long)(__init_begin)); 403 init_end = PAGE_ALIGN((unsigned long)(__init_end)); 404 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 405 ClearPageReserved(virt_to_page(addr)); 406 init_page_count(virt_to_page(addr)); 407 free_page(addr); 408 num_physpages++; 409 totalram_pages++; 410 } 411 412 /* set up a new led state on systems shipped LED State panel */ 413 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 414 415 printk("%luk freed\n", (init_end - init_begin) >> 10); 416 } 417 418 419 #ifdef CONFIG_DEBUG_RODATA 420 void mark_rodata_ro(void) 421 { 422 /* rodata memory was already mapped with KERNEL_RO access rights by 423 pagetable_init() and map_pages(). No need to do additional stuff here */ 424 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 425 (unsigned long)(__end_rodata - __start_rodata) >> 10); 426 } 427 #endif 428 429 430 /* 431 * Just an arbitrary offset to serve as a "hole" between mapping areas 432 * (between top of physical memory and a potential pcxl dma mapping 433 * area, and below the vmalloc mapping area). 434 * 435 * The current 32K value just means that there will be a 32K "hole" 436 * between mapping areas. That means that any out-of-bounds memory 437 * accesses will hopefully be caught. The vmalloc() routines leaves 438 * a hole of 4kB between each vmalloced area for the same reason. 439 */ 440 441 /* Leave room for gateway page expansion */ 442 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 443 #error KERNEL_MAP_START is in gateway reserved region 444 #endif 445 #define MAP_START (KERNEL_MAP_START) 446 447 #define VM_MAP_OFFSET (32*1024) 448 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 449 & ~(VM_MAP_OFFSET-1))) 450 451 void *vmalloc_start __read_mostly; 452 EXPORT_SYMBOL(vmalloc_start); 453 454 #ifdef CONFIG_PA11 455 unsigned long pcxl_dma_start __read_mostly; 456 #endif 457 458 void __init mem_init(void) 459 { 460 int codesize, reservedpages, datasize, initsize; 461 462 high_memory = __va((max_pfn << PAGE_SHIFT)); 463 464 #ifndef CONFIG_DISCONTIGMEM 465 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 466 totalram_pages += free_all_bootmem(); 467 #else 468 { 469 int i; 470 471 for (i = 0; i < npmem_ranges; i++) 472 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 473 } 474 #endif 475 476 codesize = (unsigned long)_etext - (unsigned long)_text; 477 datasize = (unsigned long)_edata - (unsigned long)_etext; 478 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 479 480 reservedpages = 0; 481 { 482 unsigned long pfn; 483 #ifdef CONFIG_DISCONTIGMEM 484 int i; 485 486 for (i = 0; i < npmem_ranges; i++) { 487 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 488 if (PageReserved(pfn_to_page(pfn))) 489 reservedpages++; 490 } 491 } 492 #else /* !CONFIG_DISCONTIGMEM */ 493 for (pfn = 0; pfn < max_pfn; pfn++) { 494 /* 495 * Only count reserved RAM pages 496 */ 497 if (PageReserved(pfn_to_page(pfn))) 498 reservedpages++; 499 } 500 #endif 501 } 502 503 #ifdef CONFIG_PA11 504 if (hppa_dma_ops == &pcxl_dma_ops) { 505 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 506 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 507 } else { 508 pcxl_dma_start = 0; 509 vmalloc_start = SET_MAP_OFFSET(MAP_START); 510 } 511 #else 512 vmalloc_start = SET_MAP_OFFSET(MAP_START); 513 #endif 514 515 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 516 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 517 num_physpages << (PAGE_SHIFT-10), 518 codesize >> 10, 519 reservedpages << (PAGE_SHIFT-10), 520 datasize >> 10, 521 initsize >> 10 522 ); 523 524 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 525 printk("virtual kernel memory layout:\n" 526 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 527 " memory : 0x%p - 0x%p (%4ld MB)\n" 528 " .init : 0x%p - 0x%p (%4ld kB)\n" 529 " .data : 0x%p - 0x%p (%4ld kB)\n" 530 " .text : 0x%p - 0x%p (%4ld kB)\n", 531 532 (void*)VMALLOC_START, (void*)VMALLOC_END, 533 (VMALLOC_END - VMALLOC_START) >> 20, 534 535 __va(0), high_memory, 536 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 537 538 __init_begin, __init_end, 539 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 540 541 _etext, _edata, 542 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 543 544 _text, _etext, 545 ((unsigned long)_etext - (unsigned long)_text) >> 10); 546 #endif 547 } 548 549 unsigned long *empty_zero_page __read_mostly; 550 551 void show_mem(void) 552 { 553 int i,free = 0,total = 0,reserved = 0; 554 int shared = 0, cached = 0; 555 556 printk(KERN_INFO "Mem-info:\n"); 557 show_free_areas(); 558 printk(KERN_INFO "Free swap: %6ldkB\n", 559 nr_swap_pages<<(PAGE_SHIFT-10)); 560 #ifndef CONFIG_DISCONTIGMEM 561 i = max_mapnr; 562 while (i-- > 0) { 563 total++; 564 if (PageReserved(mem_map+i)) 565 reserved++; 566 else if (PageSwapCache(mem_map+i)) 567 cached++; 568 else if (!page_count(&mem_map[i])) 569 free++; 570 else 571 shared += page_count(&mem_map[i]) - 1; 572 } 573 #else 574 for (i = 0; i < npmem_ranges; i++) { 575 int j; 576 577 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 578 struct page *p; 579 unsigned long flags; 580 581 pgdat_resize_lock(NODE_DATA(i), &flags); 582 p = nid_page_nr(i, j) - node_start_pfn(i); 583 584 total++; 585 if (PageReserved(p)) 586 reserved++; 587 else if (PageSwapCache(p)) 588 cached++; 589 else if (!page_count(p)) 590 free++; 591 else 592 shared += page_count(p) - 1; 593 pgdat_resize_unlock(NODE_DATA(i), &flags); 594 } 595 } 596 #endif 597 printk(KERN_INFO "%d pages of RAM\n", total); 598 printk(KERN_INFO "%d reserved pages\n", reserved); 599 printk(KERN_INFO "%d pages shared\n", shared); 600 printk(KERN_INFO "%d pages swap cached\n", cached); 601 602 603 #ifdef CONFIG_DISCONTIGMEM 604 { 605 struct zonelist *zl; 606 int i, j, k; 607 608 for (i = 0; i < npmem_ranges; i++) { 609 for (j = 0; j < MAX_NR_ZONES; j++) { 610 zl = NODE_DATA(i)->node_zonelists + j; 611 612 printk("Zone list for zone %d on node %d: ", j, i); 613 for (k = 0; zl->zones[k] != NULL; k++) 614 printk("[%d/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name); 615 printk("\n"); 616 } 617 } 618 } 619 #endif 620 } 621 622 623 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 624 { 625 pgd_t *pg_dir; 626 pmd_t *pmd; 627 pte_t *pg_table; 628 unsigned long end_paddr; 629 unsigned long start_pmd; 630 unsigned long start_pte; 631 unsigned long tmp1; 632 unsigned long tmp2; 633 unsigned long address; 634 unsigned long ro_start; 635 unsigned long ro_end; 636 unsigned long fv_addr; 637 unsigned long gw_addr; 638 extern const unsigned long fault_vector_20; 639 extern void * const linux_gateway_page; 640 641 ro_start = __pa((unsigned long)_text); 642 ro_end = __pa((unsigned long)&data_start); 643 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 644 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 645 646 end_paddr = start_paddr + size; 647 648 pg_dir = pgd_offset_k(start_vaddr); 649 650 #if PTRS_PER_PMD == 1 651 start_pmd = 0; 652 #else 653 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 654 #endif 655 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 656 657 address = start_paddr; 658 while (address < end_paddr) { 659 #if PTRS_PER_PMD == 1 660 pmd = (pmd_t *)__pa(pg_dir); 661 #else 662 pmd = (pmd_t *)pgd_address(*pg_dir); 663 664 /* 665 * pmd is physical at this point 666 */ 667 668 if (!pmd) { 669 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 670 pmd = (pmd_t *) __pa(pmd); 671 } 672 673 pgd_populate(NULL, pg_dir, __va(pmd)); 674 #endif 675 pg_dir++; 676 677 /* now change pmd to kernel virtual addresses */ 678 679 pmd = (pmd_t *)__va(pmd) + start_pmd; 680 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 681 682 /* 683 * pg_table is physical at this point 684 */ 685 686 pg_table = (pte_t *)pmd_address(*pmd); 687 if (!pg_table) { 688 pg_table = (pte_t *) 689 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 690 pg_table = (pte_t *) __pa(pg_table); 691 } 692 693 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 694 695 /* now change pg_table to kernel virtual addresses */ 696 697 pg_table = (pte_t *) __va(pg_table) + start_pte; 698 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 699 pte_t pte; 700 701 /* 702 * Map the fault vector writable so we can 703 * write the HPMC checksum. 704 */ 705 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 706 if (address >= ro_start && address < ro_end 707 && address != fv_addr 708 && address != gw_addr) 709 pte = __mk_pte(address, PAGE_KERNEL_RO); 710 else 711 #endif 712 pte = __mk_pte(address, pgprot); 713 714 if (address >= end_paddr) 715 pte_val(pte) = 0; 716 717 set_pte(pg_table, pte); 718 719 address += PAGE_SIZE; 720 } 721 start_pte = 0; 722 723 if (address >= end_paddr) 724 break; 725 } 726 start_pmd = 0; 727 } 728 } 729 730 /* 731 * pagetable_init() sets up the page tables 732 * 733 * Note that gateway_init() places the Linux gateway page at page 0. 734 * Since gateway pages cannot be dereferenced this has the desirable 735 * side effect of trapping those pesky NULL-reference errors in the 736 * kernel. 737 */ 738 static void __init pagetable_init(void) 739 { 740 int range; 741 742 /* Map each physical memory range to its kernel vaddr */ 743 744 for (range = 0; range < npmem_ranges; range++) { 745 unsigned long start_paddr; 746 unsigned long end_paddr; 747 unsigned long size; 748 749 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 750 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 751 size = pmem_ranges[range].pages << PAGE_SHIFT; 752 753 map_pages((unsigned long)__va(start_paddr), start_paddr, 754 size, PAGE_KERNEL); 755 } 756 757 #ifdef CONFIG_BLK_DEV_INITRD 758 if (initrd_end && initrd_end > mem_limit) { 759 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 760 map_pages(initrd_start, __pa(initrd_start), 761 initrd_end - initrd_start, PAGE_KERNEL); 762 } 763 #endif 764 765 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 766 memset(empty_zero_page, 0, PAGE_SIZE); 767 } 768 769 static void __init gateway_init(void) 770 { 771 unsigned long linux_gateway_page_addr; 772 /* FIXME: This is 'const' in order to trick the compiler 773 into not treating it as DP-relative data. */ 774 extern void * const linux_gateway_page; 775 776 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 777 778 /* 779 * Setup Linux Gateway page. 780 * 781 * The Linux gateway page will reside in kernel space (on virtual 782 * page 0), so it doesn't need to be aliased into user space. 783 */ 784 785 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 786 PAGE_SIZE, PAGE_GATEWAY); 787 } 788 789 #ifdef CONFIG_HPUX 790 void 791 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 792 { 793 pgd_t *pg_dir; 794 pmd_t *pmd; 795 pte_t *pg_table; 796 unsigned long start_pmd; 797 unsigned long start_pte; 798 unsigned long address; 799 unsigned long hpux_gw_page_addr; 800 /* FIXME: This is 'const' in order to trick the compiler 801 into not treating it as DP-relative data. */ 802 extern void * const hpux_gateway_page; 803 804 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 805 806 /* 807 * Setup HP-UX Gateway page. 808 * 809 * The HP-UX gateway page resides in the user address space, 810 * so it needs to be aliased into each process. 811 */ 812 813 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 814 815 #if PTRS_PER_PMD == 1 816 start_pmd = 0; 817 #else 818 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 819 #endif 820 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 821 822 address = __pa(&hpux_gateway_page); 823 #if PTRS_PER_PMD == 1 824 pmd = (pmd_t *)__pa(pg_dir); 825 #else 826 pmd = (pmd_t *) pgd_address(*pg_dir); 827 828 /* 829 * pmd is physical at this point 830 */ 831 832 if (!pmd) { 833 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 834 pmd = (pmd_t *) __pa(pmd); 835 } 836 837 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 838 #endif 839 /* now change pmd to kernel virtual addresses */ 840 841 pmd = (pmd_t *)__va(pmd) + start_pmd; 842 843 /* 844 * pg_table is physical at this point 845 */ 846 847 pg_table = (pte_t *) pmd_address(*pmd); 848 if (!pg_table) 849 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 850 851 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 852 853 /* now change pg_table to kernel virtual addresses */ 854 855 pg_table = (pte_t *) __va(pg_table) + start_pte; 856 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 857 } 858 EXPORT_SYMBOL(map_hpux_gateway_page); 859 #endif 860 861 void __init paging_init(void) 862 { 863 int i; 864 865 setup_bootmem(); 866 pagetable_init(); 867 gateway_init(); 868 flush_cache_all_local(); /* start with known state */ 869 flush_tlb_all_local(NULL); 870 871 for (i = 0; i < npmem_ranges; i++) { 872 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 873 874 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 875 876 #ifdef CONFIG_DISCONTIGMEM 877 /* Need to initialize the pfnnid_map before we can initialize 878 the zone */ 879 { 880 int j; 881 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 882 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 883 j++) { 884 pfnnid_map[j] = i; 885 } 886 } 887 #endif 888 889 free_area_init_node(i, NODE_DATA(i), zones_size, 890 pmem_ranges[i].start_pfn, NULL); 891 } 892 } 893 894 #ifdef CONFIG_PA20 895 896 /* 897 * Currently, all PA20 chips have 18 bit protection IDs, which is the 898 * limiting factor (space ids are 32 bits). 899 */ 900 901 #define NR_SPACE_IDS 262144 902 903 #else 904 905 /* 906 * Currently we have a one-to-one relationship between space IDs and 907 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 908 * support 15 bit protection IDs, so that is the limiting factor. 909 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 910 * probably not worth the effort for a special case here. 911 */ 912 913 #define NR_SPACE_IDS 32768 914 915 #endif /* !CONFIG_PA20 */ 916 917 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 918 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 919 920 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 921 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 922 static unsigned long space_id_index; 923 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 924 static unsigned long dirty_space_ids = 0; 925 926 static DEFINE_SPINLOCK(sid_lock); 927 928 unsigned long alloc_sid(void) 929 { 930 unsigned long index; 931 932 spin_lock(&sid_lock); 933 934 if (free_space_ids == 0) { 935 if (dirty_space_ids != 0) { 936 spin_unlock(&sid_lock); 937 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 938 spin_lock(&sid_lock); 939 } 940 BUG_ON(free_space_ids == 0); 941 } 942 943 free_space_ids--; 944 945 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 946 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 947 space_id_index = index; 948 949 spin_unlock(&sid_lock); 950 951 return index << SPACEID_SHIFT; 952 } 953 954 void free_sid(unsigned long spaceid) 955 { 956 unsigned long index = spaceid >> SPACEID_SHIFT; 957 unsigned long *dirty_space_offset; 958 959 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 960 index &= (BITS_PER_LONG - 1); 961 962 spin_lock(&sid_lock); 963 964 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 965 966 *dirty_space_offset |= (1L << index); 967 dirty_space_ids++; 968 969 spin_unlock(&sid_lock); 970 } 971 972 973 #ifdef CONFIG_SMP 974 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 975 { 976 int i; 977 978 /* NOTE: sid_lock must be held upon entry */ 979 980 *ndirtyptr = dirty_space_ids; 981 if (dirty_space_ids != 0) { 982 for (i = 0; i < SID_ARRAY_SIZE; i++) { 983 dirty_array[i] = dirty_space_id[i]; 984 dirty_space_id[i] = 0; 985 } 986 dirty_space_ids = 0; 987 } 988 989 return; 990 } 991 992 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 993 { 994 int i; 995 996 /* NOTE: sid_lock must be held upon entry */ 997 998 if (ndirty != 0) { 999 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1000 space_id[i] ^= dirty_array[i]; 1001 } 1002 1003 free_space_ids += ndirty; 1004 space_id_index = 0; 1005 } 1006 } 1007 1008 #else /* CONFIG_SMP */ 1009 1010 static void recycle_sids(void) 1011 { 1012 int i; 1013 1014 /* NOTE: sid_lock must be held upon entry */ 1015 1016 if (dirty_space_ids != 0) { 1017 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1018 space_id[i] ^= dirty_space_id[i]; 1019 dirty_space_id[i] = 0; 1020 } 1021 1022 free_space_ids += dirty_space_ids; 1023 dirty_space_ids = 0; 1024 space_id_index = 0; 1025 } 1026 } 1027 #endif 1028 1029 /* 1030 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1031 * purged, we can safely reuse the space ids that were released but 1032 * not flushed from the tlb. 1033 */ 1034 1035 #ifdef CONFIG_SMP 1036 1037 static unsigned long recycle_ndirty; 1038 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1039 static unsigned int recycle_inuse; 1040 1041 void flush_tlb_all(void) 1042 { 1043 int do_recycle; 1044 1045 do_recycle = 0; 1046 spin_lock(&sid_lock); 1047 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1048 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1049 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1050 recycle_inuse++; 1051 do_recycle++; 1052 } 1053 spin_unlock(&sid_lock); 1054 on_each_cpu(flush_tlb_all_local, NULL, 1, 1); 1055 if (do_recycle) { 1056 spin_lock(&sid_lock); 1057 recycle_sids(recycle_ndirty,recycle_dirty_array); 1058 recycle_inuse = 0; 1059 spin_unlock(&sid_lock); 1060 } 1061 } 1062 #else 1063 void flush_tlb_all(void) 1064 { 1065 spin_lock(&sid_lock); 1066 flush_tlb_all_local(NULL); 1067 recycle_sids(); 1068 spin_unlock(&sid_lock); 1069 } 1070 #endif 1071 1072 #ifdef CONFIG_BLK_DEV_INITRD 1073 void free_initrd_mem(unsigned long start, unsigned long end) 1074 { 1075 if (start >= end) 1076 return; 1077 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1078 for (; start < end; start += PAGE_SIZE) { 1079 ClearPageReserved(virt_to_page(start)); 1080 init_page_count(virt_to_page(start)); 1081 free_page(start); 1082 num_physpages++; 1083 totalram_pages++; 1084 } 1085 } 1086 #endif 1087