xref: /openbmc/linux/arch/parisc/mm/init.c (revision 5a244f48)
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995	Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
22 #include <linux/initrd.h>
23 #include <linux/swap.h>
24 #include <linux/unistd.h>
25 #include <linux/nodemask.h>	/* for node_online_map */
26 #include <linux/pagemap.h>	/* for release_pages */
27 #include <linux/compat.h>
28 
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32 #include <asm/pdc_chassis.h>
33 #include <asm/mmzone.h>
34 #include <asm/sections.h>
35 #include <asm/msgbuf.h>
36 
37 extern int  data_start;
38 extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
39 
40 #if CONFIG_PGTABLE_LEVELS == 3
41 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
42  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
43  * guarantee that global objects will be laid out in memory in the same order
44  * as the order of declaration, so put these in different sections and use
45  * the linker script to order them. */
46 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
47 #endif
48 
49 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
50 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
51 
52 #ifdef CONFIG_DISCONTIGMEM
53 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
54 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
55 #endif
56 
57 static struct resource data_resource = {
58 	.name	= "Kernel data",
59 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
60 };
61 
62 static struct resource code_resource = {
63 	.name	= "Kernel code",
64 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 };
66 
67 static struct resource pdcdata_resource = {
68 	.name	= "PDC data (Page Zero)",
69 	.start	= 0,
70 	.end	= 0x9ff,
71 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
72 };
73 
74 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
75 
76 /* The following array is initialized from the firmware specific
77  * information retrieved in kernel/inventory.c.
78  */
79 
80 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
81 int npmem_ranges __read_mostly;
82 
83 /*
84  * get_memblock() allocates pages via memblock.
85  * We can't use memblock_find_in_range(0, KERNEL_INITIAL_SIZE) here since it
86  * doesn't allocate from bottom to top which is needed because we only created
87  * the initial mapping up to KERNEL_INITIAL_SIZE in the assembly bootup code.
88  */
89 static void * __init get_memblock(unsigned long size)
90 {
91 	static phys_addr_t search_addr __initdata;
92 	phys_addr_t phys;
93 
94 	if (!search_addr)
95 		search_addr = PAGE_ALIGN(__pa((unsigned long) &_end));
96 	search_addr = ALIGN(search_addr, size);
97 	while (!memblock_is_region_memory(search_addr, size) ||
98 		memblock_is_region_reserved(search_addr, size)) {
99 		search_addr += size;
100 	}
101 	phys = search_addr;
102 
103 	if (phys)
104 		memblock_reserve(phys, size);
105 	else
106 		panic("get_memblock() failed.\n");
107 
108 	memset(__va(phys), 0, size);
109 
110 	return __va(phys);
111 }
112 
113 #ifdef CONFIG_64BIT
114 #define MAX_MEM         (~0UL)
115 #else /* !CONFIG_64BIT */
116 #define MAX_MEM         (3584U*1024U*1024U)
117 #endif /* !CONFIG_64BIT */
118 
119 static unsigned long mem_limit __read_mostly = MAX_MEM;
120 
121 static void __init mem_limit_func(void)
122 {
123 	char *cp, *end;
124 	unsigned long limit;
125 
126 	/* We need this before __setup() functions are called */
127 
128 	limit = MAX_MEM;
129 	for (cp = boot_command_line; *cp; ) {
130 		if (memcmp(cp, "mem=", 4) == 0) {
131 			cp += 4;
132 			limit = memparse(cp, &end);
133 			if (end != cp)
134 				break;
135 			cp = end;
136 		} else {
137 			while (*cp != ' ' && *cp)
138 				++cp;
139 			while (*cp == ' ')
140 				++cp;
141 		}
142 	}
143 
144 	if (limit < mem_limit)
145 		mem_limit = limit;
146 }
147 
148 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
149 
150 static void __init setup_bootmem(void)
151 {
152 	unsigned long mem_max;
153 #ifndef CONFIG_DISCONTIGMEM
154 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
155 	int npmem_holes;
156 #endif
157 	int i, sysram_resource_count;
158 
159 	disable_sr_hashing(); /* Turn off space register hashing */
160 
161 	/*
162 	 * Sort the ranges. Since the number of ranges is typically
163 	 * small, and performance is not an issue here, just do
164 	 * a simple insertion sort.
165 	 */
166 
167 	for (i = 1; i < npmem_ranges; i++) {
168 		int j;
169 
170 		for (j = i; j > 0; j--) {
171 			unsigned long tmp;
172 
173 			if (pmem_ranges[j-1].start_pfn <
174 			    pmem_ranges[j].start_pfn) {
175 
176 				break;
177 			}
178 			tmp = pmem_ranges[j-1].start_pfn;
179 			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
180 			pmem_ranges[j].start_pfn = tmp;
181 			tmp = pmem_ranges[j-1].pages;
182 			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
183 			pmem_ranges[j].pages = tmp;
184 		}
185 	}
186 
187 #ifndef CONFIG_DISCONTIGMEM
188 	/*
189 	 * Throw out ranges that are too far apart (controlled by
190 	 * MAX_GAP).
191 	 */
192 
193 	for (i = 1; i < npmem_ranges; i++) {
194 		if (pmem_ranges[i].start_pfn -
195 			(pmem_ranges[i-1].start_pfn +
196 			 pmem_ranges[i-1].pages) > MAX_GAP) {
197 			npmem_ranges = i;
198 			printk("Large gap in memory detected (%ld pages). "
199 			       "Consider turning on CONFIG_DISCONTIGMEM\n",
200 			       pmem_ranges[i].start_pfn -
201 			       (pmem_ranges[i-1].start_pfn +
202 			        pmem_ranges[i-1].pages));
203 			break;
204 		}
205 	}
206 #endif
207 
208 	/* Print the memory ranges */
209 	pr_info("Memory Ranges:\n");
210 
211 	for (i = 0; i < npmem_ranges; i++) {
212 		struct resource *res = &sysram_resources[i];
213 		unsigned long start;
214 		unsigned long size;
215 
216 		size = (pmem_ranges[i].pages << PAGE_SHIFT);
217 		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
218 		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
219 			i, start, start + (size - 1), size >> 20);
220 
221 		/* request memory resource */
222 		res->name = "System RAM";
223 		res->start = start;
224 		res->end = start + size - 1;
225 		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
226 		request_resource(&iomem_resource, res);
227 	}
228 
229 	sysram_resource_count = npmem_ranges;
230 
231 	/*
232 	 * For 32 bit kernels we limit the amount of memory we can
233 	 * support, in order to preserve enough kernel address space
234 	 * for other purposes. For 64 bit kernels we don't normally
235 	 * limit the memory, but this mechanism can be used to
236 	 * artificially limit the amount of memory (and it is written
237 	 * to work with multiple memory ranges).
238 	 */
239 
240 	mem_limit_func();       /* check for "mem=" argument */
241 
242 	mem_max = 0;
243 	for (i = 0; i < npmem_ranges; i++) {
244 		unsigned long rsize;
245 
246 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
247 		if ((mem_max + rsize) > mem_limit) {
248 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
249 			if (mem_max == mem_limit)
250 				npmem_ranges = i;
251 			else {
252 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
253 						       - (mem_max >> PAGE_SHIFT);
254 				npmem_ranges = i + 1;
255 				mem_max = mem_limit;
256 			}
257 			break;
258 		}
259 		mem_max += rsize;
260 	}
261 
262 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
263 
264 #ifndef CONFIG_DISCONTIGMEM
265 	/* Merge the ranges, keeping track of the holes */
266 
267 	{
268 		unsigned long end_pfn;
269 		unsigned long hole_pages;
270 
271 		npmem_holes = 0;
272 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
273 		for (i = 1; i < npmem_ranges; i++) {
274 
275 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
276 			if (hole_pages) {
277 				pmem_holes[npmem_holes].start_pfn = end_pfn;
278 				pmem_holes[npmem_holes++].pages = hole_pages;
279 				end_pfn += hole_pages;
280 			}
281 			end_pfn += pmem_ranges[i].pages;
282 		}
283 
284 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
285 		npmem_ranges = 1;
286 	}
287 #endif
288 
289 #ifdef CONFIG_DISCONTIGMEM
290 	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
291 		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
292 	}
293 	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
294 
295 	for (i = 0; i < npmem_ranges; i++) {
296 		node_set_state(i, N_NORMAL_MEMORY);
297 		node_set_online(i);
298 	}
299 #endif
300 
301 	/*
302 	 * Initialize and free the full range of memory in each range.
303 	 */
304 
305 	max_pfn = 0;
306 	for (i = 0; i < npmem_ranges; i++) {
307 		unsigned long start_pfn;
308 		unsigned long npages;
309 		unsigned long start;
310 		unsigned long size;
311 
312 		start_pfn = pmem_ranges[i].start_pfn;
313 		npages = pmem_ranges[i].pages;
314 
315 		start = start_pfn << PAGE_SHIFT;
316 		size = npages << PAGE_SHIFT;
317 
318 		/* add system RAM memblock */
319 		memblock_add(start, size);
320 
321 		if ((start_pfn + npages) > max_pfn)
322 			max_pfn = start_pfn + npages;
323 	}
324 
325 	/* IOMMU is always used to access "high mem" on those boxes
326 	 * that can support enough mem that a PCI device couldn't
327 	 * directly DMA to any physical addresses.
328 	 * ISA DMA support will need to revisit this.
329 	 */
330 	max_low_pfn = max_pfn;
331 
332 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
333 
334 #define PDC_CONSOLE_IO_IODC_SIZE 32768
335 
336 	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
337 				PDC_CONSOLE_IO_IODC_SIZE));
338 	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
339 			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
340 
341 #ifndef CONFIG_DISCONTIGMEM
342 
343 	/* reserve the holes */
344 
345 	for (i = 0; i < npmem_holes; i++) {
346 		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
347 				(pmem_holes[i].pages << PAGE_SHIFT));
348 	}
349 #endif
350 
351 #ifdef CONFIG_BLK_DEV_INITRD
352 	if (initrd_start) {
353 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
354 		if (__pa(initrd_start) < mem_max) {
355 			unsigned long initrd_reserve;
356 
357 			if (__pa(initrd_end) > mem_max) {
358 				initrd_reserve = mem_max - __pa(initrd_start);
359 			} else {
360 				initrd_reserve = initrd_end - initrd_start;
361 			}
362 			initrd_below_start_ok = 1;
363 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
364 
365 			memblock_reserve(__pa(initrd_start), initrd_reserve);
366 		}
367 	}
368 #endif
369 
370 	data_resource.start =  virt_to_phys(&data_start);
371 	data_resource.end = virt_to_phys(_end) - 1;
372 	code_resource.start = virt_to_phys(_text);
373 	code_resource.end = virt_to_phys(&data_start)-1;
374 
375 	/* We don't know which region the kernel will be in, so try
376 	 * all of them.
377 	 */
378 	for (i = 0; i < sysram_resource_count; i++) {
379 		struct resource *res = &sysram_resources[i];
380 		request_resource(res, &code_resource);
381 		request_resource(res, &data_resource);
382 	}
383 	request_resource(&sysram_resources[0], &pdcdata_resource);
384 
385 	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
386 	pdc_pdt_init();
387 }
388 
389 static int __init parisc_text_address(unsigned long vaddr)
390 {
391 	static unsigned long head_ptr __initdata;
392 
393 	if (!head_ptr)
394 		head_ptr = PAGE_MASK & (unsigned long)
395 			dereference_function_descriptor(&parisc_kernel_start);
396 
397 	return core_kernel_text(vaddr) || vaddr == head_ptr;
398 }
399 
400 static void __init map_pages(unsigned long start_vaddr,
401 			     unsigned long start_paddr, unsigned long size,
402 			     pgprot_t pgprot, int force)
403 {
404 	pgd_t *pg_dir;
405 	pmd_t *pmd;
406 	pte_t *pg_table;
407 	unsigned long end_paddr;
408 	unsigned long start_pmd;
409 	unsigned long start_pte;
410 	unsigned long tmp1;
411 	unsigned long tmp2;
412 	unsigned long address;
413 	unsigned long vaddr;
414 	unsigned long ro_start;
415 	unsigned long ro_end;
416 	unsigned long kernel_end;
417 
418 	ro_start = __pa((unsigned long)_text);
419 	ro_end   = __pa((unsigned long)&data_start);
420 	kernel_end  = __pa((unsigned long)&_end);
421 
422 	end_paddr = start_paddr + size;
423 
424 	pg_dir = pgd_offset_k(start_vaddr);
425 
426 #if PTRS_PER_PMD == 1
427 	start_pmd = 0;
428 #else
429 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
430 #endif
431 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
432 
433 	address = start_paddr;
434 	vaddr = start_vaddr;
435 	while (address < end_paddr) {
436 #if PTRS_PER_PMD == 1
437 		pmd = (pmd_t *)__pa(pg_dir);
438 #else
439 		pmd = (pmd_t *)pgd_address(*pg_dir);
440 
441 		/*
442 		 * pmd is physical at this point
443 		 */
444 
445 		if (!pmd) {
446 			pmd = (pmd_t *) get_memblock(PAGE_SIZE << PMD_ORDER);
447 			pmd = (pmd_t *) __pa(pmd);
448 		}
449 
450 		pgd_populate(NULL, pg_dir, __va(pmd));
451 #endif
452 		pg_dir++;
453 
454 		/* now change pmd to kernel virtual addresses */
455 
456 		pmd = (pmd_t *)__va(pmd) + start_pmd;
457 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
458 
459 			/*
460 			 * pg_table is physical at this point
461 			 */
462 
463 			pg_table = (pte_t *)pmd_address(*pmd);
464 			if (!pg_table) {
465 				pg_table = (pte_t *) get_memblock(PAGE_SIZE);
466 				pg_table = (pte_t *) __pa(pg_table);
467 			}
468 
469 			pmd_populate_kernel(NULL, pmd, __va(pg_table));
470 
471 			/* now change pg_table to kernel virtual addresses */
472 
473 			pg_table = (pte_t *) __va(pg_table) + start_pte;
474 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
475 				pte_t pte;
476 
477 				if (force)
478 					pte =  __mk_pte(address, pgprot);
479 				else if (parisc_text_address(vaddr)) {
480 					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
481 					if (address >= ro_start && address < kernel_end)
482 						pte = pte_mkhuge(pte);
483 				}
484 				else
485 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
486 				if (address >= ro_start && address < ro_end) {
487 					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
488 					pte = pte_mkhuge(pte);
489 				} else
490 #endif
491 				{
492 					pte = __mk_pte(address, pgprot);
493 					if (address >= ro_start && address < kernel_end)
494 						pte = pte_mkhuge(pte);
495 				}
496 
497 				if (address >= end_paddr) {
498 					if (force)
499 						break;
500 					else
501 						pte_val(pte) = 0;
502 				}
503 
504 				set_pte(pg_table, pte);
505 
506 				address += PAGE_SIZE;
507 				vaddr += PAGE_SIZE;
508 			}
509 			start_pte = 0;
510 
511 			if (address >= end_paddr)
512 			    break;
513 		}
514 		start_pmd = 0;
515 	}
516 }
517 
518 void free_initmem(void)
519 {
520 	unsigned long init_begin = (unsigned long)__init_begin;
521 	unsigned long init_end = (unsigned long)__init_end;
522 
523 	/* The init text pages are marked R-X.  We have to
524 	 * flush the icache and mark them RW-
525 	 *
526 	 * This is tricky, because map_pages is in the init section.
527 	 * Do a dummy remap of the data section first (the data
528 	 * section is already PAGE_KERNEL) to pull in the TLB entries
529 	 * for map_kernel */
530 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
531 		  PAGE_KERNEL_RWX, 1);
532 	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
533 	 * map_pages */
534 	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
535 		  PAGE_KERNEL, 1);
536 
537 	/* force the kernel to see the new TLB entries */
538 	__flush_tlb_range(0, init_begin, init_end);
539 
540 	/* finally dump all the instructions which were cached, since the
541 	 * pages are no-longer executable */
542 	flush_icache_range(init_begin, init_end);
543 
544 	free_initmem_default(POISON_FREE_INITMEM);
545 
546 	/* set up a new led state on systems shipped LED State panel */
547 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
548 }
549 
550 
551 #ifdef CONFIG_STRICT_KERNEL_RWX
552 void mark_rodata_ro(void)
553 {
554 	/* rodata memory was already mapped with KERNEL_RO access rights by
555            pagetable_init() and map_pages(). No need to do additional stuff here */
556 	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
557 		(unsigned long)(__end_rodata - __start_rodata) >> 10);
558 }
559 #endif
560 
561 
562 /*
563  * Just an arbitrary offset to serve as a "hole" between mapping areas
564  * (between top of physical memory and a potential pcxl dma mapping
565  * area, and below the vmalloc mapping area).
566  *
567  * The current 32K value just means that there will be a 32K "hole"
568  * between mapping areas. That means that  any out-of-bounds memory
569  * accesses will hopefully be caught. The vmalloc() routines leaves
570  * a hole of 4kB between each vmalloced area for the same reason.
571  */
572 
573  /* Leave room for gateway page expansion */
574 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
575 #error KERNEL_MAP_START is in gateway reserved region
576 #endif
577 #define MAP_START (KERNEL_MAP_START)
578 
579 #define VM_MAP_OFFSET  (32*1024)
580 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
581 				     & ~(VM_MAP_OFFSET-1)))
582 
583 void *parisc_vmalloc_start __read_mostly;
584 EXPORT_SYMBOL(parisc_vmalloc_start);
585 
586 #ifdef CONFIG_PA11
587 unsigned long pcxl_dma_start __read_mostly;
588 #endif
589 
590 void __init mem_init(void)
591 {
592 	/* Do sanity checks on IPC (compat) structures */
593 	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
594 #ifndef CONFIG_64BIT
595 	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
596 	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
597 	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
598 #endif
599 #ifdef CONFIG_COMPAT
600 	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
601 	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
602 	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
603 	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
604 #endif
605 
606 	/* Do sanity checks on page table constants */
607 	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
608 	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
609 	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
610 	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
611 			> BITS_PER_LONG);
612 
613 	high_memory = __va((max_pfn << PAGE_SHIFT));
614 	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
615 	free_all_bootmem();
616 
617 #ifdef CONFIG_PA11
618 	if (hppa_dma_ops == &pcxl_dma_ops) {
619 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
620 		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
621 						+ PCXL_DMA_MAP_SIZE);
622 	} else {
623 		pcxl_dma_start = 0;
624 		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
625 	}
626 #else
627 	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
628 #endif
629 
630 	mem_init_print_info(NULL);
631 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
632 	printk("virtual kernel memory layout:\n"
633 	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
634 	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
635 	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
636 	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
637 	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
638 
639 	       (void*)VMALLOC_START, (void*)VMALLOC_END,
640 	       (VMALLOC_END - VMALLOC_START) >> 20,
641 
642 	       __va(0), high_memory,
643 	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
644 
645 	       __init_begin, __init_end,
646 	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
647 
648 	       _etext, _edata,
649 	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
650 
651 	       _text, _etext,
652 	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
653 #endif
654 }
655 
656 unsigned long *empty_zero_page __read_mostly;
657 EXPORT_SYMBOL(empty_zero_page);
658 
659 /*
660  * pagetable_init() sets up the page tables
661  *
662  * Note that gateway_init() places the Linux gateway page at page 0.
663  * Since gateway pages cannot be dereferenced this has the desirable
664  * side effect of trapping those pesky NULL-reference errors in the
665  * kernel.
666  */
667 static void __init pagetable_init(void)
668 {
669 	int range;
670 
671 	/* Map each physical memory range to its kernel vaddr */
672 
673 	for (range = 0; range < npmem_ranges; range++) {
674 		unsigned long start_paddr;
675 		unsigned long end_paddr;
676 		unsigned long size;
677 
678 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
679 		size = pmem_ranges[range].pages << PAGE_SHIFT;
680 		end_paddr = start_paddr + size;
681 
682 		map_pages((unsigned long)__va(start_paddr), start_paddr,
683 			  size, PAGE_KERNEL, 0);
684 	}
685 
686 #ifdef CONFIG_BLK_DEV_INITRD
687 	if (initrd_end && initrd_end > mem_limit) {
688 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
689 		map_pages(initrd_start, __pa(initrd_start),
690 			  initrd_end - initrd_start, PAGE_KERNEL, 0);
691 	}
692 #endif
693 
694 	empty_zero_page = get_memblock(PAGE_SIZE);
695 }
696 
697 static void __init gateway_init(void)
698 {
699 	unsigned long linux_gateway_page_addr;
700 	/* FIXME: This is 'const' in order to trick the compiler
701 	   into not treating it as DP-relative data. */
702 	extern void * const linux_gateway_page;
703 
704 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
705 
706 	/*
707 	 * Setup Linux Gateway page.
708 	 *
709 	 * The Linux gateway page will reside in kernel space (on virtual
710 	 * page 0), so it doesn't need to be aliased into user space.
711 	 */
712 
713 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
714 		  PAGE_SIZE, PAGE_GATEWAY, 1);
715 }
716 
717 void __init paging_init(void)
718 {
719 	int i;
720 
721 	setup_bootmem();
722 	pagetable_init();
723 	gateway_init();
724 	flush_cache_all_local(); /* start with known state */
725 	flush_tlb_all_local(NULL);
726 
727 	for (i = 0; i < npmem_ranges; i++) {
728 		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
729 
730 		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
731 
732 #ifdef CONFIG_DISCONTIGMEM
733 		/* Need to initialize the pfnnid_map before we can initialize
734 		   the zone */
735 		{
736 		    int j;
737 		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
738 			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
739 			 j++) {
740 			pfnnid_map[j] = i;
741 		    }
742 		}
743 #endif
744 
745 		free_area_init_node(i, zones_size,
746 				pmem_ranges[i].start_pfn, NULL);
747 	}
748 }
749 
750 #ifdef CONFIG_PA20
751 
752 /*
753  * Currently, all PA20 chips have 18 bit protection IDs, which is the
754  * limiting factor (space ids are 32 bits).
755  */
756 
757 #define NR_SPACE_IDS 262144
758 
759 #else
760 
761 /*
762  * Currently we have a one-to-one relationship between space IDs and
763  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
764  * support 15 bit protection IDs, so that is the limiting factor.
765  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
766  * probably not worth the effort for a special case here.
767  */
768 
769 #define NR_SPACE_IDS 32768
770 
771 #endif  /* !CONFIG_PA20 */
772 
773 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
774 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
775 
776 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
777 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
778 static unsigned long space_id_index;
779 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
780 static unsigned long dirty_space_ids = 0;
781 
782 static DEFINE_SPINLOCK(sid_lock);
783 
784 unsigned long alloc_sid(void)
785 {
786 	unsigned long index;
787 
788 	spin_lock(&sid_lock);
789 
790 	if (free_space_ids == 0) {
791 		if (dirty_space_ids != 0) {
792 			spin_unlock(&sid_lock);
793 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
794 			spin_lock(&sid_lock);
795 		}
796 		BUG_ON(free_space_ids == 0);
797 	}
798 
799 	free_space_ids--;
800 
801 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
802 	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
803 	space_id_index = index;
804 
805 	spin_unlock(&sid_lock);
806 
807 	return index << SPACEID_SHIFT;
808 }
809 
810 void free_sid(unsigned long spaceid)
811 {
812 	unsigned long index = spaceid >> SPACEID_SHIFT;
813 	unsigned long *dirty_space_offset;
814 
815 	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
816 	index &= (BITS_PER_LONG - 1);
817 
818 	spin_lock(&sid_lock);
819 
820 	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
821 
822 	*dirty_space_offset |= (1L << index);
823 	dirty_space_ids++;
824 
825 	spin_unlock(&sid_lock);
826 }
827 
828 
829 #ifdef CONFIG_SMP
830 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
831 {
832 	int i;
833 
834 	/* NOTE: sid_lock must be held upon entry */
835 
836 	*ndirtyptr = dirty_space_ids;
837 	if (dirty_space_ids != 0) {
838 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
839 		dirty_array[i] = dirty_space_id[i];
840 		dirty_space_id[i] = 0;
841 	    }
842 	    dirty_space_ids = 0;
843 	}
844 
845 	return;
846 }
847 
848 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
849 {
850 	int i;
851 
852 	/* NOTE: sid_lock must be held upon entry */
853 
854 	if (ndirty != 0) {
855 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
856 			space_id[i] ^= dirty_array[i];
857 		}
858 
859 		free_space_ids += ndirty;
860 		space_id_index = 0;
861 	}
862 }
863 
864 #else /* CONFIG_SMP */
865 
866 static void recycle_sids(void)
867 {
868 	int i;
869 
870 	/* NOTE: sid_lock must be held upon entry */
871 
872 	if (dirty_space_ids != 0) {
873 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
874 			space_id[i] ^= dirty_space_id[i];
875 			dirty_space_id[i] = 0;
876 		}
877 
878 		free_space_ids += dirty_space_ids;
879 		dirty_space_ids = 0;
880 		space_id_index = 0;
881 	}
882 }
883 #endif
884 
885 /*
886  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
887  * purged, we can safely reuse the space ids that were released but
888  * not flushed from the tlb.
889  */
890 
891 #ifdef CONFIG_SMP
892 
893 static unsigned long recycle_ndirty;
894 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
895 static unsigned int recycle_inuse;
896 
897 void flush_tlb_all(void)
898 {
899 	int do_recycle;
900 
901 	__inc_irq_stat(irq_tlb_count);
902 	do_recycle = 0;
903 	spin_lock(&sid_lock);
904 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
905 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
906 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
907 	    recycle_inuse++;
908 	    do_recycle++;
909 	}
910 	spin_unlock(&sid_lock);
911 	on_each_cpu(flush_tlb_all_local, NULL, 1);
912 	if (do_recycle) {
913 	    spin_lock(&sid_lock);
914 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
915 	    recycle_inuse = 0;
916 	    spin_unlock(&sid_lock);
917 	}
918 }
919 #else
920 void flush_tlb_all(void)
921 {
922 	__inc_irq_stat(irq_tlb_count);
923 	spin_lock(&sid_lock);
924 	flush_tlb_all_local(NULL);
925 	recycle_sids();
926 	spin_unlock(&sid_lock);
927 }
928 #endif
929 
930 #ifdef CONFIG_BLK_DEV_INITRD
931 void free_initrd_mem(unsigned long start, unsigned long end)
932 {
933 	free_reserved_area((void *)start, (void *)end, -1, "initrd");
934 }
935 #endif
936