1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 26 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 34 extern int data_start; 35 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ 36 37 #if PT_NLEVELS == 3 38 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 39 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 40 * guarantee that global objects will be laid out in memory in the same order 41 * as the order of declaration, so put these in different sections and use 42 * the linker script to order them. */ 43 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 44 #endif 45 46 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 47 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 48 49 #ifdef CONFIG_DISCONTIGMEM 50 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 51 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 52 #endif 53 54 static struct resource data_resource = { 55 .name = "Kernel data", 56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 57 }; 58 59 static struct resource code_resource = { 60 .name = "Kernel code", 61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 62 }; 63 64 static struct resource pdcdata_resource = { 65 .name = "PDC data (Page Zero)", 66 .start = 0, 67 .end = 0x9ff, 68 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 69 }; 70 71 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 72 73 /* The following array is initialized from the firmware specific 74 * information retrieved in kernel/inventory.c. 75 */ 76 77 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 78 int npmem_ranges __read_mostly; 79 80 #ifdef CONFIG_64BIT 81 #define MAX_MEM (~0UL) 82 #else /* !CONFIG_64BIT */ 83 #define MAX_MEM (3584U*1024U*1024U) 84 #endif /* !CONFIG_64BIT */ 85 86 static unsigned long mem_limit __read_mostly = MAX_MEM; 87 88 static void __init mem_limit_func(void) 89 { 90 char *cp, *end; 91 unsigned long limit; 92 93 /* We need this before __setup() functions are called */ 94 95 limit = MAX_MEM; 96 for (cp = boot_command_line; *cp; ) { 97 if (memcmp(cp, "mem=", 4) == 0) { 98 cp += 4; 99 limit = memparse(cp, &end); 100 if (end != cp) 101 break; 102 cp = end; 103 } else { 104 while (*cp != ' ' && *cp) 105 ++cp; 106 while (*cp == ' ') 107 ++cp; 108 } 109 } 110 111 if (limit < mem_limit) 112 mem_limit = limit; 113 } 114 115 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 116 117 static void __init setup_bootmem(void) 118 { 119 unsigned long bootmap_size; 120 unsigned long mem_max; 121 unsigned long bootmap_pages; 122 unsigned long bootmap_start_pfn; 123 unsigned long bootmap_pfn; 124 #ifndef CONFIG_DISCONTIGMEM 125 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 126 int npmem_holes; 127 #endif 128 int i, sysram_resource_count; 129 130 disable_sr_hashing(); /* Turn off space register hashing */ 131 132 /* 133 * Sort the ranges. Since the number of ranges is typically 134 * small, and performance is not an issue here, just do 135 * a simple insertion sort. 136 */ 137 138 for (i = 1; i < npmem_ranges; i++) { 139 int j; 140 141 for (j = i; j > 0; j--) { 142 unsigned long tmp; 143 144 if (pmem_ranges[j-1].start_pfn < 145 pmem_ranges[j].start_pfn) { 146 147 break; 148 } 149 tmp = pmem_ranges[j-1].start_pfn; 150 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 151 pmem_ranges[j].start_pfn = tmp; 152 tmp = pmem_ranges[j-1].pages; 153 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 154 pmem_ranges[j].pages = tmp; 155 } 156 } 157 158 #ifndef CONFIG_DISCONTIGMEM 159 /* 160 * Throw out ranges that are too far apart (controlled by 161 * MAX_GAP). 162 */ 163 164 for (i = 1; i < npmem_ranges; i++) { 165 if (pmem_ranges[i].start_pfn - 166 (pmem_ranges[i-1].start_pfn + 167 pmem_ranges[i-1].pages) > MAX_GAP) { 168 npmem_ranges = i; 169 printk("Large gap in memory detected (%ld pages). " 170 "Consider turning on CONFIG_DISCONTIGMEM\n", 171 pmem_ranges[i].start_pfn - 172 (pmem_ranges[i-1].start_pfn + 173 pmem_ranges[i-1].pages)); 174 break; 175 } 176 } 177 #endif 178 179 if (npmem_ranges > 1) { 180 181 /* Print the memory ranges */ 182 183 printk(KERN_INFO "Memory Ranges:\n"); 184 185 for (i = 0; i < npmem_ranges; i++) { 186 unsigned long start; 187 unsigned long size; 188 189 size = (pmem_ranges[i].pages << PAGE_SHIFT); 190 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 191 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 192 i,start, start + (size - 1), size >> 20); 193 } 194 } 195 196 sysram_resource_count = npmem_ranges; 197 for (i = 0; i < sysram_resource_count; i++) { 198 struct resource *res = &sysram_resources[i]; 199 res->name = "System RAM"; 200 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 201 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 202 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 203 request_resource(&iomem_resource, res); 204 } 205 206 /* 207 * For 32 bit kernels we limit the amount of memory we can 208 * support, in order to preserve enough kernel address space 209 * for other purposes. For 64 bit kernels we don't normally 210 * limit the memory, but this mechanism can be used to 211 * artificially limit the amount of memory (and it is written 212 * to work with multiple memory ranges). 213 */ 214 215 mem_limit_func(); /* check for "mem=" argument */ 216 217 mem_max = 0; 218 for (i = 0; i < npmem_ranges; i++) { 219 unsigned long rsize; 220 221 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 222 if ((mem_max + rsize) > mem_limit) { 223 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 224 if (mem_max == mem_limit) 225 npmem_ranges = i; 226 else { 227 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 228 - (mem_max >> PAGE_SHIFT); 229 npmem_ranges = i + 1; 230 mem_max = mem_limit; 231 } 232 break; 233 } 234 mem_max += rsize; 235 } 236 237 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 238 239 #ifndef CONFIG_DISCONTIGMEM 240 /* Merge the ranges, keeping track of the holes */ 241 242 { 243 unsigned long end_pfn; 244 unsigned long hole_pages; 245 246 npmem_holes = 0; 247 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 248 for (i = 1; i < npmem_ranges; i++) { 249 250 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 251 if (hole_pages) { 252 pmem_holes[npmem_holes].start_pfn = end_pfn; 253 pmem_holes[npmem_holes++].pages = hole_pages; 254 end_pfn += hole_pages; 255 } 256 end_pfn += pmem_ranges[i].pages; 257 } 258 259 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 260 npmem_ranges = 1; 261 } 262 #endif 263 264 bootmap_pages = 0; 265 for (i = 0; i < npmem_ranges; i++) 266 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 267 268 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 269 270 #ifdef CONFIG_DISCONTIGMEM 271 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 272 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 273 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 274 } 275 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 276 277 for (i = 0; i < npmem_ranges; i++) { 278 node_set_state(i, N_NORMAL_MEMORY); 279 node_set_online(i); 280 } 281 #endif 282 283 /* 284 * Initialize and free the full range of memory in each range. 285 * Note that the only writing these routines do are to the bootmap, 286 * and we've made sure to locate the bootmap properly so that they 287 * won't be writing over anything important. 288 */ 289 290 bootmap_pfn = bootmap_start_pfn; 291 max_pfn = 0; 292 for (i = 0; i < npmem_ranges; i++) { 293 unsigned long start_pfn; 294 unsigned long npages; 295 296 start_pfn = pmem_ranges[i].start_pfn; 297 npages = pmem_ranges[i].pages; 298 299 bootmap_size = init_bootmem_node(NODE_DATA(i), 300 bootmap_pfn, 301 start_pfn, 302 (start_pfn + npages) ); 303 free_bootmem_node(NODE_DATA(i), 304 (start_pfn << PAGE_SHIFT), 305 (npages << PAGE_SHIFT) ); 306 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 307 if ((start_pfn + npages) > max_pfn) 308 max_pfn = start_pfn + npages; 309 } 310 311 /* IOMMU is always used to access "high mem" on those boxes 312 * that can support enough mem that a PCI device couldn't 313 * directly DMA to any physical addresses. 314 * ISA DMA support will need to revisit this. 315 */ 316 max_low_pfn = max_pfn; 317 318 /* bootmap sizing messed up? */ 319 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 320 321 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 322 323 #define PDC_CONSOLE_IO_IODC_SIZE 32768 324 325 reserve_bootmem_node(NODE_DATA(0), 0UL, 326 (unsigned long)(PAGE0->mem_free + 327 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 328 reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START), 329 (unsigned long)(_end - KERNEL_BINARY_TEXT_START), 330 BOOTMEM_DEFAULT); 331 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 332 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 333 BOOTMEM_DEFAULT); 334 335 #ifndef CONFIG_DISCONTIGMEM 336 337 /* reserve the holes */ 338 339 for (i = 0; i < npmem_holes; i++) { 340 reserve_bootmem_node(NODE_DATA(0), 341 (pmem_holes[i].start_pfn << PAGE_SHIFT), 342 (pmem_holes[i].pages << PAGE_SHIFT), 343 BOOTMEM_DEFAULT); 344 } 345 #endif 346 347 #ifdef CONFIG_BLK_DEV_INITRD 348 if (initrd_start) { 349 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 350 if (__pa(initrd_start) < mem_max) { 351 unsigned long initrd_reserve; 352 353 if (__pa(initrd_end) > mem_max) { 354 initrd_reserve = mem_max - __pa(initrd_start); 355 } else { 356 initrd_reserve = initrd_end - initrd_start; 357 } 358 initrd_below_start_ok = 1; 359 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 360 361 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 362 initrd_reserve, BOOTMEM_DEFAULT); 363 } 364 } 365 #endif 366 367 data_resource.start = virt_to_phys(&data_start); 368 data_resource.end = virt_to_phys(_end) - 1; 369 code_resource.start = virt_to_phys(_text); 370 code_resource.end = virt_to_phys(&data_start)-1; 371 372 /* We don't know which region the kernel will be in, so try 373 * all of them. 374 */ 375 for (i = 0; i < sysram_resource_count; i++) { 376 struct resource *res = &sysram_resources[i]; 377 request_resource(res, &code_resource); 378 request_resource(res, &data_resource); 379 } 380 request_resource(&sysram_resources[0], &pdcdata_resource); 381 } 382 383 static int __init parisc_text_address(unsigned long vaddr) 384 { 385 static unsigned long head_ptr __initdata; 386 387 if (!head_ptr) 388 head_ptr = PAGE_MASK & (unsigned long) 389 dereference_function_descriptor(&parisc_kernel_start); 390 391 return core_kernel_text(vaddr) || vaddr == head_ptr; 392 } 393 394 static void __init map_pages(unsigned long start_vaddr, 395 unsigned long start_paddr, unsigned long size, 396 pgprot_t pgprot, int force) 397 { 398 pgd_t *pg_dir; 399 pmd_t *pmd; 400 pte_t *pg_table; 401 unsigned long end_paddr; 402 unsigned long start_pmd; 403 unsigned long start_pte; 404 unsigned long tmp1; 405 unsigned long tmp2; 406 unsigned long address; 407 unsigned long vaddr; 408 unsigned long ro_start; 409 unsigned long ro_end; 410 unsigned long fv_addr; 411 unsigned long gw_addr; 412 extern const unsigned long fault_vector_20; 413 extern void * const linux_gateway_page; 414 415 ro_start = __pa((unsigned long)_text); 416 ro_end = __pa((unsigned long)&data_start); 417 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 418 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 419 420 end_paddr = start_paddr + size; 421 422 pg_dir = pgd_offset_k(start_vaddr); 423 424 #if PTRS_PER_PMD == 1 425 start_pmd = 0; 426 #else 427 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 428 #endif 429 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 430 431 address = start_paddr; 432 vaddr = start_vaddr; 433 while (address < end_paddr) { 434 #if PTRS_PER_PMD == 1 435 pmd = (pmd_t *)__pa(pg_dir); 436 #else 437 pmd = (pmd_t *)pgd_address(*pg_dir); 438 439 /* 440 * pmd is physical at this point 441 */ 442 443 if (!pmd) { 444 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER); 445 pmd = (pmd_t *) __pa(pmd); 446 } 447 448 pgd_populate(NULL, pg_dir, __va(pmd)); 449 #endif 450 pg_dir++; 451 452 /* now change pmd to kernel virtual addresses */ 453 454 pmd = (pmd_t *)__va(pmd) + start_pmd; 455 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 456 457 /* 458 * pg_table is physical at this point 459 */ 460 461 pg_table = (pte_t *)pmd_address(*pmd); 462 if (!pg_table) { 463 pg_table = (pte_t *) 464 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); 465 pg_table = (pte_t *) __pa(pg_table); 466 } 467 468 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 469 470 /* now change pg_table to kernel virtual addresses */ 471 472 pg_table = (pte_t *) __va(pg_table) + start_pte; 473 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 474 pte_t pte; 475 476 /* 477 * Map the fault vector writable so we can 478 * write the HPMC checksum. 479 */ 480 if (force) 481 pte = __mk_pte(address, pgprot); 482 else if (parisc_text_address(vaddr) && 483 address != fv_addr) 484 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 485 else 486 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 487 if (address >= ro_start && address < ro_end 488 && address != fv_addr 489 && address != gw_addr) 490 pte = __mk_pte(address, PAGE_KERNEL_RO); 491 else 492 #endif 493 pte = __mk_pte(address, pgprot); 494 495 if (address >= end_paddr) { 496 if (force) 497 break; 498 else 499 pte_val(pte) = 0; 500 } 501 502 set_pte(pg_table, pte); 503 504 address += PAGE_SIZE; 505 vaddr += PAGE_SIZE; 506 } 507 start_pte = 0; 508 509 if (address >= end_paddr) 510 break; 511 } 512 start_pmd = 0; 513 } 514 } 515 516 void free_initmem(void) 517 { 518 unsigned long init_begin = (unsigned long)__init_begin; 519 unsigned long init_end = (unsigned long)__init_end; 520 521 /* The init text pages are marked R-X. We have to 522 * flush the icache and mark them RW- 523 * 524 * This is tricky, because map_pages is in the init section. 525 * Do a dummy remap of the data section first (the data 526 * section is already PAGE_KERNEL) to pull in the TLB entries 527 * for map_kernel */ 528 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 529 PAGE_KERNEL_RWX, 1); 530 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 531 * map_pages */ 532 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 533 PAGE_KERNEL, 1); 534 535 /* force the kernel to see the new TLB entries */ 536 __flush_tlb_range(0, init_begin, init_end); 537 /* Attempt to catch anyone trying to execute code here 538 * by filling the page with BRK insns. 539 */ 540 memset((void *)init_begin, 0x00, init_end - init_begin); 541 /* finally dump all the instructions which were cached, since the 542 * pages are no-longer executable */ 543 flush_icache_range(init_begin, init_end); 544 545 free_initmem_default(-1); 546 547 /* set up a new led state on systems shipped LED State panel */ 548 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 549 } 550 551 552 #ifdef CONFIG_DEBUG_RODATA 553 void mark_rodata_ro(void) 554 { 555 /* rodata memory was already mapped with KERNEL_RO access rights by 556 pagetable_init() and map_pages(). No need to do additional stuff here */ 557 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 558 (unsigned long)(__end_rodata - __start_rodata) >> 10); 559 } 560 #endif 561 562 563 /* 564 * Just an arbitrary offset to serve as a "hole" between mapping areas 565 * (between top of physical memory and a potential pcxl dma mapping 566 * area, and below the vmalloc mapping area). 567 * 568 * The current 32K value just means that there will be a 32K "hole" 569 * between mapping areas. That means that any out-of-bounds memory 570 * accesses will hopefully be caught. The vmalloc() routines leaves 571 * a hole of 4kB between each vmalloced area for the same reason. 572 */ 573 574 /* Leave room for gateway page expansion */ 575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 576 #error KERNEL_MAP_START is in gateway reserved region 577 #endif 578 #define MAP_START (KERNEL_MAP_START) 579 580 #define VM_MAP_OFFSET (32*1024) 581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 582 & ~(VM_MAP_OFFSET-1))) 583 584 void *parisc_vmalloc_start __read_mostly; 585 EXPORT_SYMBOL(parisc_vmalloc_start); 586 587 #ifdef CONFIG_PA11 588 unsigned long pcxl_dma_start __read_mostly; 589 #endif 590 591 void __init mem_init(void) 592 { 593 /* Do sanity checks on page table constants */ 594 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 595 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 596 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 597 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 598 > BITS_PER_LONG); 599 600 high_memory = __va((max_pfn << PAGE_SHIFT)); 601 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1); 602 free_all_bootmem(); 603 604 #ifdef CONFIG_PA11 605 if (hppa_dma_ops == &pcxl_dma_ops) { 606 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 607 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 608 + PCXL_DMA_MAP_SIZE); 609 } else { 610 pcxl_dma_start = 0; 611 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 612 } 613 #else 614 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 615 #endif 616 617 mem_init_print_info(NULL); 618 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 619 printk("virtual kernel memory layout:\n" 620 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 621 " memory : 0x%p - 0x%p (%4ld MB)\n" 622 " .init : 0x%p - 0x%p (%4ld kB)\n" 623 " .data : 0x%p - 0x%p (%4ld kB)\n" 624 " .text : 0x%p - 0x%p (%4ld kB)\n", 625 626 (void*)VMALLOC_START, (void*)VMALLOC_END, 627 (VMALLOC_END - VMALLOC_START) >> 20, 628 629 __va(0), high_memory, 630 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 631 632 __init_begin, __init_end, 633 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 634 635 _etext, _edata, 636 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 637 638 _text, _etext, 639 ((unsigned long)_etext - (unsigned long)_text) >> 10); 640 #endif 641 } 642 643 unsigned long *empty_zero_page __read_mostly; 644 EXPORT_SYMBOL(empty_zero_page); 645 646 void show_mem(unsigned int filter) 647 { 648 int total = 0,reserved = 0; 649 pg_data_t *pgdat; 650 651 printk(KERN_INFO "Mem-info:\n"); 652 show_free_areas(filter); 653 654 for_each_online_pgdat(pgdat) { 655 unsigned long flags; 656 int zoneid; 657 658 pgdat_resize_lock(pgdat, &flags); 659 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { 660 struct zone *zone = &pgdat->node_zones[zoneid]; 661 if (!populated_zone(zone)) 662 continue; 663 664 total += zone->present_pages; 665 reserved = zone->present_pages - zone->managed_pages; 666 } 667 pgdat_resize_unlock(pgdat, &flags); 668 } 669 670 printk(KERN_INFO "%d pages of RAM\n", total); 671 printk(KERN_INFO "%d reserved pages\n", reserved); 672 673 #ifdef CONFIG_DISCONTIGMEM 674 { 675 struct zonelist *zl; 676 int i, j; 677 678 for (i = 0; i < npmem_ranges; i++) { 679 zl = node_zonelist(i, 0); 680 for (j = 0; j < MAX_NR_ZONES; j++) { 681 struct zoneref *z; 682 struct zone *zone; 683 684 printk("Zone list for zone %d on node %d: ", j, i); 685 for_each_zone_zonelist(zone, z, zl, j) 686 printk("[%d/%s] ", zone_to_nid(zone), 687 zone->name); 688 printk("\n"); 689 } 690 } 691 } 692 #endif 693 } 694 695 /* 696 * pagetable_init() sets up the page tables 697 * 698 * Note that gateway_init() places the Linux gateway page at page 0. 699 * Since gateway pages cannot be dereferenced this has the desirable 700 * side effect of trapping those pesky NULL-reference errors in the 701 * kernel. 702 */ 703 static void __init pagetable_init(void) 704 { 705 int range; 706 707 /* Map each physical memory range to its kernel vaddr */ 708 709 for (range = 0; range < npmem_ranges; range++) { 710 unsigned long start_paddr; 711 unsigned long end_paddr; 712 unsigned long size; 713 714 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 715 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 716 size = pmem_ranges[range].pages << PAGE_SHIFT; 717 718 map_pages((unsigned long)__va(start_paddr), start_paddr, 719 size, PAGE_KERNEL, 0); 720 } 721 722 #ifdef CONFIG_BLK_DEV_INITRD 723 if (initrd_end && initrd_end > mem_limit) { 724 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 725 map_pages(initrd_start, __pa(initrd_start), 726 initrd_end - initrd_start, PAGE_KERNEL, 0); 727 } 728 #endif 729 730 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 731 memset(empty_zero_page, 0, PAGE_SIZE); 732 } 733 734 static void __init gateway_init(void) 735 { 736 unsigned long linux_gateway_page_addr; 737 /* FIXME: This is 'const' in order to trick the compiler 738 into not treating it as DP-relative data. */ 739 extern void * const linux_gateway_page; 740 741 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 742 743 /* 744 * Setup Linux Gateway page. 745 * 746 * The Linux gateway page will reside in kernel space (on virtual 747 * page 0), so it doesn't need to be aliased into user space. 748 */ 749 750 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 751 PAGE_SIZE, PAGE_GATEWAY, 1); 752 } 753 754 #ifdef CONFIG_HPUX 755 void 756 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 757 { 758 pgd_t *pg_dir; 759 pmd_t *pmd; 760 pte_t *pg_table; 761 unsigned long start_pmd; 762 unsigned long start_pte; 763 unsigned long address; 764 unsigned long hpux_gw_page_addr; 765 /* FIXME: This is 'const' in order to trick the compiler 766 into not treating it as DP-relative data. */ 767 extern void * const hpux_gateway_page; 768 769 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 770 771 /* 772 * Setup HP-UX Gateway page. 773 * 774 * The HP-UX gateway page resides in the user address space, 775 * so it needs to be aliased into each process. 776 */ 777 778 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 779 780 #if PTRS_PER_PMD == 1 781 start_pmd = 0; 782 #else 783 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 784 #endif 785 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 786 787 address = __pa(&hpux_gateway_page); 788 #if PTRS_PER_PMD == 1 789 pmd = (pmd_t *)__pa(pg_dir); 790 #else 791 pmd = (pmd_t *) pgd_address(*pg_dir); 792 793 /* 794 * pmd is physical at this point 795 */ 796 797 if (!pmd) { 798 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 799 pmd = (pmd_t *) __pa(pmd); 800 } 801 802 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 803 #endif 804 /* now change pmd to kernel virtual addresses */ 805 806 pmd = (pmd_t *)__va(pmd) + start_pmd; 807 808 /* 809 * pg_table is physical at this point 810 */ 811 812 pg_table = (pte_t *) pmd_address(*pmd); 813 if (!pg_table) 814 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 815 816 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 817 818 /* now change pg_table to kernel virtual addresses */ 819 820 pg_table = (pte_t *) __va(pg_table) + start_pte; 821 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 822 } 823 EXPORT_SYMBOL(map_hpux_gateway_page); 824 #endif 825 826 void __init paging_init(void) 827 { 828 int i; 829 830 setup_bootmem(); 831 pagetable_init(); 832 gateway_init(); 833 flush_cache_all_local(); /* start with known state */ 834 flush_tlb_all_local(NULL); 835 836 for (i = 0; i < npmem_ranges; i++) { 837 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 838 839 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 840 841 #ifdef CONFIG_DISCONTIGMEM 842 /* Need to initialize the pfnnid_map before we can initialize 843 the zone */ 844 { 845 int j; 846 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 847 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 848 j++) { 849 pfnnid_map[j] = i; 850 } 851 } 852 #endif 853 854 free_area_init_node(i, zones_size, 855 pmem_ranges[i].start_pfn, NULL); 856 } 857 } 858 859 #ifdef CONFIG_PA20 860 861 /* 862 * Currently, all PA20 chips have 18 bit protection IDs, which is the 863 * limiting factor (space ids are 32 bits). 864 */ 865 866 #define NR_SPACE_IDS 262144 867 868 #else 869 870 /* 871 * Currently we have a one-to-one relationship between space IDs and 872 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 873 * support 15 bit protection IDs, so that is the limiting factor. 874 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 875 * probably not worth the effort for a special case here. 876 */ 877 878 #define NR_SPACE_IDS 32768 879 880 #endif /* !CONFIG_PA20 */ 881 882 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 883 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 884 885 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 886 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 887 static unsigned long space_id_index; 888 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 889 static unsigned long dirty_space_ids = 0; 890 891 static DEFINE_SPINLOCK(sid_lock); 892 893 unsigned long alloc_sid(void) 894 { 895 unsigned long index; 896 897 spin_lock(&sid_lock); 898 899 if (free_space_ids == 0) { 900 if (dirty_space_ids != 0) { 901 spin_unlock(&sid_lock); 902 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 903 spin_lock(&sid_lock); 904 } 905 BUG_ON(free_space_ids == 0); 906 } 907 908 free_space_ids--; 909 910 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 911 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 912 space_id_index = index; 913 914 spin_unlock(&sid_lock); 915 916 return index << SPACEID_SHIFT; 917 } 918 919 void free_sid(unsigned long spaceid) 920 { 921 unsigned long index = spaceid >> SPACEID_SHIFT; 922 unsigned long *dirty_space_offset; 923 924 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 925 index &= (BITS_PER_LONG - 1); 926 927 spin_lock(&sid_lock); 928 929 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 930 931 *dirty_space_offset |= (1L << index); 932 dirty_space_ids++; 933 934 spin_unlock(&sid_lock); 935 } 936 937 938 #ifdef CONFIG_SMP 939 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 940 { 941 int i; 942 943 /* NOTE: sid_lock must be held upon entry */ 944 945 *ndirtyptr = dirty_space_ids; 946 if (dirty_space_ids != 0) { 947 for (i = 0; i < SID_ARRAY_SIZE; i++) { 948 dirty_array[i] = dirty_space_id[i]; 949 dirty_space_id[i] = 0; 950 } 951 dirty_space_ids = 0; 952 } 953 954 return; 955 } 956 957 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 958 { 959 int i; 960 961 /* NOTE: sid_lock must be held upon entry */ 962 963 if (ndirty != 0) { 964 for (i = 0; i < SID_ARRAY_SIZE; i++) { 965 space_id[i] ^= dirty_array[i]; 966 } 967 968 free_space_ids += ndirty; 969 space_id_index = 0; 970 } 971 } 972 973 #else /* CONFIG_SMP */ 974 975 static void recycle_sids(void) 976 { 977 int i; 978 979 /* NOTE: sid_lock must be held upon entry */ 980 981 if (dirty_space_ids != 0) { 982 for (i = 0; i < SID_ARRAY_SIZE; i++) { 983 space_id[i] ^= dirty_space_id[i]; 984 dirty_space_id[i] = 0; 985 } 986 987 free_space_ids += dirty_space_ids; 988 dirty_space_ids = 0; 989 space_id_index = 0; 990 } 991 } 992 #endif 993 994 /* 995 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 996 * purged, we can safely reuse the space ids that were released but 997 * not flushed from the tlb. 998 */ 999 1000 #ifdef CONFIG_SMP 1001 1002 static unsigned long recycle_ndirty; 1003 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1004 static unsigned int recycle_inuse; 1005 1006 void flush_tlb_all(void) 1007 { 1008 int do_recycle; 1009 1010 __inc_irq_stat(irq_tlb_count); 1011 do_recycle = 0; 1012 spin_lock(&sid_lock); 1013 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1014 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1015 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1016 recycle_inuse++; 1017 do_recycle++; 1018 } 1019 spin_unlock(&sid_lock); 1020 on_each_cpu(flush_tlb_all_local, NULL, 1); 1021 if (do_recycle) { 1022 spin_lock(&sid_lock); 1023 recycle_sids(recycle_ndirty,recycle_dirty_array); 1024 recycle_inuse = 0; 1025 spin_unlock(&sid_lock); 1026 } 1027 } 1028 #else 1029 void flush_tlb_all(void) 1030 { 1031 __inc_irq_stat(irq_tlb_count); 1032 spin_lock(&sid_lock); 1033 flush_tlb_all_local(NULL); 1034 recycle_sids(); 1035 spin_unlock(&sid_lock); 1036 } 1037 #endif 1038 1039 #ifdef CONFIG_BLK_DEV_INITRD 1040 void free_initrd_mem(unsigned long start, unsigned long end) 1041 { 1042 free_reserved_area((void *)start, (void *)end, -1, "initrd"); 1043 } 1044 #endif 1045