xref: /openbmc/linux/arch/parisc/mm/init.c (revision 95e9fd10)
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995	Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>	/* for node_online_map */
25 #include <linux/pagemap.h>	/* for release_pages and page_cache_release */
26 
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 
34 extern int  data_start;
35 
36 #if PT_NLEVELS == 3
37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
38  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
39  * guarantee that global objects will be laid out in memory in the same order
40  * as the order of declaration, so put these in different sections and use
41  * the linker script to order them. */
42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
43 #endif
44 
45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
47 
48 #ifdef CONFIG_DISCONTIGMEM
49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
50 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
51 #endif
52 
53 static struct resource data_resource = {
54 	.name	= "Kernel data",
55 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57 
58 static struct resource code_resource = {
59 	.name	= "Kernel code",
60 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
61 };
62 
63 static struct resource pdcdata_resource = {
64 	.name	= "PDC data (Page Zero)",
65 	.start	= 0,
66 	.end	= 0x9ff,
67 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
68 };
69 
70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
71 
72 /* The following array is initialized from the firmware specific
73  * information retrieved in kernel/inventory.c.
74  */
75 
76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
77 int npmem_ranges __read_mostly;
78 
79 #ifdef CONFIG_64BIT
80 #define MAX_MEM         (~0UL)
81 #else /* !CONFIG_64BIT */
82 #define MAX_MEM         (3584U*1024U*1024U)
83 #endif /* !CONFIG_64BIT */
84 
85 static unsigned long mem_limit __read_mostly = MAX_MEM;
86 
87 static void __init mem_limit_func(void)
88 {
89 	char *cp, *end;
90 	unsigned long limit;
91 
92 	/* We need this before __setup() functions are called */
93 
94 	limit = MAX_MEM;
95 	for (cp = boot_command_line; *cp; ) {
96 		if (memcmp(cp, "mem=", 4) == 0) {
97 			cp += 4;
98 			limit = memparse(cp, &end);
99 			if (end != cp)
100 				break;
101 			cp = end;
102 		} else {
103 			while (*cp != ' ' && *cp)
104 				++cp;
105 			while (*cp == ' ')
106 				++cp;
107 		}
108 	}
109 
110 	if (limit < mem_limit)
111 		mem_limit = limit;
112 }
113 
114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
115 
116 static void __init setup_bootmem(void)
117 {
118 	unsigned long bootmap_size;
119 	unsigned long mem_max;
120 	unsigned long bootmap_pages;
121 	unsigned long bootmap_start_pfn;
122 	unsigned long bootmap_pfn;
123 #ifndef CONFIG_DISCONTIGMEM
124 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
125 	int npmem_holes;
126 #endif
127 	int i, sysram_resource_count;
128 
129 	disable_sr_hashing(); /* Turn off space register hashing */
130 
131 	/*
132 	 * Sort the ranges. Since the number of ranges is typically
133 	 * small, and performance is not an issue here, just do
134 	 * a simple insertion sort.
135 	 */
136 
137 	for (i = 1; i < npmem_ranges; i++) {
138 		int j;
139 
140 		for (j = i; j > 0; j--) {
141 			unsigned long tmp;
142 
143 			if (pmem_ranges[j-1].start_pfn <
144 			    pmem_ranges[j].start_pfn) {
145 
146 				break;
147 			}
148 			tmp = pmem_ranges[j-1].start_pfn;
149 			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
150 			pmem_ranges[j].start_pfn = tmp;
151 			tmp = pmem_ranges[j-1].pages;
152 			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
153 			pmem_ranges[j].pages = tmp;
154 		}
155 	}
156 
157 #ifndef CONFIG_DISCONTIGMEM
158 	/*
159 	 * Throw out ranges that are too far apart (controlled by
160 	 * MAX_GAP).
161 	 */
162 
163 	for (i = 1; i < npmem_ranges; i++) {
164 		if (pmem_ranges[i].start_pfn -
165 			(pmem_ranges[i-1].start_pfn +
166 			 pmem_ranges[i-1].pages) > MAX_GAP) {
167 			npmem_ranges = i;
168 			printk("Large gap in memory detected (%ld pages). "
169 			       "Consider turning on CONFIG_DISCONTIGMEM\n",
170 			       pmem_ranges[i].start_pfn -
171 			       (pmem_ranges[i-1].start_pfn +
172 			        pmem_ranges[i-1].pages));
173 			break;
174 		}
175 	}
176 #endif
177 
178 	if (npmem_ranges > 1) {
179 
180 		/* Print the memory ranges */
181 
182 		printk(KERN_INFO "Memory Ranges:\n");
183 
184 		for (i = 0; i < npmem_ranges; i++) {
185 			unsigned long start;
186 			unsigned long size;
187 
188 			size = (pmem_ranges[i].pages << PAGE_SHIFT);
189 			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
190 			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
191 				i,start, start + (size - 1), size >> 20);
192 		}
193 	}
194 
195 	sysram_resource_count = npmem_ranges;
196 	for (i = 0; i < sysram_resource_count; i++) {
197 		struct resource *res = &sysram_resources[i];
198 		res->name = "System RAM";
199 		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
200 		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
201 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
202 		request_resource(&iomem_resource, res);
203 	}
204 
205 	/*
206 	 * For 32 bit kernels we limit the amount of memory we can
207 	 * support, in order to preserve enough kernel address space
208 	 * for other purposes. For 64 bit kernels we don't normally
209 	 * limit the memory, but this mechanism can be used to
210 	 * artificially limit the amount of memory (and it is written
211 	 * to work with multiple memory ranges).
212 	 */
213 
214 	mem_limit_func();       /* check for "mem=" argument */
215 
216 	mem_max = 0;
217 	num_physpages = 0;
218 	for (i = 0; i < npmem_ranges; i++) {
219 		unsigned long rsize;
220 
221 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
222 		if ((mem_max + rsize) > mem_limit) {
223 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
224 			if (mem_max == mem_limit)
225 				npmem_ranges = i;
226 			else {
227 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
228 						       - (mem_max >> PAGE_SHIFT);
229 				npmem_ranges = i + 1;
230 				mem_max = mem_limit;
231 			}
232 	        num_physpages += pmem_ranges[i].pages;
233 			break;
234 		}
235 	    num_physpages += pmem_ranges[i].pages;
236 		mem_max += rsize;
237 	}
238 
239 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240 
241 #ifndef CONFIG_DISCONTIGMEM
242 	/* Merge the ranges, keeping track of the holes */
243 
244 	{
245 		unsigned long end_pfn;
246 		unsigned long hole_pages;
247 
248 		npmem_holes = 0;
249 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250 		for (i = 1; i < npmem_ranges; i++) {
251 
252 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253 			if (hole_pages) {
254 				pmem_holes[npmem_holes].start_pfn = end_pfn;
255 				pmem_holes[npmem_holes++].pages = hole_pages;
256 				end_pfn += hole_pages;
257 			}
258 			end_pfn += pmem_ranges[i].pages;
259 		}
260 
261 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262 		npmem_ranges = 1;
263 	}
264 #endif
265 
266 	bootmap_pages = 0;
267 	for (i = 0; i < npmem_ranges; i++)
268 		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269 
270 	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271 
272 #ifdef CONFIG_DISCONTIGMEM
273 	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274 		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275 		NODE_DATA(i)->bdata = &bootmem_node_data[i];
276 	}
277 	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278 
279 	for (i = 0; i < npmem_ranges; i++) {
280 		node_set_state(i, N_NORMAL_MEMORY);
281 		node_set_online(i);
282 	}
283 #endif
284 
285 	/*
286 	 * Initialize and free the full range of memory in each range.
287 	 * Note that the only writing these routines do are to the bootmap,
288 	 * and we've made sure to locate the bootmap properly so that they
289 	 * won't be writing over anything important.
290 	 */
291 
292 	bootmap_pfn = bootmap_start_pfn;
293 	max_pfn = 0;
294 	for (i = 0; i < npmem_ranges; i++) {
295 		unsigned long start_pfn;
296 		unsigned long npages;
297 
298 		start_pfn = pmem_ranges[i].start_pfn;
299 		npages = pmem_ranges[i].pages;
300 
301 		bootmap_size = init_bootmem_node(NODE_DATA(i),
302 						bootmap_pfn,
303 						start_pfn,
304 						(start_pfn + npages) );
305 		free_bootmem_node(NODE_DATA(i),
306 				  (start_pfn << PAGE_SHIFT),
307 				  (npages << PAGE_SHIFT) );
308 		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309 		if ((start_pfn + npages) > max_pfn)
310 			max_pfn = start_pfn + npages;
311 	}
312 
313 	/* IOMMU is always used to access "high mem" on those boxes
314 	 * that can support enough mem that a PCI device couldn't
315 	 * directly DMA to any physical addresses.
316 	 * ISA DMA support will need to revisit this.
317 	 */
318 	max_low_pfn = max_pfn;
319 
320 	/* bootmap sizing messed up? */
321 	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322 
323 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324 
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
326 
327 	reserve_bootmem_node(NODE_DATA(0), 0UL,
328 			(unsigned long)(PAGE0->mem_free +
329 				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330 	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
331 			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
332 	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
333 			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
334 			BOOTMEM_DEFAULT);
335 
336 #ifndef CONFIG_DISCONTIGMEM
337 
338 	/* reserve the holes */
339 
340 	for (i = 0; i < npmem_holes; i++) {
341 		reserve_bootmem_node(NODE_DATA(0),
342 				(pmem_holes[i].start_pfn << PAGE_SHIFT),
343 				(pmem_holes[i].pages << PAGE_SHIFT),
344 				BOOTMEM_DEFAULT);
345 	}
346 #endif
347 
348 #ifdef CONFIG_BLK_DEV_INITRD
349 	if (initrd_start) {
350 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
351 		if (__pa(initrd_start) < mem_max) {
352 			unsigned long initrd_reserve;
353 
354 			if (__pa(initrd_end) > mem_max) {
355 				initrd_reserve = mem_max - __pa(initrd_start);
356 			} else {
357 				initrd_reserve = initrd_end - initrd_start;
358 			}
359 			initrd_below_start_ok = 1;
360 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
361 
362 			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
363 					initrd_reserve, BOOTMEM_DEFAULT);
364 		}
365 	}
366 #endif
367 
368 	data_resource.start =  virt_to_phys(&data_start);
369 	data_resource.end = virt_to_phys(_end) - 1;
370 	code_resource.start = virt_to_phys(_text);
371 	code_resource.end = virt_to_phys(&data_start)-1;
372 
373 	/* We don't know which region the kernel will be in, so try
374 	 * all of them.
375 	 */
376 	for (i = 0; i < sysram_resource_count; i++) {
377 		struct resource *res = &sysram_resources[i];
378 		request_resource(res, &code_resource);
379 		request_resource(res, &data_resource);
380 	}
381 	request_resource(&sysram_resources[0], &pdcdata_resource);
382 }
383 
384 static void __init map_pages(unsigned long start_vaddr,
385 			     unsigned long start_paddr, unsigned long size,
386 			     pgprot_t pgprot, int force)
387 {
388 	pgd_t *pg_dir;
389 	pmd_t *pmd;
390 	pte_t *pg_table;
391 	unsigned long end_paddr;
392 	unsigned long start_pmd;
393 	unsigned long start_pte;
394 	unsigned long tmp1;
395 	unsigned long tmp2;
396 	unsigned long address;
397 	unsigned long vaddr;
398 	unsigned long ro_start;
399 	unsigned long ro_end;
400 	unsigned long fv_addr;
401 	unsigned long gw_addr;
402 	extern const unsigned long fault_vector_20;
403 	extern void * const linux_gateway_page;
404 
405 	ro_start = __pa((unsigned long)_text);
406 	ro_end   = __pa((unsigned long)&data_start);
407 	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
408 	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
409 
410 	end_paddr = start_paddr + size;
411 
412 	pg_dir = pgd_offset_k(start_vaddr);
413 
414 #if PTRS_PER_PMD == 1
415 	start_pmd = 0;
416 #else
417 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
418 #endif
419 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
420 
421 	address = start_paddr;
422 	vaddr = start_vaddr;
423 	while (address < end_paddr) {
424 #if PTRS_PER_PMD == 1
425 		pmd = (pmd_t *)__pa(pg_dir);
426 #else
427 		pmd = (pmd_t *)pgd_address(*pg_dir);
428 
429 		/*
430 		 * pmd is physical at this point
431 		 */
432 
433 		if (!pmd) {
434 			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
435 			pmd = (pmd_t *) __pa(pmd);
436 		}
437 
438 		pgd_populate(NULL, pg_dir, __va(pmd));
439 #endif
440 		pg_dir++;
441 
442 		/* now change pmd to kernel virtual addresses */
443 
444 		pmd = (pmd_t *)__va(pmd) + start_pmd;
445 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
446 
447 			/*
448 			 * pg_table is physical at this point
449 			 */
450 
451 			pg_table = (pte_t *)pmd_address(*pmd);
452 			if (!pg_table) {
453 				pg_table = (pte_t *)
454 					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
455 				pg_table = (pte_t *) __pa(pg_table);
456 			}
457 
458 			pmd_populate_kernel(NULL, pmd, __va(pg_table));
459 
460 			/* now change pg_table to kernel virtual addresses */
461 
462 			pg_table = (pte_t *) __va(pg_table) + start_pte;
463 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
464 				pte_t pte;
465 
466 				/*
467 				 * Map the fault vector writable so we can
468 				 * write the HPMC checksum.
469 				 */
470 				if (force)
471 					pte =  __mk_pte(address, pgprot);
472 				else if (core_kernel_text(vaddr) &&
473 					 address != fv_addr)
474 					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
475 				else
476 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
477 				if (address >= ro_start && address < ro_end
478 							&& address != fv_addr
479 							&& address != gw_addr)
480 					pte = __mk_pte(address, PAGE_KERNEL_RO);
481 				else
482 #endif
483 					pte = __mk_pte(address, pgprot);
484 
485 				if (address >= end_paddr) {
486 					if (force)
487 						break;
488 					else
489 						pte_val(pte) = 0;
490 				}
491 
492 				set_pte(pg_table, pte);
493 
494 				address += PAGE_SIZE;
495 				vaddr += PAGE_SIZE;
496 			}
497 			start_pte = 0;
498 
499 			if (address >= end_paddr)
500 			    break;
501 		}
502 		start_pmd = 0;
503 	}
504 }
505 
506 void free_initmem(void)
507 {
508 	unsigned long addr;
509 	unsigned long init_begin = (unsigned long)__init_begin;
510 	unsigned long init_end = (unsigned long)__init_end;
511 
512 	/* The init text pages are marked R-X.  We have to
513 	 * flush the icache and mark them RW-
514 	 *
515 	 * This is tricky, because map_pages is in the init section.
516 	 * Do a dummy remap of the data section first (the data
517 	 * section is already PAGE_KERNEL) to pull in the TLB entries
518 	 * for map_kernel */
519 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
520 		  PAGE_KERNEL_RWX, 1);
521 	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
522 	 * map_pages */
523 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
524 		  PAGE_KERNEL, 1);
525 
526 	/* force the kernel to see the new TLB entries */
527 	__flush_tlb_range(0, init_begin, init_end);
528 	/* Attempt to catch anyone trying to execute code here
529 	 * by filling the page with BRK insns.
530 	 */
531 	memset((void *)init_begin, 0x00, init_end - init_begin);
532 	/* finally dump all the instructions which were cached, since the
533 	 * pages are no-longer executable */
534 	flush_icache_range(init_begin, init_end);
535 
536 	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
537 		ClearPageReserved(virt_to_page(addr));
538 		init_page_count(virt_to_page(addr));
539 		free_page(addr);
540 		num_physpages++;
541 		totalram_pages++;
542 	}
543 
544 	/* set up a new led state on systems shipped LED State panel */
545 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
546 
547 	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
548 		(init_end - init_begin) >> 10);
549 }
550 
551 
552 #ifdef CONFIG_DEBUG_RODATA
553 void mark_rodata_ro(void)
554 {
555 	/* rodata memory was already mapped with KERNEL_RO access rights by
556            pagetable_init() and map_pages(). No need to do additional stuff here */
557 	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
558 		(unsigned long)(__end_rodata - __start_rodata) >> 10);
559 }
560 #endif
561 
562 
563 /*
564  * Just an arbitrary offset to serve as a "hole" between mapping areas
565  * (between top of physical memory and a potential pcxl dma mapping
566  * area, and below the vmalloc mapping area).
567  *
568  * The current 32K value just means that there will be a 32K "hole"
569  * between mapping areas. That means that  any out-of-bounds memory
570  * accesses will hopefully be caught. The vmalloc() routines leaves
571  * a hole of 4kB between each vmalloced area for the same reason.
572  */
573 
574  /* Leave room for gateway page expansion */
575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
576 #error KERNEL_MAP_START is in gateway reserved region
577 #endif
578 #define MAP_START (KERNEL_MAP_START)
579 
580 #define VM_MAP_OFFSET  (32*1024)
581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
582 				     & ~(VM_MAP_OFFSET-1)))
583 
584 void *parisc_vmalloc_start __read_mostly;
585 EXPORT_SYMBOL(parisc_vmalloc_start);
586 
587 #ifdef CONFIG_PA11
588 unsigned long pcxl_dma_start __read_mostly;
589 #endif
590 
591 void __init mem_init(void)
592 {
593 	int codesize, reservedpages, datasize, initsize;
594 
595 	/* Do sanity checks on page table constants */
596 	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
597 	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
598 	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
599 	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
600 			> BITS_PER_LONG);
601 
602 	high_memory = __va((max_pfn << PAGE_SHIFT));
603 
604 #ifndef CONFIG_DISCONTIGMEM
605 	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
606 	totalram_pages += free_all_bootmem();
607 #else
608 	{
609 		int i;
610 
611 		for (i = 0; i < npmem_ranges; i++)
612 			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
613 	}
614 #endif
615 
616 	codesize = (unsigned long)_etext - (unsigned long)_text;
617 	datasize = (unsigned long)_edata - (unsigned long)_etext;
618 	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
619 
620 	reservedpages = 0;
621 {
622 	unsigned long pfn;
623 #ifdef CONFIG_DISCONTIGMEM
624 	int i;
625 
626 	for (i = 0; i < npmem_ranges; i++) {
627 		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
628 			if (PageReserved(pfn_to_page(pfn)))
629 				reservedpages++;
630 		}
631 	}
632 #else /* !CONFIG_DISCONTIGMEM */
633 	for (pfn = 0; pfn < max_pfn; pfn++) {
634 		/*
635 		 * Only count reserved RAM pages
636 		 */
637 		if (PageReserved(pfn_to_page(pfn)))
638 			reservedpages++;
639 	}
640 #endif
641 }
642 
643 #ifdef CONFIG_PA11
644 	if (hppa_dma_ops == &pcxl_dma_ops) {
645 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
646 		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
647 						+ PCXL_DMA_MAP_SIZE);
648 	} else {
649 		pcxl_dma_start = 0;
650 		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
651 	}
652 #else
653 	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
654 #endif
655 
656 	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
657 		nr_free_pages() << (PAGE_SHIFT-10),
658 		num_physpages << (PAGE_SHIFT-10),
659 		codesize >> 10,
660 		reservedpages << (PAGE_SHIFT-10),
661 		datasize >> 10,
662 		initsize >> 10
663 	);
664 
665 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
666 	printk("virtual kernel memory layout:\n"
667 	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
668 	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
669 	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
670 	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
671 	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
672 
673 	       (void*)VMALLOC_START, (void*)VMALLOC_END,
674 	       (VMALLOC_END - VMALLOC_START) >> 20,
675 
676 	       __va(0), high_memory,
677 	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
678 
679 	       __init_begin, __init_end,
680 	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
681 
682 	       _etext, _edata,
683 	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
684 
685 	       _text, _etext,
686 	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
687 #endif
688 }
689 
690 unsigned long *empty_zero_page __read_mostly;
691 EXPORT_SYMBOL(empty_zero_page);
692 
693 void show_mem(unsigned int filter)
694 {
695 	int i,free = 0,total = 0,reserved = 0;
696 	int shared = 0, cached = 0;
697 
698 	printk(KERN_INFO "Mem-info:\n");
699 	show_free_areas(filter);
700 #ifndef CONFIG_DISCONTIGMEM
701 	i = max_mapnr;
702 	while (i-- > 0) {
703 		total++;
704 		if (PageReserved(mem_map+i))
705 			reserved++;
706 		else if (PageSwapCache(mem_map+i))
707 			cached++;
708 		else if (!page_count(&mem_map[i]))
709 			free++;
710 		else
711 			shared += page_count(&mem_map[i]) - 1;
712 	}
713 #else
714 	for (i = 0; i < npmem_ranges; i++) {
715 		int j;
716 
717 		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
718 			struct page *p;
719 			unsigned long flags;
720 
721 			pgdat_resize_lock(NODE_DATA(i), &flags);
722 			p = nid_page_nr(i, j) - node_start_pfn(i);
723 
724 			total++;
725 			if (PageReserved(p))
726 				reserved++;
727 			else if (PageSwapCache(p))
728 				cached++;
729 			else if (!page_count(p))
730 				free++;
731 			else
732 				shared += page_count(p) - 1;
733 			pgdat_resize_unlock(NODE_DATA(i), &flags);
734         	}
735 	}
736 #endif
737 	printk(KERN_INFO "%d pages of RAM\n", total);
738 	printk(KERN_INFO "%d reserved pages\n", reserved);
739 	printk(KERN_INFO "%d pages shared\n", shared);
740 	printk(KERN_INFO "%d pages swap cached\n", cached);
741 
742 
743 #ifdef CONFIG_DISCONTIGMEM
744 	{
745 		struct zonelist *zl;
746 		int i, j;
747 
748 		for (i = 0; i < npmem_ranges; i++) {
749 			zl = node_zonelist(i, 0);
750 			for (j = 0; j < MAX_NR_ZONES; j++) {
751 				struct zoneref *z;
752 				struct zone *zone;
753 
754 				printk("Zone list for zone %d on node %d: ", j, i);
755 				for_each_zone_zonelist(zone, z, zl, j)
756 					printk("[%d/%s] ", zone_to_nid(zone),
757 								zone->name);
758 				printk("\n");
759 			}
760 		}
761 	}
762 #endif
763 }
764 
765 /*
766  * pagetable_init() sets up the page tables
767  *
768  * Note that gateway_init() places the Linux gateway page at page 0.
769  * Since gateway pages cannot be dereferenced this has the desirable
770  * side effect of trapping those pesky NULL-reference errors in the
771  * kernel.
772  */
773 static void __init pagetable_init(void)
774 {
775 	int range;
776 
777 	/* Map each physical memory range to its kernel vaddr */
778 
779 	for (range = 0; range < npmem_ranges; range++) {
780 		unsigned long start_paddr;
781 		unsigned long end_paddr;
782 		unsigned long size;
783 
784 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
785 		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
786 		size = pmem_ranges[range].pages << PAGE_SHIFT;
787 
788 		map_pages((unsigned long)__va(start_paddr), start_paddr,
789 			  size, PAGE_KERNEL, 0);
790 	}
791 
792 #ifdef CONFIG_BLK_DEV_INITRD
793 	if (initrd_end && initrd_end > mem_limit) {
794 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
795 		map_pages(initrd_start, __pa(initrd_start),
796 			  initrd_end - initrd_start, PAGE_KERNEL, 0);
797 	}
798 #endif
799 
800 	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
801 	memset(empty_zero_page, 0, PAGE_SIZE);
802 }
803 
804 static void __init gateway_init(void)
805 {
806 	unsigned long linux_gateway_page_addr;
807 	/* FIXME: This is 'const' in order to trick the compiler
808 	   into not treating it as DP-relative data. */
809 	extern void * const linux_gateway_page;
810 
811 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
812 
813 	/*
814 	 * Setup Linux Gateway page.
815 	 *
816 	 * The Linux gateway page will reside in kernel space (on virtual
817 	 * page 0), so it doesn't need to be aliased into user space.
818 	 */
819 
820 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
821 		  PAGE_SIZE, PAGE_GATEWAY, 1);
822 }
823 
824 #ifdef CONFIG_HPUX
825 void
826 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
827 {
828 	pgd_t *pg_dir;
829 	pmd_t *pmd;
830 	pte_t *pg_table;
831 	unsigned long start_pmd;
832 	unsigned long start_pte;
833 	unsigned long address;
834 	unsigned long hpux_gw_page_addr;
835 	/* FIXME: This is 'const' in order to trick the compiler
836 	   into not treating it as DP-relative data. */
837 	extern void * const hpux_gateway_page;
838 
839 	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
840 
841 	/*
842 	 * Setup HP-UX Gateway page.
843 	 *
844 	 * The HP-UX gateway page resides in the user address space,
845 	 * so it needs to be aliased into each process.
846 	 */
847 
848 	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
849 
850 #if PTRS_PER_PMD == 1
851 	start_pmd = 0;
852 #else
853 	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
854 #endif
855 	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
856 
857 	address = __pa(&hpux_gateway_page);
858 #if PTRS_PER_PMD == 1
859 	pmd = (pmd_t *)__pa(pg_dir);
860 #else
861 	pmd = (pmd_t *) pgd_address(*pg_dir);
862 
863 	/*
864 	 * pmd is physical at this point
865 	 */
866 
867 	if (!pmd) {
868 		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
869 		pmd = (pmd_t *) __pa(pmd);
870 	}
871 
872 	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
873 #endif
874 	/* now change pmd to kernel virtual addresses */
875 
876 	pmd = (pmd_t *)__va(pmd) + start_pmd;
877 
878 	/*
879 	 * pg_table is physical at this point
880 	 */
881 
882 	pg_table = (pte_t *) pmd_address(*pmd);
883 	if (!pg_table)
884 		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
885 
886 	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
887 
888 	/* now change pg_table to kernel virtual addresses */
889 
890 	pg_table = (pte_t *) __va(pg_table) + start_pte;
891 	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
892 }
893 EXPORT_SYMBOL(map_hpux_gateway_page);
894 #endif
895 
896 void __init paging_init(void)
897 {
898 	int i;
899 
900 	setup_bootmem();
901 	pagetable_init();
902 	gateway_init();
903 	flush_cache_all_local(); /* start with known state */
904 	flush_tlb_all_local(NULL);
905 
906 	for (i = 0; i < npmem_ranges; i++) {
907 		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
908 
909 		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
910 
911 #ifdef CONFIG_DISCONTIGMEM
912 		/* Need to initialize the pfnnid_map before we can initialize
913 		   the zone */
914 		{
915 		    int j;
916 		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
917 			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
918 			 j++) {
919 			pfnnid_map[j] = i;
920 		    }
921 		}
922 #endif
923 
924 		free_area_init_node(i, zones_size,
925 				pmem_ranges[i].start_pfn, NULL);
926 	}
927 }
928 
929 #ifdef CONFIG_PA20
930 
931 /*
932  * Currently, all PA20 chips have 18 bit protection IDs, which is the
933  * limiting factor (space ids are 32 bits).
934  */
935 
936 #define NR_SPACE_IDS 262144
937 
938 #else
939 
940 /*
941  * Currently we have a one-to-one relationship between space IDs and
942  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
943  * support 15 bit protection IDs, so that is the limiting factor.
944  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
945  * probably not worth the effort for a special case here.
946  */
947 
948 #define NR_SPACE_IDS 32768
949 
950 #endif  /* !CONFIG_PA20 */
951 
952 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
953 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
954 
955 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
956 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
957 static unsigned long space_id_index;
958 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
959 static unsigned long dirty_space_ids = 0;
960 
961 static DEFINE_SPINLOCK(sid_lock);
962 
963 unsigned long alloc_sid(void)
964 {
965 	unsigned long index;
966 
967 	spin_lock(&sid_lock);
968 
969 	if (free_space_ids == 0) {
970 		if (dirty_space_ids != 0) {
971 			spin_unlock(&sid_lock);
972 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
973 			spin_lock(&sid_lock);
974 		}
975 		BUG_ON(free_space_ids == 0);
976 	}
977 
978 	free_space_ids--;
979 
980 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
981 	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
982 	space_id_index = index;
983 
984 	spin_unlock(&sid_lock);
985 
986 	return index << SPACEID_SHIFT;
987 }
988 
989 void free_sid(unsigned long spaceid)
990 {
991 	unsigned long index = spaceid >> SPACEID_SHIFT;
992 	unsigned long *dirty_space_offset;
993 
994 	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
995 	index &= (BITS_PER_LONG - 1);
996 
997 	spin_lock(&sid_lock);
998 
999 	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1000 
1001 	*dirty_space_offset |= (1L << index);
1002 	dirty_space_ids++;
1003 
1004 	spin_unlock(&sid_lock);
1005 }
1006 
1007 
1008 #ifdef CONFIG_SMP
1009 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1010 {
1011 	int i;
1012 
1013 	/* NOTE: sid_lock must be held upon entry */
1014 
1015 	*ndirtyptr = dirty_space_ids;
1016 	if (dirty_space_ids != 0) {
1017 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018 		dirty_array[i] = dirty_space_id[i];
1019 		dirty_space_id[i] = 0;
1020 	    }
1021 	    dirty_space_ids = 0;
1022 	}
1023 
1024 	return;
1025 }
1026 
1027 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1028 {
1029 	int i;
1030 
1031 	/* NOTE: sid_lock must be held upon entry */
1032 
1033 	if (ndirty != 0) {
1034 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1035 			space_id[i] ^= dirty_array[i];
1036 		}
1037 
1038 		free_space_ids += ndirty;
1039 		space_id_index = 0;
1040 	}
1041 }
1042 
1043 #else /* CONFIG_SMP */
1044 
1045 static void recycle_sids(void)
1046 {
1047 	int i;
1048 
1049 	/* NOTE: sid_lock must be held upon entry */
1050 
1051 	if (dirty_space_ids != 0) {
1052 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1053 			space_id[i] ^= dirty_space_id[i];
1054 			dirty_space_id[i] = 0;
1055 		}
1056 
1057 		free_space_ids += dirty_space_ids;
1058 		dirty_space_ids = 0;
1059 		space_id_index = 0;
1060 	}
1061 }
1062 #endif
1063 
1064 /*
1065  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1066  * purged, we can safely reuse the space ids that were released but
1067  * not flushed from the tlb.
1068  */
1069 
1070 #ifdef CONFIG_SMP
1071 
1072 static unsigned long recycle_ndirty;
1073 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1074 static unsigned int recycle_inuse;
1075 
1076 void flush_tlb_all(void)
1077 {
1078 	int do_recycle;
1079 
1080 	do_recycle = 0;
1081 	spin_lock(&sid_lock);
1082 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1083 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1084 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1085 	    recycle_inuse++;
1086 	    do_recycle++;
1087 	}
1088 	spin_unlock(&sid_lock);
1089 	on_each_cpu(flush_tlb_all_local, NULL, 1);
1090 	if (do_recycle) {
1091 	    spin_lock(&sid_lock);
1092 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1093 	    recycle_inuse = 0;
1094 	    spin_unlock(&sid_lock);
1095 	}
1096 }
1097 #else
1098 void flush_tlb_all(void)
1099 {
1100 	spin_lock(&sid_lock);
1101 	flush_tlb_all_local(NULL);
1102 	recycle_sids();
1103 	spin_unlock(&sid_lock);
1104 }
1105 #endif
1106 
1107 #ifdef CONFIG_BLK_DEV_INITRD
1108 void free_initrd_mem(unsigned long start, unsigned long end)
1109 {
1110 	if (start >= end)
1111 		return;
1112 	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1113 	for (; start < end; start += PAGE_SIZE) {
1114 		ClearPageReserved(virt_to_page(start));
1115 		init_page_count(virt_to_page(start));
1116 		free_page(start);
1117 		num_physpages++;
1118 		totalram_pages++;
1119 	}
1120 }
1121 #endif
1122