1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * 10 */ 11 12 #include <linux/config.h> 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/tlb.h> 28 #include <asm/pdc_chassis.h> 29 #include <asm/mmzone.h> 30 31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 32 33 extern char _text; /* start of kernel code, defined by linker */ 34 extern int data_start; 35 extern char _end; /* end of BSS, defined by linker */ 36 extern char __init_begin, __init_end; 37 38 #ifdef CONFIG_DISCONTIGMEM 39 struct node_map_data node_data[MAX_NUMNODES]; 40 bootmem_data_t bmem_data[MAX_NUMNODES]; 41 unsigned char pfnnid_map[PFNNID_MAP_MAX]; 42 #endif 43 44 static struct resource data_resource = { 45 .name = "Kernel data", 46 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 47 }; 48 49 static struct resource code_resource = { 50 .name = "Kernel code", 51 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 52 }; 53 54 static struct resource pdcdata_resource = { 55 .name = "PDC data (Page Zero)", 56 .start = 0, 57 .end = 0x9ff, 58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 59 }; 60 61 static struct resource sysram_resources[MAX_PHYSMEM_RANGES]; 62 63 /* The following array is initialized from the firmware specific 64 * information retrieved in kernel/inventory.c. 65 */ 66 67 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES]; 68 int npmem_ranges; 69 70 #ifdef __LP64__ 71 #define MAX_MEM (~0UL) 72 #else /* !__LP64__ */ 73 #define MAX_MEM (3584U*1024U*1024U) 74 #endif /* !__LP64__ */ 75 76 static unsigned long mem_limit = MAX_MEM; 77 78 static void __init mem_limit_func(void) 79 { 80 char *cp, *end; 81 unsigned long limit; 82 extern char saved_command_line[]; 83 84 /* We need this before __setup() functions are called */ 85 86 limit = MAX_MEM; 87 for (cp = saved_command_line; *cp; ) { 88 if (memcmp(cp, "mem=", 4) == 0) { 89 cp += 4; 90 limit = memparse(cp, &end); 91 if (end != cp) 92 break; 93 cp = end; 94 } else { 95 while (*cp != ' ' && *cp) 96 ++cp; 97 while (*cp == ' ') 98 ++cp; 99 } 100 } 101 102 if (limit < mem_limit) 103 mem_limit = limit; 104 } 105 106 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 107 108 static void __init setup_bootmem(void) 109 { 110 unsigned long bootmap_size; 111 unsigned long mem_max; 112 unsigned long bootmap_pages; 113 unsigned long bootmap_start_pfn; 114 unsigned long bootmap_pfn; 115 #ifndef CONFIG_DISCONTIGMEM 116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 117 int npmem_holes; 118 #endif 119 int i, sysram_resource_count; 120 121 disable_sr_hashing(); /* Turn off space register hashing */ 122 123 /* 124 * Sort the ranges. Since the number of ranges is typically 125 * small, and performance is not an issue here, just do 126 * a simple insertion sort. 127 */ 128 129 for (i = 1; i < npmem_ranges; i++) { 130 int j; 131 132 for (j = i; j > 0; j--) { 133 unsigned long tmp; 134 135 if (pmem_ranges[j-1].start_pfn < 136 pmem_ranges[j].start_pfn) { 137 138 break; 139 } 140 tmp = pmem_ranges[j-1].start_pfn; 141 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 142 pmem_ranges[j].start_pfn = tmp; 143 tmp = pmem_ranges[j-1].pages; 144 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 145 pmem_ranges[j].pages = tmp; 146 } 147 } 148 149 #ifndef CONFIG_DISCONTIGMEM 150 /* 151 * Throw out ranges that are too far apart (controlled by 152 * MAX_GAP). 153 */ 154 155 for (i = 1; i < npmem_ranges; i++) { 156 if (pmem_ranges[i].start_pfn - 157 (pmem_ranges[i-1].start_pfn + 158 pmem_ranges[i-1].pages) > MAX_GAP) { 159 npmem_ranges = i; 160 printk("Large gap in memory detected (%ld pages). " 161 "Consider turning on CONFIG_DISCONTIGMEM\n", 162 pmem_ranges[i].start_pfn - 163 (pmem_ranges[i-1].start_pfn + 164 pmem_ranges[i-1].pages)); 165 break; 166 } 167 } 168 #endif 169 170 if (npmem_ranges > 1) { 171 172 /* Print the memory ranges */ 173 174 printk(KERN_INFO "Memory Ranges:\n"); 175 176 for (i = 0; i < npmem_ranges; i++) { 177 unsigned long start; 178 unsigned long size; 179 180 size = (pmem_ranges[i].pages << PAGE_SHIFT); 181 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 182 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 183 i,start, start + (size - 1), size >> 20); 184 } 185 } 186 187 sysram_resource_count = npmem_ranges; 188 for (i = 0; i < sysram_resource_count; i++) { 189 struct resource *res = &sysram_resources[i]; 190 res->name = "System RAM"; 191 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 192 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 194 request_resource(&iomem_resource, res); 195 } 196 197 /* 198 * For 32 bit kernels we limit the amount of memory we can 199 * support, in order to preserve enough kernel address space 200 * for other purposes. For 64 bit kernels we don't normally 201 * limit the memory, but this mechanism can be used to 202 * artificially limit the amount of memory (and it is written 203 * to work with multiple memory ranges). 204 */ 205 206 mem_limit_func(); /* check for "mem=" argument */ 207 208 mem_max = 0; 209 num_physpages = 0; 210 for (i = 0; i < npmem_ranges; i++) { 211 unsigned long rsize; 212 213 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 214 if ((mem_max + rsize) > mem_limit) { 215 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 216 if (mem_max == mem_limit) 217 npmem_ranges = i; 218 else { 219 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 220 - (mem_max >> PAGE_SHIFT); 221 npmem_ranges = i + 1; 222 mem_max = mem_limit; 223 } 224 num_physpages += pmem_ranges[i].pages; 225 break; 226 } 227 num_physpages += pmem_ranges[i].pages; 228 mem_max += rsize; 229 } 230 231 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 232 233 #ifndef CONFIG_DISCONTIGMEM 234 /* Merge the ranges, keeping track of the holes */ 235 236 { 237 unsigned long end_pfn; 238 unsigned long hole_pages; 239 240 npmem_holes = 0; 241 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 242 for (i = 1; i < npmem_ranges; i++) { 243 244 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 245 if (hole_pages) { 246 pmem_holes[npmem_holes].start_pfn = end_pfn; 247 pmem_holes[npmem_holes++].pages = hole_pages; 248 end_pfn += hole_pages; 249 } 250 end_pfn += pmem_ranges[i].pages; 251 } 252 253 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 254 npmem_ranges = 1; 255 } 256 #endif 257 258 bootmap_pages = 0; 259 for (i = 0; i < npmem_ranges; i++) 260 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 261 262 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 263 264 #ifdef CONFIG_DISCONTIGMEM 265 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 266 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 267 NODE_DATA(i)->bdata = &bmem_data[i]; 268 } 269 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 270 271 for (i = 0; i < npmem_ranges; i++) 272 node_set_online(i); 273 #endif 274 275 /* 276 * Initialize and free the full range of memory in each range. 277 * Note that the only writing these routines do are to the bootmap, 278 * and we've made sure to locate the bootmap properly so that they 279 * won't be writing over anything important. 280 */ 281 282 bootmap_pfn = bootmap_start_pfn; 283 max_pfn = 0; 284 for (i = 0; i < npmem_ranges; i++) { 285 unsigned long start_pfn; 286 unsigned long npages; 287 288 start_pfn = pmem_ranges[i].start_pfn; 289 npages = pmem_ranges[i].pages; 290 291 bootmap_size = init_bootmem_node(NODE_DATA(i), 292 bootmap_pfn, 293 start_pfn, 294 (start_pfn + npages) ); 295 free_bootmem_node(NODE_DATA(i), 296 (start_pfn << PAGE_SHIFT), 297 (npages << PAGE_SHIFT) ); 298 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 299 if ((start_pfn + npages) > max_pfn) 300 max_pfn = start_pfn + npages; 301 } 302 303 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) { 304 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n"); 305 BUG(); 306 } 307 308 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 309 310 #define PDC_CONSOLE_IO_IODC_SIZE 32768 311 312 reserve_bootmem_node(NODE_DATA(0), 0UL, 313 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE)); 314 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text), 315 (unsigned long)(&_end - &_text)); 316 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 317 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT)); 318 319 #ifndef CONFIG_DISCONTIGMEM 320 321 /* reserve the holes */ 322 323 for (i = 0; i < npmem_holes; i++) { 324 reserve_bootmem_node(NODE_DATA(0), 325 (pmem_holes[i].start_pfn << PAGE_SHIFT), 326 (pmem_holes[i].pages << PAGE_SHIFT)); 327 } 328 #endif 329 330 #ifdef CONFIG_BLK_DEV_INITRD 331 if (initrd_start) { 332 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 333 if (__pa(initrd_start) < mem_max) { 334 unsigned long initrd_reserve; 335 336 if (__pa(initrd_end) > mem_max) { 337 initrd_reserve = mem_max - __pa(initrd_start); 338 } else { 339 initrd_reserve = initrd_end - initrd_start; 340 } 341 initrd_below_start_ok = 1; 342 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 343 344 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve); 345 } 346 } 347 #endif 348 349 data_resource.start = virt_to_phys(&data_start); 350 data_resource.end = virt_to_phys(&_end)-1; 351 code_resource.start = virt_to_phys(&_text); 352 code_resource.end = virt_to_phys(&data_start)-1; 353 354 /* We don't know which region the kernel will be in, so try 355 * all of them. 356 */ 357 for (i = 0; i < sysram_resource_count; i++) { 358 struct resource *res = &sysram_resources[i]; 359 request_resource(res, &code_resource); 360 request_resource(res, &data_resource); 361 } 362 request_resource(&sysram_resources[0], &pdcdata_resource); 363 } 364 365 void free_initmem(void) 366 { 367 /* FIXME: */ 368 #if 0 369 printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n", 370 (&__init_end - &__init_begin) >> 10); 371 return; 372 #else 373 unsigned long addr; 374 375 printk(KERN_INFO "Freeing unused kernel memory: "); 376 377 #if 1 378 /* Attempt to catch anyone trying to execute code here 379 * by filling the page with BRK insns. 380 * 381 * If we disable interrupts for all CPUs, then IPI stops working. 382 * Kinda breaks the global cache flushing. 383 */ 384 local_irq_disable(); 385 386 memset(&__init_begin, 0x00, 387 (unsigned long)&__init_end - (unsigned long)&__init_begin); 388 389 flush_data_cache(); 390 asm volatile("sync" : : ); 391 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end); 392 asm volatile("sync" : : ); 393 394 local_irq_enable(); 395 #endif 396 397 addr = (unsigned long)(&__init_begin); 398 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { 399 ClearPageReserved(virt_to_page(addr)); 400 set_page_count(virt_to_page(addr), 1); 401 free_page(addr); 402 num_physpages++; 403 totalram_pages++; 404 } 405 406 /* set up a new led state on systems shipped LED State panel */ 407 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 408 409 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10); 410 #endif 411 } 412 413 /* 414 * Just an arbitrary offset to serve as a "hole" between mapping areas 415 * (between top of physical memory and a potential pcxl dma mapping 416 * area, and below the vmalloc mapping area). 417 * 418 * The current 32K value just means that there will be a 32K "hole" 419 * between mapping areas. That means that any out-of-bounds memory 420 * accesses will hopefully be caught. The vmalloc() routines leaves 421 * a hole of 4kB between each vmalloced area for the same reason. 422 */ 423 424 /* Leave room for gateway page expansion */ 425 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 426 #error KERNEL_MAP_START is in gateway reserved region 427 #endif 428 #define MAP_START (KERNEL_MAP_START) 429 430 #define VM_MAP_OFFSET (32*1024) 431 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 432 & ~(VM_MAP_OFFSET-1))) 433 434 void *vmalloc_start; 435 EXPORT_SYMBOL(vmalloc_start); 436 437 #ifdef CONFIG_PA11 438 unsigned long pcxl_dma_start; 439 #endif 440 441 void __init mem_init(void) 442 { 443 high_memory = __va((max_pfn << PAGE_SHIFT)); 444 445 #ifndef CONFIG_DISCONTIGMEM 446 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 447 totalram_pages += free_all_bootmem(); 448 #else 449 { 450 int i; 451 452 for (i = 0; i < npmem_ranges; i++) 453 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 454 } 455 #endif 456 457 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10)); 458 459 #ifdef CONFIG_PA11 460 if (hppa_dma_ops == &pcxl_dma_ops) { 461 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 462 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 463 } else { 464 pcxl_dma_start = 0; 465 vmalloc_start = SET_MAP_OFFSET(MAP_START); 466 } 467 #else 468 vmalloc_start = SET_MAP_OFFSET(MAP_START); 469 #endif 470 471 } 472 473 int do_check_pgt_cache(int low, int high) 474 { 475 return 0; 476 } 477 478 unsigned long *empty_zero_page; 479 480 void show_mem(void) 481 { 482 int i,free = 0,total = 0,reserved = 0; 483 int shared = 0, cached = 0; 484 485 printk(KERN_INFO "Mem-info:\n"); 486 show_free_areas(); 487 printk(KERN_INFO "Free swap: %6ldkB\n", 488 nr_swap_pages<<(PAGE_SHIFT-10)); 489 #ifndef CONFIG_DISCONTIGMEM 490 i = max_mapnr; 491 while (i-- > 0) { 492 total++; 493 if (PageReserved(mem_map+i)) 494 reserved++; 495 else if (PageSwapCache(mem_map+i)) 496 cached++; 497 else if (!page_count(&mem_map[i])) 498 free++; 499 else 500 shared += page_count(&mem_map[i]) - 1; 501 } 502 #else 503 for (i = 0; i < npmem_ranges; i++) { 504 int j; 505 506 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 507 struct page *p; 508 unsigned long flags; 509 510 pgdat_resize_lock(NODE_DATA(i), &flags); 511 p = nid_page_nr(i, j) - node_start_pfn(i); 512 513 total++; 514 if (PageReserved(p)) 515 reserved++; 516 else if (PageSwapCache(p)) 517 cached++; 518 else if (!page_count(p)) 519 free++; 520 else 521 shared += page_count(p) - 1; 522 pgdat_resize_unlock(NODE_DATA(i), &flags); 523 } 524 } 525 #endif 526 printk(KERN_INFO "%d pages of RAM\n", total); 527 printk(KERN_INFO "%d reserved pages\n", reserved); 528 printk(KERN_INFO "%d pages shared\n", shared); 529 printk(KERN_INFO "%d pages swap cached\n", cached); 530 531 532 #ifdef CONFIG_DISCONTIGMEM 533 { 534 struct zonelist *zl; 535 int i, j, k; 536 537 for (i = 0; i < npmem_ranges; i++) { 538 for (j = 0; j < MAX_NR_ZONES; j++) { 539 zl = NODE_DATA(i)->node_zonelists + j; 540 541 printk("Zone list for zone %d on node %d: ", j, i); 542 for (k = 0; zl->zones[k] != NULL; k++) 543 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name); 544 printk("\n"); 545 } 546 } 547 } 548 #endif 549 } 550 551 552 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 553 { 554 pgd_t *pg_dir; 555 pmd_t *pmd; 556 pte_t *pg_table; 557 unsigned long end_paddr; 558 unsigned long start_pmd; 559 unsigned long start_pte; 560 unsigned long tmp1; 561 unsigned long tmp2; 562 unsigned long address; 563 unsigned long ro_start; 564 unsigned long ro_end; 565 unsigned long fv_addr; 566 unsigned long gw_addr; 567 extern const unsigned long fault_vector_20; 568 extern void * const linux_gateway_page; 569 570 ro_start = __pa((unsigned long)&_text); 571 ro_end = __pa((unsigned long)&data_start); 572 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 573 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 574 575 end_paddr = start_paddr + size; 576 577 pg_dir = pgd_offset_k(start_vaddr); 578 579 #if PTRS_PER_PMD == 1 580 start_pmd = 0; 581 #else 582 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 583 #endif 584 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 585 586 address = start_paddr; 587 while (address < end_paddr) { 588 #if PTRS_PER_PMD == 1 589 pmd = (pmd_t *)__pa(pg_dir); 590 #else 591 pmd = (pmd_t *)pgd_address(*pg_dir); 592 593 /* 594 * pmd is physical at this point 595 */ 596 597 if (!pmd) { 598 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 599 pmd = (pmd_t *) __pa(pmd); 600 } 601 602 pgd_populate(NULL, pg_dir, __va(pmd)); 603 #endif 604 pg_dir++; 605 606 /* now change pmd to kernel virtual addresses */ 607 608 pmd = (pmd_t *)__va(pmd) + start_pmd; 609 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 610 611 /* 612 * pg_table is physical at this point 613 */ 614 615 pg_table = (pte_t *)pmd_address(*pmd); 616 if (!pg_table) { 617 pg_table = (pte_t *) 618 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 619 pg_table = (pte_t *) __pa(pg_table); 620 } 621 622 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 623 624 /* now change pg_table to kernel virtual addresses */ 625 626 pg_table = (pte_t *) __va(pg_table) + start_pte; 627 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 628 pte_t pte; 629 630 /* 631 * Map the fault vector writable so we can 632 * write the HPMC checksum. 633 */ 634 if (address >= ro_start && address < ro_end 635 && address != fv_addr 636 && address != gw_addr) 637 pte = __mk_pte(address, PAGE_KERNEL_RO); 638 else 639 pte = __mk_pte(address, pgprot); 640 641 if (address >= end_paddr) 642 pte_val(pte) = 0; 643 644 set_pte(pg_table, pte); 645 646 address += PAGE_SIZE; 647 } 648 start_pte = 0; 649 650 if (address >= end_paddr) 651 break; 652 } 653 start_pmd = 0; 654 } 655 } 656 657 /* 658 * pagetable_init() sets up the page tables 659 * 660 * Note that gateway_init() places the Linux gateway page at page 0. 661 * Since gateway pages cannot be dereferenced this has the desirable 662 * side effect of trapping those pesky NULL-reference errors in the 663 * kernel. 664 */ 665 static void __init pagetable_init(void) 666 { 667 int range; 668 669 /* Map each physical memory range to its kernel vaddr */ 670 671 for (range = 0; range < npmem_ranges; range++) { 672 unsigned long start_paddr; 673 unsigned long end_paddr; 674 unsigned long size; 675 676 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 677 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 678 size = pmem_ranges[range].pages << PAGE_SHIFT; 679 680 map_pages((unsigned long)__va(start_paddr), start_paddr, 681 size, PAGE_KERNEL); 682 } 683 684 #ifdef CONFIG_BLK_DEV_INITRD 685 if (initrd_end && initrd_end > mem_limit) { 686 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 687 map_pages(initrd_start, __pa(initrd_start), 688 initrd_end - initrd_start, PAGE_KERNEL); 689 } 690 #endif 691 692 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 693 memset(empty_zero_page, 0, PAGE_SIZE); 694 } 695 696 static void __init gateway_init(void) 697 { 698 unsigned long linux_gateway_page_addr; 699 /* FIXME: This is 'const' in order to trick the compiler 700 into not treating it as DP-relative data. */ 701 extern void * const linux_gateway_page; 702 703 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 704 705 /* 706 * Setup Linux Gateway page. 707 * 708 * The Linux gateway page will reside in kernel space (on virtual 709 * page 0), so it doesn't need to be aliased into user space. 710 */ 711 712 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 713 PAGE_SIZE, PAGE_GATEWAY); 714 } 715 716 #ifdef CONFIG_HPUX 717 void 718 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 719 { 720 pgd_t *pg_dir; 721 pmd_t *pmd; 722 pte_t *pg_table; 723 unsigned long start_pmd; 724 unsigned long start_pte; 725 unsigned long address; 726 unsigned long hpux_gw_page_addr; 727 /* FIXME: This is 'const' in order to trick the compiler 728 into not treating it as DP-relative data. */ 729 extern void * const hpux_gateway_page; 730 731 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 732 733 /* 734 * Setup HP-UX Gateway page. 735 * 736 * The HP-UX gateway page resides in the user address space, 737 * so it needs to be aliased into each process. 738 */ 739 740 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 741 742 #if PTRS_PER_PMD == 1 743 start_pmd = 0; 744 #else 745 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 746 #endif 747 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 748 749 address = __pa(&hpux_gateway_page); 750 #if PTRS_PER_PMD == 1 751 pmd = (pmd_t *)__pa(pg_dir); 752 #else 753 pmd = (pmd_t *) pgd_address(*pg_dir); 754 755 /* 756 * pmd is physical at this point 757 */ 758 759 if (!pmd) { 760 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 761 pmd = (pmd_t *) __pa(pmd); 762 } 763 764 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 765 #endif 766 /* now change pmd to kernel virtual addresses */ 767 768 pmd = (pmd_t *)__va(pmd) + start_pmd; 769 770 /* 771 * pg_table is physical at this point 772 */ 773 774 pg_table = (pte_t *) pmd_address(*pmd); 775 if (!pg_table) 776 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 777 778 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 779 780 /* now change pg_table to kernel virtual addresses */ 781 782 pg_table = (pte_t *) __va(pg_table) + start_pte; 783 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 784 } 785 EXPORT_SYMBOL(map_hpux_gateway_page); 786 #endif 787 788 extern void flush_tlb_all_local(void); 789 790 void __init paging_init(void) 791 { 792 int i; 793 794 setup_bootmem(); 795 pagetable_init(); 796 gateway_init(); 797 flush_cache_all_local(); /* start with known state */ 798 flush_tlb_all_local(); 799 800 for (i = 0; i < npmem_ranges; i++) { 801 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 }; 802 803 /* We have an IOMMU, so all memory can go into a single 804 ZONE_DMA zone. */ 805 zones_size[ZONE_DMA] = pmem_ranges[i].pages; 806 807 #ifdef CONFIG_DISCONTIGMEM 808 /* Need to initialize the pfnnid_map before we can initialize 809 the zone */ 810 { 811 int j; 812 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 813 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 814 j++) { 815 pfnnid_map[j] = i; 816 } 817 } 818 #endif 819 820 free_area_init_node(i, NODE_DATA(i), zones_size, 821 pmem_ranges[i].start_pfn, NULL); 822 } 823 } 824 825 #ifdef CONFIG_PA20 826 827 /* 828 * Currently, all PA20 chips have 18 bit protection id's, which is the 829 * limiting factor (space ids are 32 bits). 830 */ 831 832 #define NR_SPACE_IDS 262144 833 834 #else 835 836 /* 837 * Currently we have a one-to-one relationship between space id's and 838 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 839 * support 15 bit protection id's, so that is the limiting factor. 840 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's 841 * probably not worth the effort for a special case here. 842 */ 843 844 #define NR_SPACE_IDS 32768 845 846 #endif /* !CONFIG_PA20 */ 847 848 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 849 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 850 851 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 852 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 853 static unsigned long space_id_index; 854 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 855 static unsigned long dirty_space_ids = 0; 856 857 static DEFINE_SPINLOCK(sid_lock); 858 859 unsigned long alloc_sid(void) 860 { 861 unsigned long index; 862 863 spin_lock(&sid_lock); 864 865 if (free_space_ids == 0) { 866 if (dirty_space_ids != 0) { 867 spin_unlock(&sid_lock); 868 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 869 spin_lock(&sid_lock); 870 } 871 if (free_space_ids == 0) 872 BUG(); 873 } 874 875 free_space_ids--; 876 877 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 878 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 879 space_id_index = index; 880 881 spin_unlock(&sid_lock); 882 883 return index << SPACEID_SHIFT; 884 } 885 886 void free_sid(unsigned long spaceid) 887 { 888 unsigned long index = spaceid >> SPACEID_SHIFT; 889 unsigned long *dirty_space_offset; 890 891 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 892 index &= (BITS_PER_LONG - 1); 893 894 spin_lock(&sid_lock); 895 896 if (*dirty_space_offset & (1L << index)) 897 BUG(); /* attempt to free space id twice */ 898 899 *dirty_space_offset |= (1L << index); 900 dirty_space_ids++; 901 902 spin_unlock(&sid_lock); 903 } 904 905 906 #ifdef CONFIG_SMP 907 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 908 { 909 int i; 910 911 /* NOTE: sid_lock must be held upon entry */ 912 913 *ndirtyptr = dirty_space_ids; 914 if (dirty_space_ids != 0) { 915 for (i = 0; i < SID_ARRAY_SIZE; i++) { 916 dirty_array[i] = dirty_space_id[i]; 917 dirty_space_id[i] = 0; 918 } 919 dirty_space_ids = 0; 920 } 921 922 return; 923 } 924 925 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 926 { 927 int i; 928 929 /* NOTE: sid_lock must be held upon entry */ 930 931 if (ndirty != 0) { 932 for (i = 0; i < SID_ARRAY_SIZE; i++) { 933 space_id[i] ^= dirty_array[i]; 934 } 935 936 free_space_ids += ndirty; 937 space_id_index = 0; 938 } 939 } 940 941 #else /* CONFIG_SMP */ 942 943 static void recycle_sids(void) 944 { 945 int i; 946 947 /* NOTE: sid_lock must be held upon entry */ 948 949 if (dirty_space_ids != 0) { 950 for (i = 0; i < SID_ARRAY_SIZE; i++) { 951 space_id[i] ^= dirty_space_id[i]; 952 dirty_space_id[i] = 0; 953 } 954 955 free_space_ids += dirty_space_ids; 956 dirty_space_ids = 0; 957 space_id_index = 0; 958 } 959 } 960 #endif 961 962 /* 963 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 964 * purged, we can safely reuse the space ids that were released but 965 * not flushed from the tlb. 966 */ 967 968 #ifdef CONFIG_SMP 969 970 static unsigned long recycle_ndirty; 971 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 972 static unsigned int recycle_inuse = 0; 973 974 void flush_tlb_all(void) 975 { 976 int do_recycle; 977 978 do_recycle = 0; 979 spin_lock(&sid_lock); 980 if (dirty_space_ids > RECYCLE_THRESHOLD) { 981 if (recycle_inuse) { 982 BUG(); /* FIXME: Use a semaphore/wait queue here */ 983 } 984 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 985 recycle_inuse++; 986 do_recycle++; 987 } 988 spin_unlock(&sid_lock); 989 on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1); 990 if (do_recycle) { 991 spin_lock(&sid_lock); 992 recycle_sids(recycle_ndirty,recycle_dirty_array); 993 recycle_inuse = 0; 994 spin_unlock(&sid_lock); 995 } 996 } 997 #else 998 void flush_tlb_all(void) 999 { 1000 spin_lock(&sid_lock); 1001 flush_tlb_all_local(); 1002 recycle_sids(); 1003 spin_unlock(&sid_lock); 1004 } 1005 #endif 1006 1007 #ifdef CONFIG_BLK_DEV_INITRD 1008 void free_initrd_mem(unsigned long start, unsigned long end) 1009 { 1010 #if 0 1011 if (start < end) 1012 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1013 for (; start < end; start += PAGE_SIZE) { 1014 ClearPageReserved(virt_to_page(start)); 1015 set_page_count(virt_to_page(start), 1); 1016 free_page(start); 1017 num_physpages++; 1018 totalram_pages++; 1019 } 1020 #endif 1021 } 1022 #endif 1023