1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 #include <asm/pdc_chassis.h> 30 #include <asm/mmzone.h> 31 #include <asm/sections.h> 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 extern int data_start; 36 37 #ifdef CONFIG_DISCONTIGMEM 38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 40 #endif 41 42 static struct resource data_resource = { 43 .name = "Kernel data", 44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 45 }; 46 47 static struct resource code_resource = { 48 .name = "Kernel code", 49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 50 }; 51 52 static struct resource pdcdata_resource = { 53 .name = "PDC data (Page Zero)", 54 .start = 0, 55 .end = 0x9ff, 56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 57 }; 58 59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 60 61 /* The following array is initialized from the firmware specific 62 * information retrieved in kernel/inventory.c. 63 */ 64 65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 66 int npmem_ranges __read_mostly; 67 68 #ifdef CONFIG_64BIT 69 #define MAX_MEM (~0UL) 70 #else /* !CONFIG_64BIT */ 71 #define MAX_MEM (3584U*1024U*1024U) 72 #endif /* !CONFIG_64BIT */ 73 74 static unsigned long mem_limit __read_mostly = MAX_MEM; 75 76 static void __init mem_limit_func(void) 77 { 78 char *cp, *end; 79 unsigned long limit; 80 81 /* We need this before __setup() functions are called */ 82 83 limit = MAX_MEM; 84 for (cp = boot_command_line; *cp; ) { 85 if (memcmp(cp, "mem=", 4) == 0) { 86 cp += 4; 87 limit = memparse(cp, &end); 88 if (end != cp) 89 break; 90 cp = end; 91 } else { 92 while (*cp != ' ' && *cp) 93 ++cp; 94 while (*cp == ' ') 95 ++cp; 96 } 97 } 98 99 if (limit < mem_limit) 100 mem_limit = limit; 101 } 102 103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 104 105 static void __init setup_bootmem(void) 106 { 107 unsigned long bootmap_size; 108 unsigned long mem_max; 109 unsigned long bootmap_pages; 110 unsigned long bootmap_start_pfn; 111 unsigned long bootmap_pfn; 112 #ifndef CONFIG_DISCONTIGMEM 113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 114 int npmem_holes; 115 #endif 116 int i, sysram_resource_count; 117 118 disable_sr_hashing(); /* Turn off space register hashing */ 119 120 /* 121 * Sort the ranges. Since the number of ranges is typically 122 * small, and performance is not an issue here, just do 123 * a simple insertion sort. 124 */ 125 126 for (i = 1; i < npmem_ranges; i++) { 127 int j; 128 129 for (j = i; j > 0; j--) { 130 unsigned long tmp; 131 132 if (pmem_ranges[j-1].start_pfn < 133 pmem_ranges[j].start_pfn) { 134 135 break; 136 } 137 tmp = pmem_ranges[j-1].start_pfn; 138 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 139 pmem_ranges[j].start_pfn = tmp; 140 tmp = pmem_ranges[j-1].pages; 141 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 142 pmem_ranges[j].pages = tmp; 143 } 144 } 145 146 #ifndef CONFIG_DISCONTIGMEM 147 /* 148 * Throw out ranges that are too far apart (controlled by 149 * MAX_GAP). 150 */ 151 152 for (i = 1; i < npmem_ranges; i++) { 153 if (pmem_ranges[i].start_pfn - 154 (pmem_ranges[i-1].start_pfn + 155 pmem_ranges[i-1].pages) > MAX_GAP) { 156 npmem_ranges = i; 157 printk("Large gap in memory detected (%ld pages). " 158 "Consider turning on CONFIG_DISCONTIGMEM\n", 159 pmem_ranges[i].start_pfn - 160 (pmem_ranges[i-1].start_pfn + 161 pmem_ranges[i-1].pages)); 162 break; 163 } 164 } 165 #endif 166 167 if (npmem_ranges > 1) { 168 169 /* Print the memory ranges */ 170 171 printk(KERN_INFO "Memory Ranges:\n"); 172 173 for (i = 0; i < npmem_ranges; i++) { 174 unsigned long start; 175 unsigned long size; 176 177 size = (pmem_ranges[i].pages << PAGE_SHIFT); 178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 179 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 180 i,start, start + (size - 1), size >> 20); 181 } 182 } 183 184 sysram_resource_count = npmem_ranges; 185 for (i = 0; i < sysram_resource_count; i++) { 186 struct resource *res = &sysram_resources[i]; 187 res->name = "System RAM"; 188 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 189 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 191 request_resource(&iomem_resource, res); 192 } 193 194 /* 195 * For 32 bit kernels we limit the amount of memory we can 196 * support, in order to preserve enough kernel address space 197 * for other purposes. For 64 bit kernels we don't normally 198 * limit the memory, but this mechanism can be used to 199 * artificially limit the amount of memory (and it is written 200 * to work with multiple memory ranges). 201 */ 202 203 mem_limit_func(); /* check for "mem=" argument */ 204 205 mem_max = 0; 206 num_physpages = 0; 207 for (i = 0; i < npmem_ranges; i++) { 208 unsigned long rsize; 209 210 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 211 if ((mem_max + rsize) > mem_limit) { 212 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 213 if (mem_max == mem_limit) 214 npmem_ranges = i; 215 else { 216 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 217 - (mem_max >> PAGE_SHIFT); 218 npmem_ranges = i + 1; 219 mem_max = mem_limit; 220 } 221 num_physpages += pmem_ranges[i].pages; 222 break; 223 } 224 num_physpages += pmem_ranges[i].pages; 225 mem_max += rsize; 226 } 227 228 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 229 230 #ifndef CONFIG_DISCONTIGMEM 231 /* Merge the ranges, keeping track of the holes */ 232 233 { 234 unsigned long end_pfn; 235 unsigned long hole_pages; 236 237 npmem_holes = 0; 238 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 239 for (i = 1; i < npmem_ranges; i++) { 240 241 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 242 if (hole_pages) { 243 pmem_holes[npmem_holes].start_pfn = end_pfn; 244 pmem_holes[npmem_holes++].pages = hole_pages; 245 end_pfn += hole_pages; 246 } 247 end_pfn += pmem_ranges[i].pages; 248 } 249 250 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 251 npmem_ranges = 1; 252 } 253 #endif 254 255 bootmap_pages = 0; 256 for (i = 0; i < npmem_ranges; i++) 257 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 258 259 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 260 261 #ifdef CONFIG_DISCONTIGMEM 262 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 263 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 264 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 265 } 266 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 267 268 for (i = 0; i < npmem_ranges; i++) 269 node_set_online(i); 270 #endif 271 272 /* 273 * Initialize and free the full range of memory in each range. 274 * Note that the only writing these routines do are to the bootmap, 275 * and we've made sure to locate the bootmap properly so that they 276 * won't be writing over anything important. 277 */ 278 279 bootmap_pfn = bootmap_start_pfn; 280 max_pfn = 0; 281 for (i = 0; i < npmem_ranges; i++) { 282 unsigned long start_pfn; 283 unsigned long npages; 284 285 start_pfn = pmem_ranges[i].start_pfn; 286 npages = pmem_ranges[i].pages; 287 288 bootmap_size = init_bootmem_node(NODE_DATA(i), 289 bootmap_pfn, 290 start_pfn, 291 (start_pfn + npages) ); 292 free_bootmem_node(NODE_DATA(i), 293 (start_pfn << PAGE_SHIFT), 294 (npages << PAGE_SHIFT) ); 295 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 296 if ((start_pfn + npages) > max_pfn) 297 max_pfn = start_pfn + npages; 298 } 299 300 /* IOMMU is always used to access "high mem" on those boxes 301 * that can support enough mem that a PCI device couldn't 302 * directly DMA to any physical addresses. 303 * ISA DMA support will need to revisit this. 304 */ 305 max_low_pfn = max_pfn; 306 307 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) { 308 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n"); 309 BUG(); 310 } 311 312 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 313 314 #define PDC_CONSOLE_IO_IODC_SIZE 32768 315 316 reserve_bootmem_node(NODE_DATA(0), 0UL, 317 (unsigned long)(PAGE0->mem_free + 318 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 319 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 320 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 321 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 322 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 323 BOOTMEM_DEFAULT); 324 325 #ifndef CONFIG_DISCONTIGMEM 326 327 /* reserve the holes */ 328 329 for (i = 0; i < npmem_holes; i++) { 330 reserve_bootmem_node(NODE_DATA(0), 331 (pmem_holes[i].start_pfn << PAGE_SHIFT), 332 (pmem_holes[i].pages << PAGE_SHIFT), 333 BOOTMEM_DEFAULT); 334 } 335 #endif 336 337 #ifdef CONFIG_BLK_DEV_INITRD 338 if (initrd_start) { 339 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 340 if (__pa(initrd_start) < mem_max) { 341 unsigned long initrd_reserve; 342 343 if (__pa(initrd_end) > mem_max) { 344 initrd_reserve = mem_max - __pa(initrd_start); 345 } else { 346 initrd_reserve = initrd_end - initrd_start; 347 } 348 initrd_below_start_ok = 1; 349 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 350 351 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 352 initrd_reserve, BOOTMEM_DEFAULT); 353 } 354 } 355 #endif 356 357 data_resource.start = virt_to_phys(&data_start); 358 data_resource.end = virt_to_phys(_end) - 1; 359 code_resource.start = virt_to_phys(_text); 360 code_resource.end = virt_to_phys(&data_start)-1; 361 362 /* We don't know which region the kernel will be in, so try 363 * all of them. 364 */ 365 for (i = 0; i < sysram_resource_count; i++) { 366 struct resource *res = &sysram_resources[i]; 367 request_resource(res, &code_resource); 368 request_resource(res, &data_resource); 369 } 370 request_resource(&sysram_resources[0], &pdcdata_resource); 371 } 372 373 void free_initmem(void) 374 { 375 unsigned long addr, init_begin, init_end; 376 377 printk(KERN_INFO "Freeing unused kernel memory: "); 378 379 #ifdef CONFIG_DEBUG_KERNEL 380 /* Attempt to catch anyone trying to execute code here 381 * by filling the page with BRK insns. 382 * 383 * If we disable interrupts for all CPUs, then IPI stops working. 384 * Kinda breaks the global cache flushing. 385 */ 386 local_irq_disable(); 387 388 memset(__init_begin, 0x00, 389 (unsigned long)__init_end - (unsigned long)__init_begin); 390 391 flush_data_cache(); 392 asm volatile("sync" : : ); 393 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end); 394 asm volatile("sync" : : ); 395 396 local_irq_enable(); 397 #endif 398 399 /* align __init_begin and __init_end to page size, 400 ignoring linker script where we might have tried to save RAM */ 401 init_begin = PAGE_ALIGN((unsigned long)(__init_begin)); 402 init_end = PAGE_ALIGN((unsigned long)(__init_end)); 403 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 404 ClearPageReserved(virt_to_page(addr)); 405 init_page_count(virt_to_page(addr)); 406 free_page(addr); 407 num_physpages++; 408 totalram_pages++; 409 } 410 411 /* set up a new led state on systems shipped LED State panel */ 412 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 413 414 printk("%luk freed\n", (init_end - init_begin) >> 10); 415 } 416 417 418 #ifdef CONFIG_DEBUG_RODATA 419 void mark_rodata_ro(void) 420 { 421 /* rodata memory was already mapped with KERNEL_RO access rights by 422 pagetable_init() and map_pages(). No need to do additional stuff here */ 423 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 424 (unsigned long)(__end_rodata - __start_rodata) >> 10); 425 } 426 #endif 427 428 429 /* 430 * Just an arbitrary offset to serve as a "hole" between mapping areas 431 * (between top of physical memory and a potential pcxl dma mapping 432 * area, and below the vmalloc mapping area). 433 * 434 * The current 32K value just means that there will be a 32K "hole" 435 * between mapping areas. That means that any out-of-bounds memory 436 * accesses will hopefully be caught. The vmalloc() routines leaves 437 * a hole of 4kB between each vmalloced area for the same reason. 438 */ 439 440 /* Leave room for gateway page expansion */ 441 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 442 #error KERNEL_MAP_START is in gateway reserved region 443 #endif 444 #define MAP_START (KERNEL_MAP_START) 445 446 #define VM_MAP_OFFSET (32*1024) 447 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 448 & ~(VM_MAP_OFFSET-1))) 449 450 void *vmalloc_start __read_mostly; 451 EXPORT_SYMBOL(vmalloc_start); 452 453 #ifdef CONFIG_PA11 454 unsigned long pcxl_dma_start __read_mostly; 455 #endif 456 457 void __init mem_init(void) 458 { 459 int codesize, reservedpages, datasize, initsize; 460 461 high_memory = __va((max_pfn << PAGE_SHIFT)); 462 463 #ifndef CONFIG_DISCONTIGMEM 464 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 465 totalram_pages += free_all_bootmem(); 466 #else 467 { 468 int i; 469 470 for (i = 0; i < npmem_ranges; i++) 471 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 472 } 473 #endif 474 475 codesize = (unsigned long)_etext - (unsigned long)_text; 476 datasize = (unsigned long)_edata - (unsigned long)_etext; 477 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 478 479 reservedpages = 0; 480 { 481 unsigned long pfn; 482 #ifdef CONFIG_DISCONTIGMEM 483 int i; 484 485 for (i = 0; i < npmem_ranges; i++) { 486 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 487 if (PageReserved(pfn_to_page(pfn))) 488 reservedpages++; 489 } 490 } 491 #else /* !CONFIG_DISCONTIGMEM */ 492 for (pfn = 0; pfn < max_pfn; pfn++) { 493 /* 494 * Only count reserved RAM pages 495 */ 496 if (PageReserved(pfn_to_page(pfn))) 497 reservedpages++; 498 } 499 #endif 500 } 501 502 #ifdef CONFIG_PA11 503 if (hppa_dma_ops == &pcxl_dma_ops) { 504 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 505 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 506 } else { 507 pcxl_dma_start = 0; 508 vmalloc_start = SET_MAP_OFFSET(MAP_START); 509 } 510 #else 511 vmalloc_start = SET_MAP_OFFSET(MAP_START); 512 #endif 513 514 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 515 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 516 num_physpages << (PAGE_SHIFT-10), 517 codesize >> 10, 518 reservedpages << (PAGE_SHIFT-10), 519 datasize >> 10, 520 initsize >> 10 521 ); 522 523 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 524 printk("virtual kernel memory layout:\n" 525 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 526 " memory : 0x%p - 0x%p (%4ld MB)\n" 527 " .init : 0x%p - 0x%p (%4ld kB)\n" 528 " .data : 0x%p - 0x%p (%4ld kB)\n" 529 " .text : 0x%p - 0x%p (%4ld kB)\n", 530 531 (void*)VMALLOC_START, (void*)VMALLOC_END, 532 (VMALLOC_END - VMALLOC_START) >> 20, 533 534 __va(0), high_memory, 535 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 536 537 __init_begin, __init_end, 538 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 539 540 _etext, _edata, 541 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 542 543 _text, _etext, 544 ((unsigned long)_etext - (unsigned long)_text) >> 10); 545 #endif 546 } 547 548 unsigned long *empty_zero_page __read_mostly; 549 EXPORT_SYMBOL(empty_zero_page); 550 551 void show_mem(void) 552 { 553 int i,free = 0,total = 0,reserved = 0; 554 int shared = 0, cached = 0; 555 556 printk(KERN_INFO "Mem-info:\n"); 557 show_free_areas(); 558 #ifndef CONFIG_DISCONTIGMEM 559 i = max_mapnr; 560 while (i-- > 0) { 561 total++; 562 if (PageReserved(mem_map+i)) 563 reserved++; 564 else if (PageSwapCache(mem_map+i)) 565 cached++; 566 else if (!page_count(&mem_map[i])) 567 free++; 568 else 569 shared += page_count(&mem_map[i]) - 1; 570 } 571 #else 572 for (i = 0; i < npmem_ranges; i++) { 573 int j; 574 575 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 576 struct page *p; 577 unsigned long flags; 578 579 pgdat_resize_lock(NODE_DATA(i), &flags); 580 p = nid_page_nr(i, j) - node_start_pfn(i); 581 582 total++; 583 if (PageReserved(p)) 584 reserved++; 585 else if (PageSwapCache(p)) 586 cached++; 587 else if (!page_count(p)) 588 free++; 589 else 590 shared += page_count(p) - 1; 591 pgdat_resize_unlock(NODE_DATA(i), &flags); 592 } 593 } 594 #endif 595 printk(KERN_INFO "%d pages of RAM\n", total); 596 printk(KERN_INFO "%d reserved pages\n", reserved); 597 printk(KERN_INFO "%d pages shared\n", shared); 598 printk(KERN_INFO "%d pages swap cached\n", cached); 599 600 601 #ifdef CONFIG_DISCONTIGMEM 602 { 603 struct zonelist *zl; 604 int i, j; 605 606 for (i = 0; i < npmem_ranges; i++) { 607 zl = node_zonelist(i, 0); 608 for (j = 0; j < MAX_NR_ZONES; j++) { 609 struct zoneref *z; 610 struct zone *zone; 611 612 printk("Zone list for zone %d on node %d: ", j, i); 613 for_each_zone_zonelist(zone, z, zl, j) 614 printk("[%d/%s] ", zone_to_nid(zone), 615 zone->name); 616 printk("\n"); 617 } 618 } 619 } 620 #endif 621 } 622 623 624 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 625 { 626 pgd_t *pg_dir; 627 pmd_t *pmd; 628 pte_t *pg_table; 629 unsigned long end_paddr; 630 unsigned long start_pmd; 631 unsigned long start_pte; 632 unsigned long tmp1; 633 unsigned long tmp2; 634 unsigned long address; 635 unsigned long ro_start; 636 unsigned long ro_end; 637 unsigned long fv_addr; 638 unsigned long gw_addr; 639 extern const unsigned long fault_vector_20; 640 extern void * const linux_gateway_page; 641 642 ro_start = __pa((unsigned long)_text); 643 ro_end = __pa((unsigned long)&data_start); 644 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 645 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 646 647 end_paddr = start_paddr + size; 648 649 pg_dir = pgd_offset_k(start_vaddr); 650 651 #if PTRS_PER_PMD == 1 652 start_pmd = 0; 653 #else 654 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 655 #endif 656 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 657 658 address = start_paddr; 659 while (address < end_paddr) { 660 #if PTRS_PER_PMD == 1 661 pmd = (pmd_t *)__pa(pg_dir); 662 #else 663 pmd = (pmd_t *)pgd_address(*pg_dir); 664 665 /* 666 * pmd is physical at this point 667 */ 668 669 if (!pmd) { 670 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 671 pmd = (pmd_t *) __pa(pmd); 672 } 673 674 pgd_populate(NULL, pg_dir, __va(pmd)); 675 #endif 676 pg_dir++; 677 678 /* now change pmd to kernel virtual addresses */ 679 680 pmd = (pmd_t *)__va(pmd) + start_pmd; 681 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 682 683 /* 684 * pg_table is physical at this point 685 */ 686 687 pg_table = (pte_t *)pmd_address(*pmd); 688 if (!pg_table) { 689 pg_table = (pte_t *) 690 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 691 pg_table = (pte_t *) __pa(pg_table); 692 } 693 694 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 695 696 /* now change pg_table to kernel virtual addresses */ 697 698 pg_table = (pte_t *) __va(pg_table) + start_pte; 699 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 700 pte_t pte; 701 702 /* 703 * Map the fault vector writable so we can 704 * write the HPMC checksum. 705 */ 706 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 707 if (address >= ro_start && address < ro_end 708 && address != fv_addr 709 && address != gw_addr) 710 pte = __mk_pte(address, PAGE_KERNEL_RO); 711 else 712 #endif 713 pte = __mk_pte(address, pgprot); 714 715 if (address >= end_paddr) 716 pte_val(pte) = 0; 717 718 set_pte(pg_table, pte); 719 720 address += PAGE_SIZE; 721 } 722 start_pte = 0; 723 724 if (address >= end_paddr) 725 break; 726 } 727 start_pmd = 0; 728 } 729 } 730 731 /* 732 * pagetable_init() sets up the page tables 733 * 734 * Note that gateway_init() places the Linux gateway page at page 0. 735 * Since gateway pages cannot be dereferenced this has the desirable 736 * side effect of trapping those pesky NULL-reference errors in the 737 * kernel. 738 */ 739 static void __init pagetable_init(void) 740 { 741 int range; 742 743 /* Map each physical memory range to its kernel vaddr */ 744 745 for (range = 0; range < npmem_ranges; range++) { 746 unsigned long start_paddr; 747 unsigned long end_paddr; 748 unsigned long size; 749 750 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 751 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 752 size = pmem_ranges[range].pages << PAGE_SHIFT; 753 754 map_pages((unsigned long)__va(start_paddr), start_paddr, 755 size, PAGE_KERNEL); 756 } 757 758 #ifdef CONFIG_BLK_DEV_INITRD 759 if (initrd_end && initrd_end > mem_limit) { 760 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 761 map_pages(initrd_start, __pa(initrd_start), 762 initrd_end - initrd_start, PAGE_KERNEL); 763 } 764 #endif 765 766 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 767 memset(empty_zero_page, 0, PAGE_SIZE); 768 } 769 770 static void __init gateway_init(void) 771 { 772 unsigned long linux_gateway_page_addr; 773 /* FIXME: This is 'const' in order to trick the compiler 774 into not treating it as DP-relative data. */ 775 extern void * const linux_gateway_page; 776 777 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 778 779 /* 780 * Setup Linux Gateway page. 781 * 782 * The Linux gateway page will reside in kernel space (on virtual 783 * page 0), so it doesn't need to be aliased into user space. 784 */ 785 786 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 787 PAGE_SIZE, PAGE_GATEWAY); 788 } 789 790 #ifdef CONFIG_HPUX 791 void 792 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 793 { 794 pgd_t *pg_dir; 795 pmd_t *pmd; 796 pte_t *pg_table; 797 unsigned long start_pmd; 798 unsigned long start_pte; 799 unsigned long address; 800 unsigned long hpux_gw_page_addr; 801 /* FIXME: This is 'const' in order to trick the compiler 802 into not treating it as DP-relative data. */ 803 extern void * const hpux_gateway_page; 804 805 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 806 807 /* 808 * Setup HP-UX Gateway page. 809 * 810 * The HP-UX gateway page resides in the user address space, 811 * so it needs to be aliased into each process. 812 */ 813 814 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 815 816 #if PTRS_PER_PMD == 1 817 start_pmd = 0; 818 #else 819 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 820 #endif 821 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 822 823 address = __pa(&hpux_gateway_page); 824 #if PTRS_PER_PMD == 1 825 pmd = (pmd_t *)__pa(pg_dir); 826 #else 827 pmd = (pmd_t *) pgd_address(*pg_dir); 828 829 /* 830 * pmd is physical at this point 831 */ 832 833 if (!pmd) { 834 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 835 pmd = (pmd_t *) __pa(pmd); 836 } 837 838 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 839 #endif 840 /* now change pmd to kernel virtual addresses */ 841 842 pmd = (pmd_t *)__va(pmd) + start_pmd; 843 844 /* 845 * pg_table is physical at this point 846 */ 847 848 pg_table = (pte_t *) pmd_address(*pmd); 849 if (!pg_table) 850 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 851 852 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 853 854 /* now change pg_table to kernel virtual addresses */ 855 856 pg_table = (pte_t *) __va(pg_table) + start_pte; 857 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 858 } 859 EXPORT_SYMBOL(map_hpux_gateway_page); 860 #endif 861 862 void __init paging_init(void) 863 { 864 int i; 865 866 setup_bootmem(); 867 pagetable_init(); 868 gateway_init(); 869 flush_cache_all_local(); /* start with known state */ 870 flush_tlb_all_local(NULL); 871 872 for (i = 0; i < npmem_ranges; i++) { 873 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 874 875 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 876 877 #ifdef CONFIG_DISCONTIGMEM 878 /* Need to initialize the pfnnid_map before we can initialize 879 the zone */ 880 { 881 int j; 882 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 883 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 884 j++) { 885 pfnnid_map[j] = i; 886 } 887 } 888 #endif 889 890 free_area_init_node(i, zones_size, 891 pmem_ranges[i].start_pfn, NULL); 892 } 893 } 894 895 #ifdef CONFIG_PA20 896 897 /* 898 * Currently, all PA20 chips have 18 bit protection IDs, which is the 899 * limiting factor (space ids are 32 bits). 900 */ 901 902 #define NR_SPACE_IDS 262144 903 904 #else 905 906 /* 907 * Currently we have a one-to-one relationship between space IDs and 908 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 909 * support 15 bit protection IDs, so that is the limiting factor. 910 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 911 * probably not worth the effort for a special case here. 912 */ 913 914 #define NR_SPACE_IDS 32768 915 916 #endif /* !CONFIG_PA20 */ 917 918 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 919 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 920 921 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 922 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 923 static unsigned long space_id_index; 924 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 925 static unsigned long dirty_space_ids = 0; 926 927 static DEFINE_SPINLOCK(sid_lock); 928 929 unsigned long alloc_sid(void) 930 { 931 unsigned long index; 932 933 spin_lock(&sid_lock); 934 935 if (free_space_ids == 0) { 936 if (dirty_space_ids != 0) { 937 spin_unlock(&sid_lock); 938 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 939 spin_lock(&sid_lock); 940 } 941 BUG_ON(free_space_ids == 0); 942 } 943 944 free_space_ids--; 945 946 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 947 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 948 space_id_index = index; 949 950 spin_unlock(&sid_lock); 951 952 return index << SPACEID_SHIFT; 953 } 954 955 void free_sid(unsigned long spaceid) 956 { 957 unsigned long index = spaceid >> SPACEID_SHIFT; 958 unsigned long *dirty_space_offset; 959 960 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 961 index &= (BITS_PER_LONG - 1); 962 963 spin_lock(&sid_lock); 964 965 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 966 967 *dirty_space_offset |= (1L << index); 968 dirty_space_ids++; 969 970 spin_unlock(&sid_lock); 971 } 972 973 974 #ifdef CONFIG_SMP 975 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 976 { 977 int i; 978 979 /* NOTE: sid_lock must be held upon entry */ 980 981 *ndirtyptr = dirty_space_ids; 982 if (dirty_space_ids != 0) { 983 for (i = 0; i < SID_ARRAY_SIZE; i++) { 984 dirty_array[i] = dirty_space_id[i]; 985 dirty_space_id[i] = 0; 986 } 987 dirty_space_ids = 0; 988 } 989 990 return; 991 } 992 993 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 994 { 995 int i; 996 997 /* NOTE: sid_lock must be held upon entry */ 998 999 if (ndirty != 0) { 1000 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1001 space_id[i] ^= dirty_array[i]; 1002 } 1003 1004 free_space_ids += ndirty; 1005 space_id_index = 0; 1006 } 1007 } 1008 1009 #else /* CONFIG_SMP */ 1010 1011 static void recycle_sids(void) 1012 { 1013 int i; 1014 1015 /* NOTE: sid_lock must be held upon entry */ 1016 1017 if (dirty_space_ids != 0) { 1018 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1019 space_id[i] ^= dirty_space_id[i]; 1020 dirty_space_id[i] = 0; 1021 } 1022 1023 free_space_ids += dirty_space_ids; 1024 dirty_space_ids = 0; 1025 space_id_index = 0; 1026 } 1027 } 1028 #endif 1029 1030 /* 1031 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1032 * purged, we can safely reuse the space ids that were released but 1033 * not flushed from the tlb. 1034 */ 1035 1036 #ifdef CONFIG_SMP 1037 1038 static unsigned long recycle_ndirty; 1039 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1040 static unsigned int recycle_inuse; 1041 1042 void flush_tlb_all(void) 1043 { 1044 int do_recycle; 1045 1046 do_recycle = 0; 1047 spin_lock(&sid_lock); 1048 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1049 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1050 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1051 recycle_inuse++; 1052 do_recycle++; 1053 } 1054 spin_unlock(&sid_lock); 1055 on_each_cpu(flush_tlb_all_local, NULL, 1); 1056 if (do_recycle) { 1057 spin_lock(&sid_lock); 1058 recycle_sids(recycle_ndirty,recycle_dirty_array); 1059 recycle_inuse = 0; 1060 spin_unlock(&sid_lock); 1061 } 1062 } 1063 #else 1064 void flush_tlb_all(void) 1065 { 1066 spin_lock(&sid_lock); 1067 flush_tlb_all_local(NULL); 1068 recycle_sids(); 1069 spin_unlock(&sid_lock); 1070 } 1071 #endif 1072 1073 #ifdef CONFIG_BLK_DEV_INITRD 1074 void free_initrd_mem(unsigned long start, unsigned long end) 1075 { 1076 if (start >= end) 1077 return; 1078 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1079 for (; start < end; start += PAGE_SIZE) { 1080 ClearPageReserved(virt_to_page(start)); 1081 init_page_count(virt_to_page(start)); 1082 free_page(start); 1083 num_physpages++; 1084 totalram_pages++; 1085 } 1086 } 1087 #endif 1088