1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 26 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 34 extern int data_start; 35 36 #if PT_NLEVELS == 3 37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 39 * guarantee that global objects will be laid out in memory in the same order 40 * as the order of declaration, so put these in different sections and use 41 * the linker script to order them. */ 42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 43 #endif 44 45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 47 48 #ifdef CONFIG_DISCONTIGMEM 49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 50 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 51 #endif 52 53 static struct resource data_resource = { 54 .name = "Kernel data", 55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 56 }; 57 58 static struct resource code_resource = { 59 .name = "Kernel code", 60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 61 }; 62 63 static struct resource pdcdata_resource = { 64 .name = "PDC data (Page Zero)", 65 .start = 0, 66 .end = 0x9ff, 67 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 68 }; 69 70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 71 72 /* The following array is initialized from the firmware specific 73 * information retrieved in kernel/inventory.c. 74 */ 75 76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 77 int npmem_ranges __read_mostly; 78 79 #ifdef CONFIG_64BIT 80 #define MAX_MEM (~0UL) 81 #else /* !CONFIG_64BIT */ 82 #define MAX_MEM (3584U*1024U*1024U) 83 #endif /* !CONFIG_64BIT */ 84 85 static unsigned long mem_limit __read_mostly = MAX_MEM; 86 87 static void __init mem_limit_func(void) 88 { 89 char *cp, *end; 90 unsigned long limit; 91 92 /* We need this before __setup() functions are called */ 93 94 limit = MAX_MEM; 95 for (cp = boot_command_line; *cp; ) { 96 if (memcmp(cp, "mem=", 4) == 0) { 97 cp += 4; 98 limit = memparse(cp, &end); 99 if (end != cp) 100 break; 101 cp = end; 102 } else { 103 while (*cp != ' ' && *cp) 104 ++cp; 105 while (*cp == ' ') 106 ++cp; 107 } 108 } 109 110 if (limit < mem_limit) 111 mem_limit = limit; 112 } 113 114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 115 116 static void __init setup_bootmem(void) 117 { 118 unsigned long bootmap_size; 119 unsigned long mem_max; 120 unsigned long bootmap_pages; 121 unsigned long bootmap_start_pfn; 122 unsigned long bootmap_pfn; 123 #ifndef CONFIG_DISCONTIGMEM 124 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 125 int npmem_holes; 126 #endif 127 int i, sysram_resource_count; 128 129 disable_sr_hashing(); /* Turn off space register hashing */ 130 131 /* 132 * Sort the ranges. Since the number of ranges is typically 133 * small, and performance is not an issue here, just do 134 * a simple insertion sort. 135 */ 136 137 for (i = 1; i < npmem_ranges; i++) { 138 int j; 139 140 for (j = i; j > 0; j--) { 141 unsigned long tmp; 142 143 if (pmem_ranges[j-1].start_pfn < 144 pmem_ranges[j].start_pfn) { 145 146 break; 147 } 148 tmp = pmem_ranges[j-1].start_pfn; 149 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 150 pmem_ranges[j].start_pfn = tmp; 151 tmp = pmem_ranges[j-1].pages; 152 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 153 pmem_ranges[j].pages = tmp; 154 } 155 } 156 157 #ifndef CONFIG_DISCONTIGMEM 158 /* 159 * Throw out ranges that are too far apart (controlled by 160 * MAX_GAP). 161 */ 162 163 for (i = 1; i < npmem_ranges; i++) { 164 if (pmem_ranges[i].start_pfn - 165 (pmem_ranges[i-1].start_pfn + 166 pmem_ranges[i-1].pages) > MAX_GAP) { 167 npmem_ranges = i; 168 printk("Large gap in memory detected (%ld pages). " 169 "Consider turning on CONFIG_DISCONTIGMEM\n", 170 pmem_ranges[i].start_pfn - 171 (pmem_ranges[i-1].start_pfn + 172 pmem_ranges[i-1].pages)); 173 break; 174 } 175 } 176 #endif 177 178 if (npmem_ranges > 1) { 179 180 /* Print the memory ranges */ 181 182 printk(KERN_INFO "Memory Ranges:\n"); 183 184 for (i = 0; i < npmem_ranges; i++) { 185 unsigned long start; 186 unsigned long size; 187 188 size = (pmem_ranges[i].pages << PAGE_SHIFT); 189 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 190 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 191 i,start, start + (size - 1), size >> 20); 192 } 193 } 194 195 sysram_resource_count = npmem_ranges; 196 for (i = 0; i < sysram_resource_count; i++) { 197 struct resource *res = &sysram_resources[i]; 198 res->name = "System RAM"; 199 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 200 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 201 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 202 request_resource(&iomem_resource, res); 203 } 204 205 /* 206 * For 32 bit kernels we limit the amount of memory we can 207 * support, in order to preserve enough kernel address space 208 * for other purposes. For 64 bit kernels we don't normally 209 * limit the memory, but this mechanism can be used to 210 * artificially limit the amount of memory (and it is written 211 * to work with multiple memory ranges). 212 */ 213 214 mem_limit_func(); /* check for "mem=" argument */ 215 216 mem_max = 0; 217 num_physpages = 0; 218 for (i = 0; i < npmem_ranges; i++) { 219 unsigned long rsize; 220 221 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 222 if ((mem_max + rsize) > mem_limit) { 223 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 224 if (mem_max == mem_limit) 225 npmem_ranges = i; 226 else { 227 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 228 - (mem_max >> PAGE_SHIFT); 229 npmem_ranges = i + 1; 230 mem_max = mem_limit; 231 } 232 num_physpages += pmem_ranges[i].pages; 233 break; 234 } 235 num_physpages += pmem_ranges[i].pages; 236 mem_max += rsize; 237 } 238 239 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 240 241 #ifndef CONFIG_DISCONTIGMEM 242 /* Merge the ranges, keeping track of the holes */ 243 244 { 245 unsigned long end_pfn; 246 unsigned long hole_pages; 247 248 npmem_holes = 0; 249 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 250 for (i = 1; i < npmem_ranges; i++) { 251 252 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 253 if (hole_pages) { 254 pmem_holes[npmem_holes].start_pfn = end_pfn; 255 pmem_holes[npmem_holes++].pages = hole_pages; 256 end_pfn += hole_pages; 257 } 258 end_pfn += pmem_ranges[i].pages; 259 } 260 261 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 262 npmem_ranges = 1; 263 } 264 #endif 265 266 bootmap_pages = 0; 267 for (i = 0; i < npmem_ranges; i++) 268 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 269 270 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 271 272 #ifdef CONFIG_DISCONTIGMEM 273 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 274 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 275 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 276 } 277 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 278 279 for (i = 0; i < npmem_ranges; i++) { 280 node_set_state(i, N_NORMAL_MEMORY); 281 node_set_online(i); 282 } 283 #endif 284 285 /* 286 * Initialize and free the full range of memory in each range. 287 * Note that the only writing these routines do are to the bootmap, 288 * and we've made sure to locate the bootmap properly so that they 289 * won't be writing over anything important. 290 */ 291 292 bootmap_pfn = bootmap_start_pfn; 293 max_pfn = 0; 294 for (i = 0; i < npmem_ranges; i++) { 295 unsigned long start_pfn; 296 unsigned long npages; 297 298 start_pfn = pmem_ranges[i].start_pfn; 299 npages = pmem_ranges[i].pages; 300 301 bootmap_size = init_bootmem_node(NODE_DATA(i), 302 bootmap_pfn, 303 start_pfn, 304 (start_pfn + npages) ); 305 free_bootmem_node(NODE_DATA(i), 306 (start_pfn << PAGE_SHIFT), 307 (npages << PAGE_SHIFT) ); 308 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 309 if ((start_pfn + npages) > max_pfn) 310 max_pfn = start_pfn + npages; 311 } 312 313 /* IOMMU is always used to access "high mem" on those boxes 314 * that can support enough mem that a PCI device couldn't 315 * directly DMA to any physical addresses. 316 * ISA DMA support will need to revisit this. 317 */ 318 max_low_pfn = max_pfn; 319 320 /* bootmap sizing messed up? */ 321 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 322 323 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 324 325 #define PDC_CONSOLE_IO_IODC_SIZE 32768 326 327 reserve_bootmem_node(NODE_DATA(0), 0UL, 328 (unsigned long)(PAGE0->mem_free + 329 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 330 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 331 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 332 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 333 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 334 BOOTMEM_DEFAULT); 335 336 #ifndef CONFIG_DISCONTIGMEM 337 338 /* reserve the holes */ 339 340 for (i = 0; i < npmem_holes; i++) { 341 reserve_bootmem_node(NODE_DATA(0), 342 (pmem_holes[i].start_pfn << PAGE_SHIFT), 343 (pmem_holes[i].pages << PAGE_SHIFT), 344 BOOTMEM_DEFAULT); 345 } 346 #endif 347 348 #ifdef CONFIG_BLK_DEV_INITRD 349 if (initrd_start) { 350 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 351 if (__pa(initrd_start) < mem_max) { 352 unsigned long initrd_reserve; 353 354 if (__pa(initrd_end) > mem_max) { 355 initrd_reserve = mem_max - __pa(initrd_start); 356 } else { 357 initrd_reserve = initrd_end - initrd_start; 358 } 359 initrd_below_start_ok = 1; 360 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 361 362 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 363 initrd_reserve, BOOTMEM_DEFAULT); 364 } 365 } 366 #endif 367 368 data_resource.start = virt_to_phys(&data_start); 369 data_resource.end = virt_to_phys(_end) - 1; 370 code_resource.start = virt_to_phys(_text); 371 code_resource.end = virt_to_phys(&data_start)-1; 372 373 /* We don't know which region the kernel will be in, so try 374 * all of them. 375 */ 376 for (i = 0; i < sysram_resource_count; i++) { 377 struct resource *res = &sysram_resources[i]; 378 request_resource(res, &code_resource); 379 request_resource(res, &data_resource); 380 } 381 request_resource(&sysram_resources[0], &pdcdata_resource); 382 } 383 384 static void __init map_pages(unsigned long start_vaddr, 385 unsigned long start_paddr, unsigned long size, 386 pgprot_t pgprot, int force) 387 { 388 pgd_t *pg_dir; 389 pmd_t *pmd; 390 pte_t *pg_table; 391 unsigned long end_paddr; 392 unsigned long start_pmd; 393 unsigned long start_pte; 394 unsigned long tmp1; 395 unsigned long tmp2; 396 unsigned long address; 397 unsigned long vaddr; 398 unsigned long ro_start; 399 unsigned long ro_end; 400 unsigned long fv_addr; 401 unsigned long gw_addr; 402 extern const unsigned long fault_vector_20; 403 extern void * const linux_gateway_page; 404 405 ro_start = __pa((unsigned long)_text); 406 ro_end = __pa((unsigned long)&data_start); 407 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 408 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 409 410 end_paddr = start_paddr + size; 411 412 pg_dir = pgd_offset_k(start_vaddr); 413 414 #if PTRS_PER_PMD == 1 415 start_pmd = 0; 416 #else 417 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 418 #endif 419 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 420 421 address = start_paddr; 422 vaddr = start_vaddr; 423 while (address < end_paddr) { 424 #if PTRS_PER_PMD == 1 425 pmd = (pmd_t *)__pa(pg_dir); 426 #else 427 pmd = (pmd_t *)pgd_address(*pg_dir); 428 429 /* 430 * pmd is physical at this point 431 */ 432 433 if (!pmd) { 434 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER); 435 pmd = (pmd_t *) __pa(pmd); 436 } 437 438 pgd_populate(NULL, pg_dir, __va(pmd)); 439 #endif 440 pg_dir++; 441 442 /* now change pmd to kernel virtual addresses */ 443 444 pmd = (pmd_t *)__va(pmd) + start_pmd; 445 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 446 447 /* 448 * pg_table is physical at this point 449 */ 450 451 pg_table = (pte_t *)pmd_address(*pmd); 452 if (!pg_table) { 453 pg_table = (pte_t *) 454 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); 455 pg_table = (pte_t *) __pa(pg_table); 456 } 457 458 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 459 460 /* now change pg_table to kernel virtual addresses */ 461 462 pg_table = (pte_t *) __va(pg_table) + start_pte; 463 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 464 pte_t pte; 465 466 /* 467 * Map the fault vector writable so we can 468 * write the HPMC checksum. 469 */ 470 if (force) 471 pte = __mk_pte(address, pgprot); 472 else if (core_kernel_text(vaddr) && 473 address != fv_addr) 474 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 475 else 476 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 477 if (address >= ro_start && address < ro_end 478 && address != fv_addr 479 && address != gw_addr) 480 pte = __mk_pte(address, PAGE_KERNEL_RO); 481 else 482 #endif 483 pte = __mk_pte(address, pgprot); 484 485 if (address >= end_paddr) { 486 if (force) 487 break; 488 else 489 pte_val(pte) = 0; 490 } 491 492 set_pte(pg_table, pte); 493 494 address += PAGE_SIZE; 495 vaddr += PAGE_SIZE; 496 } 497 start_pte = 0; 498 499 if (address >= end_paddr) 500 break; 501 } 502 start_pmd = 0; 503 } 504 } 505 506 void free_initmem(void) 507 { 508 unsigned long addr; 509 unsigned long init_begin = (unsigned long)__init_begin; 510 unsigned long init_end = (unsigned long)__init_end; 511 512 /* The init text pages are marked R-X. We have to 513 * flush the icache and mark them RW- 514 * 515 * This is tricky, because map_pages is in the init section. 516 * Do a dummy remap of the data section first (the data 517 * section is already PAGE_KERNEL) to pull in the TLB entries 518 * for map_kernel */ 519 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 520 PAGE_KERNEL_RWX, 1); 521 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 522 * map_pages */ 523 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 524 PAGE_KERNEL, 1); 525 526 /* force the kernel to see the new TLB entries */ 527 __flush_tlb_range(0, init_begin, init_end); 528 /* Attempt to catch anyone trying to execute code here 529 * by filling the page with BRK insns. 530 */ 531 memset((void *)init_begin, 0x00, init_end - init_begin); 532 /* finally dump all the instructions which were cached, since the 533 * pages are no-longer executable */ 534 flush_icache_range(init_begin, init_end); 535 536 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 537 ClearPageReserved(virt_to_page(addr)); 538 init_page_count(virt_to_page(addr)); 539 free_page(addr); 540 num_physpages++; 541 totalram_pages++; 542 } 543 544 /* set up a new led state on systems shipped LED State panel */ 545 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 546 547 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n", 548 (init_end - init_begin) >> 10); 549 } 550 551 552 #ifdef CONFIG_DEBUG_RODATA 553 void mark_rodata_ro(void) 554 { 555 /* rodata memory was already mapped with KERNEL_RO access rights by 556 pagetable_init() and map_pages(). No need to do additional stuff here */ 557 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 558 (unsigned long)(__end_rodata - __start_rodata) >> 10); 559 } 560 #endif 561 562 563 /* 564 * Just an arbitrary offset to serve as a "hole" between mapping areas 565 * (between top of physical memory and a potential pcxl dma mapping 566 * area, and below the vmalloc mapping area). 567 * 568 * The current 32K value just means that there will be a 32K "hole" 569 * between mapping areas. That means that any out-of-bounds memory 570 * accesses will hopefully be caught. The vmalloc() routines leaves 571 * a hole of 4kB between each vmalloced area for the same reason. 572 */ 573 574 /* Leave room for gateway page expansion */ 575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 576 #error KERNEL_MAP_START is in gateway reserved region 577 #endif 578 #define MAP_START (KERNEL_MAP_START) 579 580 #define VM_MAP_OFFSET (32*1024) 581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 582 & ~(VM_MAP_OFFSET-1))) 583 584 void *parisc_vmalloc_start __read_mostly; 585 EXPORT_SYMBOL(parisc_vmalloc_start); 586 587 #ifdef CONFIG_PA11 588 unsigned long pcxl_dma_start __read_mostly; 589 #endif 590 591 void __init mem_init(void) 592 { 593 int codesize, reservedpages, datasize, initsize; 594 595 /* Do sanity checks on page table constants */ 596 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 597 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 598 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 599 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 600 > BITS_PER_LONG); 601 602 high_memory = __va((max_pfn << PAGE_SHIFT)); 603 604 #ifndef CONFIG_DISCONTIGMEM 605 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 606 totalram_pages += free_all_bootmem(); 607 #else 608 { 609 int i; 610 611 for (i = 0; i < npmem_ranges; i++) 612 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 613 } 614 #endif 615 616 codesize = (unsigned long)_etext - (unsigned long)_text; 617 datasize = (unsigned long)_edata - (unsigned long)_etext; 618 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 619 620 reservedpages = 0; 621 { 622 unsigned long pfn; 623 #ifdef CONFIG_DISCONTIGMEM 624 int i; 625 626 for (i = 0; i < npmem_ranges; i++) { 627 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 628 if (PageReserved(pfn_to_page(pfn))) 629 reservedpages++; 630 } 631 } 632 #else /* !CONFIG_DISCONTIGMEM */ 633 for (pfn = 0; pfn < max_pfn; pfn++) { 634 /* 635 * Only count reserved RAM pages 636 */ 637 if (PageReserved(pfn_to_page(pfn))) 638 reservedpages++; 639 } 640 #endif 641 } 642 643 #ifdef CONFIG_PA11 644 if (hppa_dma_ops == &pcxl_dma_ops) { 645 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 646 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 647 + PCXL_DMA_MAP_SIZE); 648 } else { 649 pcxl_dma_start = 0; 650 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 651 } 652 #else 653 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 654 #endif 655 656 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 657 nr_free_pages() << (PAGE_SHIFT-10), 658 num_physpages << (PAGE_SHIFT-10), 659 codesize >> 10, 660 reservedpages << (PAGE_SHIFT-10), 661 datasize >> 10, 662 initsize >> 10 663 ); 664 665 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 666 printk("virtual kernel memory layout:\n" 667 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 668 " memory : 0x%p - 0x%p (%4ld MB)\n" 669 " .init : 0x%p - 0x%p (%4ld kB)\n" 670 " .data : 0x%p - 0x%p (%4ld kB)\n" 671 " .text : 0x%p - 0x%p (%4ld kB)\n", 672 673 (void*)VMALLOC_START, (void*)VMALLOC_END, 674 (VMALLOC_END - VMALLOC_START) >> 20, 675 676 __va(0), high_memory, 677 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 678 679 __init_begin, __init_end, 680 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 681 682 _etext, _edata, 683 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 684 685 _text, _etext, 686 ((unsigned long)_etext - (unsigned long)_text) >> 10); 687 #endif 688 } 689 690 unsigned long *empty_zero_page __read_mostly; 691 EXPORT_SYMBOL(empty_zero_page); 692 693 void show_mem(unsigned int filter) 694 { 695 int i,free = 0,total = 0,reserved = 0; 696 int shared = 0, cached = 0; 697 698 printk(KERN_INFO "Mem-info:\n"); 699 show_free_areas(filter); 700 #ifndef CONFIG_DISCONTIGMEM 701 i = max_mapnr; 702 while (i-- > 0) { 703 total++; 704 if (PageReserved(mem_map+i)) 705 reserved++; 706 else if (PageSwapCache(mem_map+i)) 707 cached++; 708 else if (!page_count(&mem_map[i])) 709 free++; 710 else 711 shared += page_count(&mem_map[i]) - 1; 712 } 713 #else 714 for (i = 0; i < npmem_ranges; i++) { 715 int j; 716 717 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 718 struct page *p; 719 unsigned long flags; 720 721 pgdat_resize_lock(NODE_DATA(i), &flags); 722 p = nid_page_nr(i, j) - node_start_pfn(i); 723 724 total++; 725 if (PageReserved(p)) 726 reserved++; 727 else if (PageSwapCache(p)) 728 cached++; 729 else if (!page_count(p)) 730 free++; 731 else 732 shared += page_count(p) - 1; 733 pgdat_resize_unlock(NODE_DATA(i), &flags); 734 } 735 } 736 #endif 737 printk(KERN_INFO "%d pages of RAM\n", total); 738 printk(KERN_INFO "%d reserved pages\n", reserved); 739 printk(KERN_INFO "%d pages shared\n", shared); 740 printk(KERN_INFO "%d pages swap cached\n", cached); 741 742 743 #ifdef CONFIG_DISCONTIGMEM 744 { 745 struct zonelist *zl; 746 int i, j; 747 748 for (i = 0; i < npmem_ranges; i++) { 749 zl = node_zonelist(i, 0); 750 for (j = 0; j < MAX_NR_ZONES; j++) { 751 struct zoneref *z; 752 struct zone *zone; 753 754 printk("Zone list for zone %d on node %d: ", j, i); 755 for_each_zone_zonelist(zone, z, zl, j) 756 printk("[%d/%s] ", zone_to_nid(zone), 757 zone->name); 758 printk("\n"); 759 } 760 } 761 } 762 #endif 763 } 764 765 /* 766 * pagetable_init() sets up the page tables 767 * 768 * Note that gateway_init() places the Linux gateway page at page 0. 769 * Since gateway pages cannot be dereferenced this has the desirable 770 * side effect of trapping those pesky NULL-reference errors in the 771 * kernel. 772 */ 773 static void __init pagetable_init(void) 774 { 775 int range; 776 777 /* Map each physical memory range to its kernel vaddr */ 778 779 for (range = 0; range < npmem_ranges; range++) { 780 unsigned long start_paddr; 781 unsigned long end_paddr; 782 unsigned long size; 783 784 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 785 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 786 size = pmem_ranges[range].pages << PAGE_SHIFT; 787 788 map_pages((unsigned long)__va(start_paddr), start_paddr, 789 size, PAGE_KERNEL, 0); 790 } 791 792 #ifdef CONFIG_BLK_DEV_INITRD 793 if (initrd_end && initrd_end > mem_limit) { 794 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 795 map_pages(initrd_start, __pa(initrd_start), 796 initrd_end - initrd_start, PAGE_KERNEL, 0); 797 } 798 #endif 799 800 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 801 memset(empty_zero_page, 0, PAGE_SIZE); 802 } 803 804 static void __init gateway_init(void) 805 { 806 unsigned long linux_gateway_page_addr; 807 /* FIXME: This is 'const' in order to trick the compiler 808 into not treating it as DP-relative data. */ 809 extern void * const linux_gateway_page; 810 811 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 812 813 /* 814 * Setup Linux Gateway page. 815 * 816 * The Linux gateway page will reside in kernel space (on virtual 817 * page 0), so it doesn't need to be aliased into user space. 818 */ 819 820 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 821 PAGE_SIZE, PAGE_GATEWAY, 1); 822 } 823 824 #ifdef CONFIG_HPUX 825 void 826 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 827 { 828 pgd_t *pg_dir; 829 pmd_t *pmd; 830 pte_t *pg_table; 831 unsigned long start_pmd; 832 unsigned long start_pte; 833 unsigned long address; 834 unsigned long hpux_gw_page_addr; 835 /* FIXME: This is 'const' in order to trick the compiler 836 into not treating it as DP-relative data. */ 837 extern void * const hpux_gateway_page; 838 839 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 840 841 /* 842 * Setup HP-UX Gateway page. 843 * 844 * The HP-UX gateway page resides in the user address space, 845 * so it needs to be aliased into each process. 846 */ 847 848 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 849 850 #if PTRS_PER_PMD == 1 851 start_pmd = 0; 852 #else 853 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 854 #endif 855 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 856 857 address = __pa(&hpux_gateway_page); 858 #if PTRS_PER_PMD == 1 859 pmd = (pmd_t *)__pa(pg_dir); 860 #else 861 pmd = (pmd_t *) pgd_address(*pg_dir); 862 863 /* 864 * pmd is physical at this point 865 */ 866 867 if (!pmd) { 868 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 869 pmd = (pmd_t *) __pa(pmd); 870 } 871 872 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 873 #endif 874 /* now change pmd to kernel virtual addresses */ 875 876 pmd = (pmd_t *)__va(pmd) + start_pmd; 877 878 /* 879 * pg_table is physical at this point 880 */ 881 882 pg_table = (pte_t *) pmd_address(*pmd); 883 if (!pg_table) 884 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 885 886 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 887 888 /* now change pg_table to kernel virtual addresses */ 889 890 pg_table = (pte_t *) __va(pg_table) + start_pte; 891 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 892 } 893 EXPORT_SYMBOL(map_hpux_gateway_page); 894 #endif 895 896 void __init paging_init(void) 897 { 898 int i; 899 900 setup_bootmem(); 901 pagetable_init(); 902 gateway_init(); 903 flush_cache_all_local(); /* start with known state */ 904 flush_tlb_all_local(NULL); 905 906 for (i = 0; i < npmem_ranges; i++) { 907 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 908 909 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 910 911 #ifdef CONFIG_DISCONTIGMEM 912 /* Need to initialize the pfnnid_map before we can initialize 913 the zone */ 914 { 915 int j; 916 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 917 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 918 j++) { 919 pfnnid_map[j] = i; 920 } 921 } 922 #endif 923 924 free_area_init_node(i, zones_size, 925 pmem_ranges[i].start_pfn, NULL); 926 } 927 } 928 929 #ifdef CONFIG_PA20 930 931 /* 932 * Currently, all PA20 chips have 18 bit protection IDs, which is the 933 * limiting factor (space ids are 32 bits). 934 */ 935 936 #define NR_SPACE_IDS 262144 937 938 #else 939 940 /* 941 * Currently we have a one-to-one relationship between space IDs and 942 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 943 * support 15 bit protection IDs, so that is the limiting factor. 944 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 945 * probably not worth the effort for a special case here. 946 */ 947 948 #define NR_SPACE_IDS 32768 949 950 #endif /* !CONFIG_PA20 */ 951 952 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 953 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 954 955 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 956 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 957 static unsigned long space_id_index; 958 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 959 static unsigned long dirty_space_ids = 0; 960 961 static DEFINE_SPINLOCK(sid_lock); 962 963 unsigned long alloc_sid(void) 964 { 965 unsigned long index; 966 967 spin_lock(&sid_lock); 968 969 if (free_space_ids == 0) { 970 if (dirty_space_ids != 0) { 971 spin_unlock(&sid_lock); 972 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 973 spin_lock(&sid_lock); 974 } 975 BUG_ON(free_space_ids == 0); 976 } 977 978 free_space_ids--; 979 980 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 981 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 982 space_id_index = index; 983 984 spin_unlock(&sid_lock); 985 986 return index << SPACEID_SHIFT; 987 } 988 989 void free_sid(unsigned long spaceid) 990 { 991 unsigned long index = spaceid >> SPACEID_SHIFT; 992 unsigned long *dirty_space_offset; 993 994 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 995 index &= (BITS_PER_LONG - 1); 996 997 spin_lock(&sid_lock); 998 999 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 1000 1001 *dirty_space_offset |= (1L << index); 1002 dirty_space_ids++; 1003 1004 spin_unlock(&sid_lock); 1005 } 1006 1007 1008 #ifdef CONFIG_SMP 1009 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 1010 { 1011 int i; 1012 1013 /* NOTE: sid_lock must be held upon entry */ 1014 1015 *ndirtyptr = dirty_space_ids; 1016 if (dirty_space_ids != 0) { 1017 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1018 dirty_array[i] = dirty_space_id[i]; 1019 dirty_space_id[i] = 0; 1020 } 1021 dirty_space_ids = 0; 1022 } 1023 1024 return; 1025 } 1026 1027 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 1028 { 1029 int i; 1030 1031 /* NOTE: sid_lock must be held upon entry */ 1032 1033 if (ndirty != 0) { 1034 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1035 space_id[i] ^= dirty_array[i]; 1036 } 1037 1038 free_space_ids += ndirty; 1039 space_id_index = 0; 1040 } 1041 } 1042 1043 #else /* CONFIG_SMP */ 1044 1045 static void recycle_sids(void) 1046 { 1047 int i; 1048 1049 /* NOTE: sid_lock must be held upon entry */ 1050 1051 if (dirty_space_ids != 0) { 1052 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1053 space_id[i] ^= dirty_space_id[i]; 1054 dirty_space_id[i] = 0; 1055 } 1056 1057 free_space_ids += dirty_space_ids; 1058 dirty_space_ids = 0; 1059 space_id_index = 0; 1060 } 1061 } 1062 #endif 1063 1064 /* 1065 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1066 * purged, we can safely reuse the space ids that were released but 1067 * not flushed from the tlb. 1068 */ 1069 1070 #ifdef CONFIG_SMP 1071 1072 static unsigned long recycle_ndirty; 1073 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1074 static unsigned int recycle_inuse; 1075 1076 void flush_tlb_all(void) 1077 { 1078 int do_recycle; 1079 1080 do_recycle = 0; 1081 spin_lock(&sid_lock); 1082 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1083 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1084 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1085 recycle_inuse++; 1086 do_recycle++; 1087 } 1088 spin_unlock(&sid_lock); 1089 on_each_cpu(flush_tlb_all_local, NULL, 1); 1090 if (do_recycle) { 1091 spin_lock(&sid_lock); 1092 recycle_sids(recycle_ndirty,recycle_dirty_array); 1093 recycle_inuse = 0; 1094 spin_unlock(&sid_lock); 1095 } 1096 } 1097 #else 1098 void flush_tlb_all(void) 1099 { 1100 spin_lock(&sid_lock); 1101 flush_tlb_all_local(NULL); 1102 recycle_sids(); 1103 spin_unlock(&sid_lock); 1104 } 1105 #endif 1106 1107 #ifdef CONFIG_BLK_DEV_INITRD 1108 void free_initrd_mem(unsigned long start, unsigned long end) 1109 { 1110 if (start >= end) 1111 return; 1112 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1113 for (; start < end; start += PAGE_SIZE) { 1114 ClearPageReserved(virt_to_page(start)); 1115 init_page_count(virt_to_page(start)); 1116 free_page(start); 1117 num_physpages++; 1118 totalram_pages++; 1119 } 1120 } 1121 #endif 1122