1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/gfp.h> 18 #include <linux/delay.h> 19 #include <linux/init.h> 20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 21 #include <linux/initrd.h> 22 #include <linux/swap.h> 23 #include <linux/unistd.h> 24 #include <linux/nodemask.h> /* for node_online_map */ 25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 26 27 #include <asm/pgalloc.h> 28 #include <asm/pgtable.h> 29 #include <asm/tlb.h> 30 #include <asm/pdc_chassis.h> 31 #include <asm/mmzone.h> 32 #include <asm/sections.h> 33 34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 35 36 extern int data_start; 37 38 #ifdef CONFIG_DISCONTIGMEM 39 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 41 #endif 42 43 static struct resource data_resource = { 44 .name = "Kernel data", 45 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 46 }; 47 48 static struct resource code_resource = { 49 .name = "Kernel code", 50 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 51 }; 52 53 static struct resource pdcdata_resource = { 54 .name = "PDC data (Page Zero)", 55 .start = 0, 56 .end = 0x9ff, 57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 58 }; 59 60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 61 62 /* The following array is initialized from the firmware specific 63 * information retrieved in kernel/inventory.c. 64 */ 65 66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 67 int npmem_ranges __read_mostly; 68 69 #ifdef CONFIG_64BIT 70 #define MAX_MEM (~0UL) 71 #else /* !CONFIG_64BIT */ 72 #define MAX_MEM (3584U*1024U*1024U) 73 #endif /* !CONFIG_64BIT */ 74 75 static unsigned long mem_limit __read_mostly = MAX_MEM; 76 77 static void __init mem_limit_func(void) 78 { 79 char *cp, *end; 80 unsigned long limit; 81 82 /* We need this before __setup() functions are called */ 83 84 limit = MAX_MEM; 85 for (cp = boot_command_line; *cp; ) { 86 if (memcmp(cp, "mem=", 4) == 0) { 87 cp += 4; 88 limit = memparse(cp, &end); 89 if (end != cp) 90 break; 91 cp = end; 92 } else { 93 while (*cp != ' ' && *cp) 94 ++cp; 95 while (*cp == ' ') 96 ++cp; 97 } 98 } 99 100 if (limit < mem_limit) 101 mem_limit = limit; 102 } 103 104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 105 106 static void __init setup_bootmem(void) 107 { 108 unsigned long bootmap_size; 109 unsigned long mem_max; 110 unsigned long bootmap_pages; 111 unsigned long bootmap_start_pfn; 112 unsigned long bootmap_pfn; 113 #ifndef CONFIG_DISCONTIGMEM 114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 115 int npmem_holes; 116 #endif 117 int i, sysram_resource_count; 118 119 disable_sr_hashing(); /* Turn off space register hashing */ 120 121 /* 122 * Sort the ranges. Since the number of ranges is typically 123 * small, and performance is not an issue here, just do 124 * a simple insertion sort. 125 */ 126 127 for (i = 1; i < npmem_ranges; i++) { 128 int j; 129 130 for (j = i; j > 0; j--) { 131 unsigned long tmp; 132 133 if (pmem_ranges[j-1].start_pfn < 134 pmem_ranges[j].start_pfn) { 135 136 break; 137 } 138 tmp = pmem_ranges[j-1].start_pfn; 139 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 140 pmem_ranges[j].start_pfn = tmp; 141 tmp = pmem_ranges[j-1].pages; 142 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 143 pmem_ranges[j].pages = tmp; 144 } 145 } 146 147 #ifndef CONFIG_DISCONTIGMEM 148 /* 149 * Throw out ranges that are too far apart (controlled by 150 * MAX_GAP). 151 */ 152 153 for (i = 1; i < npmem_ranges; i++) { 154 if (pmem_ranges[i].start_pfn - 155 (pmem_ranges[i-1].start_pfn + 156 pmem_ranges[i-1].pages) > MAX_GAP) { 157 npmem_ranges = i; 158 printk("Large gap in memory detected (%ld pages). " 159 "Consider turning on CONFIG_DISCONTIGMEM\n", 160 pmem_ranges[i].start_pfn - 161 (pmem_ranges[i-1].start_pfn + 162 pmem_ranges[i-1].pages)); 163 break; 164 } 165 } 166 #endif 167 168 if (npmem_ranges > 1) { 169 170 /* Print the memory ranges */ 171 172 printk(KERN_INFO "Memory Ranges:\n"); 173 174 for (i = 0; i < npmem_ranges; i++) { 175 unsigned long start; 176 unsigned long size; 177 178 size = (pmem_ranges[i].pages << PAGE_SHIFT); 179 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 180 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 181 i,start, start + (size - 1), size >> 20); 182 } 183 } 184 185 sysram_resource_count = npmem_ranges; 186 for (i = 0; i < sysram_resource_count; i++) { 187 struct resource *res = &sysram_resources[i]; 188 res->name = "System RAM"; 189 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 190 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 192 request_resource(&iomem_resource, res); 193 } 194 195 /* 196 * For 32 bit kernels we limit the amount of memory we can 197 * support, in order to preserve enough kernel address space 198 * for other purposes. For 64 bit kernels we don't normally 199 * limit the memory, but this mechanism can be used to 200 * artificially limit the amount of memory (and it is written 201 * to work with multiple memory ranges). 202 */ 203 204 mem_limit_func(); /* check for "mem=" argument */ 205 206 mem_max = 0; 207 num_physpages = 0; 208 for (i = 0; i < npmem_ranges; i++) { 209 unsigned long rsize; 210 211 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 212 if ((mem_max + rsize) > mem_limit) { 213 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 214 if (mem_max == mem_limit) 215 npmem_ranges = i; 216 else { 217 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 218 - (mem_max >> PAGE_SHIFT); 219 npmem_ranges = i + 1; 220 mem_max = mem_limit; 221 } 222 num_physpages += pmem_ranges[i].pages; 223 break; 224 } 225 num_physpages += pmem_ranges[i].pages; 226 mem_max += rsize; 227 } 228 229 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 230 231 #ifndef CONFIG_DISCONTIGMEM 232 /* Merge the ranges, keeping track of the holes */ 233 234 { 235 unsigned long end_pfn; 236 unsigned long hole_pages; 237 238 npmem_holes = 0; 239 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 240 for (i = 1; i < npmem_ranges; i++) { 241 242 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 243 if (hole_pages) { 244 pmem_holes[npmem_holes].start_pfn = end_pfn; 245 pmem_holes[npmem_holes++].pages = hole_pages; 246 end_pfn += hole_pages; 247 } 248 end_pfn += pmem_ranges[i].pages; 249 } 250 251 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 252 npmem_ranges = 1; 253 } 254 #endif 255 256 bootmap_pages = 0; 257 for (i = 0; i < npmem_ranges; i++) 258 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 259 260 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 261 262 #ifdef CONFIG_DISCONTIGMEM 263 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 264 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 265 NODE_DATA(i)->bdata = &bootmem_node_data[i]; 266 } 267 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 268 269 for (i = 0; i < npmem_ranges; i++) 270 node_set_online(i); 271 #endif 272 273 /* 274 * Initialize and free the full range of memory in each range. 275 * Note that the only writing these routines do are to the bootmap, 276 * and we've made sure to locate the bootmap properly so that they 277 * won't be writing over anything important. 278 */ 279 280 bootmap_pfn = bootmap_start_pfn; 281 max_pfn = 0; 282 for (i = 0; i < npmem_ranges; i++) { 283 unsigned long start_pfn; 284 unsigned long npages; 285 286 start_pfn = pmem_ranges[i].start_pfn; 287 npages = pmem_ranges[i].pages; 288 289 bootmap_size = init_bootmem_node(NODE_DATA(i), 290 bootmap_pfn, 291 start_pfn, 292 (start_pfn + npages) ); 293 free_bootmem_node(NODE_DATA(i), 294 (start_pfn << PAGE_SHIFT), 295 (npages << PAGE_SHIFT) ); 296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 297 if ((start_pfn + npages) > max_pfn) 298 max_pfn = start_pfn + npages; 299 } 300 301 /* IOMMU is always used to access "high mem" on those boxes 302 * that can support enough mem that a PCI device couldn't 303 * directly DMA to any physical addresses. 304 * ISA DMA support will need to revisit this. 305 */ 306 max_low_pfn = max_pfn; 307 308 /* bootmap sizing messed up? */ 309 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages); 310 311 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 312 313 #define PDC_CONSOLE_IO_IODC_SIZE 32768 314 315 reserve_bootmem_node(NODE_DATA(0), 0UL, 316 (unsigned long)(PAGE0->mem_free + 317 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT); 318 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 319 (unsigned long)(_end - _text), BOOTMEM_DEFAULT); 320 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 321 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT), 322 BOOTMEM_DEFAULT); 323 324 #ifndef CONFIG_DISCONTIGMEM 325 326 /* reserve the holes */ 327 328 for (i = 0; i < npmem_holes; i++) { 329 reserve_bootmem_node(NODE_DATA(0), 330 (pmem_holes[i].start_pfn << PAGE_SHIFT), 331 (pmem_holes[i].pages << PAGE_SHIFT), 332 BOOTMEM_DEFAULT); 333 } 334 #endif 335 336 #ifdef CONFIG_BLK_DEV_INITRD 337 if (initrd_start) { 338 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 339 if (__pa(initrd_start) < mem_max) { 340 unsigned long initrd_reserve; 341 342 if (__pa(initrd_end) > mem_max) { 343 initrd_reserve = mem_max - __pa(initrd_start); 344 } else { 345 initrd_reserve = initrd_end - initrd_start; 346 } 347 initrd_below_start_ok = 1; 348 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 349 350 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start), 351 initrd_reserve, BOOTMEM_DEFAULT); 352 } 353 } 354 #endif 355 356 data_resource.start = virt_to_phys(&data_start); 357 data_resource.end = virt_to_phys(_end) - 1; 358 code_resource.start = virt_to_phys(_text); 359 code_resource.end = virt_to_phys(&data_start)-1; 360 361 /* We don't know which region the kernel will be in, so try 362 * all of them. 363 */ 364 for (i = 0; i < sysram_resource_count; i++) { 365 struct resource *res = &sysram_resources[i]; 366 request_resource(res, &code_resource); 367 request_resource(res, &data_resource); 368 } 369 request_resource(&sysram_resources[0], &pdcdata_resource); 370 } 371 372 void free_initmem(void) 373 { 374 unsigned long addr; 375 unsigned long init_begin = (unsigned long)__init_begin; 376 unsigned long init_end = (unsigned long)__init_end; 377 378 #ifdef CONFIG_DEBUG_KERNEL 379 /* Attempt to catch anyone trying to execute code here 380 * by filling the page with BRK insns. 381 */ 382 memset((void *)init_begin, 0x00, init_end - init_begin); 383 flush_icache_range(init_begin, init_end); 384 #endif 385 386 /* align __init_begin and __init_end to page size, 387 ignoring linker script where we might have tried to save RAM */ 388 init_begin = PAGE_ALIGN(init_begin); 389 init_end = PAGE_ALIGN(init_end); 390 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 391 ClearPageReserved(virt_to_page(addr)); 392 init_page_count(virt_to_page(addr)); 393 free_page(addr); 394 num_physpages++; 395 totalram_pages++; 396 } 397 398 /* set up a new led state on systems shipped LED State panel */ 399 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 400 401 printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n", 402 (init_end - init_begin) >> 10); 403 } 404 405 406 #ifdef CONFIG_DEBUG_RODATA 407 void mark_rodata_ro(void) 408 { 409 /* rodata memory was already mapped with KERNEL_RO access rights by 410 pagetable_init() and map_pages(). No need to do additional stuff here */ 411 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 412 (unsigned long)(__end_rodata - __start_rodata) >> 10); 413 } 414 #endif 415 416 417 /* 418 * Just an arbitrary offset to serve as a "hole" between mapping areas 419 * (between top of physical memory and a potential pcxl dma mapping 420 * area, and below the vmalloc mapping area). 421 * 422 * The current 32K value just means that there will be a 32K "hole" 423 * between mapping areas. That means that any out-of-bounds memory 424 * accesses will hopefully be caught. The vmalloc() routines leaves 425 * a hole of 4kB between each vmalloced area for the same reason. 426 */ 427 428 /* Leave room for gateway page expansion */ 429 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 430 #error KERNEL_MAP_START is in gateway reserved region 431 #endif 432 #define MAP_START (KERNEL_MAP_START) 433 434 #define VM_MAP_OFFSET (32*1024) 435 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 436 & ~(VM_MAP_OFFSET-1))) 437 438 void *parisc_vmalloc_start __read_mostly; 439 EXPORT_SYMBOL(parisc_vmalloc_start); 440 441 #ifdef CONFIG_PA11 442 unsigned long pcxl_dma_start __read_mostly; 443 #endif 444 445 void __init mem_init(void) 446 { 447 int codesize, reservedpages, datasize, initsize; 448 449 /* Do sanity checks on page table constants */ 450 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 451 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 452 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 453 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 454 > BITS_PER_LONG); 455 456 high_memory = __va((max_pfn << PAGE_SHIFT)); 457 458 #ifndef CONFIG_DISCONTIGMEM 459 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 460 totalram_pages += free_all_bootmem(); 461 #else 462 { 463 int i; 464 465 for (i = 0; i < npmem_ranges; i++) 466 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 467 } 468 #endif 469 470 codesize = (unsigned long)_etext - (unsigned long)_text; 471 datasize = (unsigned long)_edata - (unsigned long)_etext; 472 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 473 474 reservedpages = 0; 475 { 476 unsigned long pfn; 477 #ifdef CONFIG_DISCONTIGMEM 478 int i; 479 480 for (i = 0; i < npmem_ranges; i++) { 481 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 482 if (PageReserved(pfn_to_page(pfn))) 483 reservedpages++; 484 } 485 } 486 #else /* !CONFIG_DISCONTIGMEM */ 487 for (pfn = 0; pfn < max_pfn; pfn++) { 488 /* 489 * Only count reserved RAM pages 490 */ 491 if (PageReserved(pfn_to_page(pfn))) 492 reservedpages++; 493 } 494 #endif 495 } 496 497 #ifdef CONFIG_PA11 498 if (hppa_dma_ops == &pcxl_dma_ops) { 499 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 500 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 501 + PCXL_DMA_MAP_SIZE); 502 } else { 503 pcxl_dma_start = 0; 504 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 505 } 506 #else 507 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 508 #endif 509 510 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 511 nr_free_pages() << (PAGE_SHIFT-10), 512 num_physpages << (PAGE_SHIFT-10), 513 codesize >> 10, 514 reservedpages << (PAGE_SHIFT-10), 515 datasize >> 10, 516 initsize >> 10 517 ); 518 519 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 520 printk("virtual kernel memory layout:\n" 521 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 522 " memory : 0x%p - 0x%p (%4ld MB)\n" 523 " .init : 0x%p - 0x%p (%4ld kB)\n" 524 " .data : 0x%p - 0x%p (%4ld kB)\n" 525 " .text : 0x%p - 0x%p (%4ld kB)\n", 526 527 (void*)VMALLOC_START, (void*)VMALLOC_END, 528 (VMALLOC_END - VMALLOC_START) >> 20, 529 530 __va(0), high_memory, 531 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 532 533 __init_begin, __init_end, 534 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 535 536 _etext, _edata, 537 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 538 539 _text, _etext, 540 ((unsigned long)_etext - (unsigned long)_text) >> 10); 541 #endif 542 } 543 544 unsigned long *empty_zero_page __read_mostly; 545 EXPORT_SYMBOL(empty_zero_page); 546 547 void show_mem(void) 548 { 549 int i,free = 0,total = 0,reserved = 0; 550 int shared = 0, cached = 0; 551 552 printk(KERN_INFO "Mem-info:\n"); 553 show_free_areas(); 554 #ifndef CONFIG_DISCONTIGMEM 555 i = max_mapnr; 556 while (i-- > 0) { 557 total++; 558 if (PageReserved(mem_map+i)) 559 reserved++; 560 else if (PageSwapCache(mem_map+i)) 561 cached++; 562 else if (!page_count(&mem_map[i])) 563 free++; 564 else 565 shared += page_count(&mem_map[i]) - 1; 566 } 567 #else 568 for (i = 0; i < npmem_ranges; i++) { 569 int j; 570 571 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 572 struct page *p; 573 unsigned long flags; 574 575 pgdat_resize_lock(NODE_DATA(i), &flags); 576 p = nid_page_nr(i, j) - node_start_pfn(i); 577 578 total++; 579 if (PageReserved(p)) 580 reserved++; 581 else if (PageSwapCache(p)) 582 cached++; 583 else if (!page_count(p)) 584 free++; 585 else 586 shared += page_count(p) - 1; 587 pgdat_resize_unlock(NODE_DATA(i), &flags); 588 } 589 } 590 #endif 591 printk(KERN_INFO "%d pages of RAM\n", total); 592 printk(KERN_INFO "%d reserved pages\n", reserved); 593 printk(KERN_INFO "%d pages shared\n", shared); 594 printk(KERN_INFO "%d pages swap cached\n", cached); 595 596 597 #ifdef CONFIG_DISCONTIGMEM 598 { 599 struct zonelist *zl; 600 int i, j; 601 602 for (i = 0; i < npmem_ranges; i++) { 603 zl = node_zonelist(i, 0); 604 for (j = 0; j < MAX_NR_ZONES; j++) { 605 struct zoneref *z; 606 struct zone *zone; 607 608 printk("Zone list for zone %d on node %d: ", j, i); 609 for_each_zone_zonelist(zone, z, zl, j) 610 printk("[%d/%s] ", zone_to_nid(zone), 611 zone->name); 612 printk("\n"); 613 } 614 } 615 } 616 #endif 617 } 618 619 620 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 621 { 622 pgd_t *pg_dir; 623 pmd_t *pmd; 624 pte_t *pg_table; 625 unsigned long end_paddr; 626 unsigned long start_pmd; 627 unsigned long start_pte; 628 unsigned long tmp1; 629 unsigned long tmp2; 630 unsigned long address; 631 unsigned long ro_start; 632 unsigned long ro_end; 633 unsigned long fv_addr; 634 unsigned long gw_addr; 635 extern const unsigned long fault_vector_20; 636 extern void * const linux_gateway_page; 637 638 ro_start = __pa((unsigned long)_text); 639 ro_end = __pa((unsigned long)&data_start); 640 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 641 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 642 643 end_paddr = start_paddr + size; 644 645 pg_dir = pgd_offset_k(start_vaddr); 646 647 #if PTRS_PER_PMD == 1 648 start_pmd = 0; 649 #else 650 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 651 #endif 652 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 653 654 address = start_paddr; 655 while (address < end_paddr) { 656 #if PTRS_PER_PMD == 1 657 pmd = (pmd_t *)__pa(pg_dir); 658 #else 659 pmd = (pmd_t *)pgd_address(*pg_dir); 660 661 /* 662 * pmd is physical at this point 663 */ 664 665 if (!pmd) { 666 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 667 pmd = (pmd_t *) __pa(pmd); 668 } 669 670 pgd_populate(NULL, pg_dir, __va(pmd)); 671 #endif 672 pg_dir++; 673 674 /* now change pmd to kernel virtual addresses */ 675 676 pmd = (pmd_t *)__va(pmd) + start_pmd; 677 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 678 679 /* 680 * pg_table is physical at this point 681 */ 682 683 pg_table = (pte_t *)pmd_address(*pmd); 684 if (!pg_table) { 685 pg_table = (pte_t *) 686 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 687 pg_table = (pte_t *) __pa(pg_table); 688 } 689 690 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 691 692 /* now change pg_table to kernel virtual addresses */ 693 694 pg_table = (pte_t *) __va(pg_table) + start_pte; 695 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 696 pte_t pte; 697 698 /* 699 * Map the fault vector writable so we can 700 * write the HPMC checksum. 701 */ 702 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 703 if (address >= ro_start && address < ro_end 704 && address != fv_addr 705 && address != gw_addr) 706 pte = __mk_pte(address, PAGE_KERNEL_RO); 707 else 708 #endif 709 pte = __mk_pte(address, pgprot); 710 711 if (address >= end_paddr) 712 pte_val(pte) = 0; 713 714 set_pte(pg_table, pte); 715 716 address += PAGE_SIZE; 717 } 718 start_pte = 0; 719 720 if (address >= end_paddr) 721 break; 722 } 723 start_pmd = 0; 724 } 725 } 726 727 /* 728 * pagetable_init() sets up the page tables 729 * 730 * Note that gateway_init() places the Linux gateway page at page 0. 731 * Since gateway pages cannot be dereferenced this has the desirable 732 * side effect of trapping those pesky NULL-reference errors in the 733 * kernel. 734 */ 735 static void __init pagetable_init(void) 736 { 737 int range; 738 739 /* Map each physical memory range to its kernel vaddr */ 740 741 for (range = 0; range < npmem_ranges; range++) { 742 unsigned long start_paddr; 743 unsigned long end_paddr; 744 unsigned long size; 745 746 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 747 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 748 size = pmem_ranges[range].pages << PAGE_SHIFT; 749 750 map_pages((unsigned long)__va(start_paddr), start_paddr, 751 size, PAGE_KERNEL); 752 } 753 754 #ifdef CONFIG_BLK_DEV_INITRD 755 if (initrd_end && initrd_end > mem_limit) { 756 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 757 map_pages(initrd_start, __pa(initrd_start), 758 initrd_end - initrd_start, PAGE_KERNEL); 759 } 760 #endif 761 762 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 763 memset(empty_zero_page, 0, PAGE_SIZE); 764 } 765 766 static void __init gateway_init(void) 767 { 768 unsigned long linux_gateway_page_addr; 769 /* FIXME: This is 'const' in order to trick the compiler 770 into not treating it as DP-relative data. */ 771 extern void * const linux_gateway_page; 772 773 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 774 775 /* 776 * Setup Linux Gateway page. 777 * 778 * The Linux gateway page will reside in kernel space (on virtual 779 * page 0), so it doesn't need to be aliased into user space. 780 */ 781 782 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 783 PAGE_SIZE, PAGE_GATEWAY); 784 } 785 786 #ifdef CONFIG_HPUX 787 void 788 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 789 { 790 pgd_t *pg_dir; 791 pmd_t *pmd; 792 pte_t *pg_table; 793 unsigned long start_pmd; 794 unsigned long start_pte; 795 unsigned long address; 796 unsigned long hpux_gw_page_addr; 797 /* FIXME: This is 'const' in order to trick the compiler 798 into not treating it as DP-relative data. */ 799 extern void * const hpux_gateway_page; 800 801 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 802 803 /* 804 * Setup HP-UX Gateway page. 805 * 806 * The HP-UX gateway page resides in the user address space, 807 * so it needs to be aliased into each process. 808 */ 809 810 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 811 812 #if PTRS_PER_PMD == 1 813 start_pmd = 0; 814 #else 815 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 816 #endif 817 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 818 819 address = __pa(&hpux_gateway_page); 820 #if PTRS_PER_PMD == 1 821 pmd = (pmd_t *)__pa(pg_dir); 822 #else 823 pmd = (pmd_t *) pgd_address(*pg_dir); 824 825 /* 826 * pmd is physical at this point 827 */ 828 829 if (!pmd) { 830 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 831 pmd = (pmd_t *) __pa(pmd); 832 } 833 834 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 835 #endif 836 /* now change pmd to kernel virtual addresses */ 837 838 pmd = (pmd_t *)__va(pmd) + start_pmd; 839 840 /* 841 * pg_table is physical at this point 842 */ 843 844 pg_table = (pte_t *) pmd_address(*pmd); 845 if (!pg_table) 846 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 847 848 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 849 850 /* now change pg_table to kernel virtual addresses */ 851 852 pg_table = (pte_t *) __va(pg_table) + start_pte; 853 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 854 } 855 EXPORT_SYMBOL(map_hpux_gateway_page); 856 #endif 857 858 void __init paging_init(void) 859 { 860 int i; 861 862 setup_bootmem(); 863 pagetable_init(); 864 gateway_init(); 865 flush_cache_all_local(); /* start with known state */ 866 flush_tlb_all_local(NULL); 867 868 for (i = 0; i < npmem_ranges; i++) { 869 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 870 871 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 872 873 #ifdef CONFIG_DISCONTIGMEM 874 /* Need to initialize the pfnnid_map before we can initialize 875 the zone */ 876 { 877 int j; 878 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 879 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 880 j++) { 881 pfnnid_map[j] = i; 882 } 883 } 884 #endif 885 886 free_area_init_node(i, zones_size, 887 pmem_ranges[i].start_pfn, NULL); 888 } 889 } 890 891 #ifdef CONFIG_PA20 892 893 /* 894 * Currently, all PA20 chips have 18 bit protection IDs, which is the 895 * limiting factor (space ids are 32 bits). 896 */ 897 898 #define NR_SPACE_IDS 262144 899 900 #else 901 902 /* 903 * Currently we have a one-to-one relationship between space IDs and 904 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 905 * support 15 bit protection IDs, so that is the limiting factor. 906 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 907 * probably not worth the effort for a special case here. 908 */ 909 910 #define NR_SPACE_IDS 32768 911 912 #endif /* !CONFIG_PA20 */ 913 914 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 915 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 916 917 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 918 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 919 static unsigned long space_id_index; 920 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 921 static unsigned long dirty_space_ids = 0; 922 923 static DEFINE_SPINLOCK(sid_lock); 924 925 unsigned long alloc_sid(void) 926 { 927 unsigned long index; 928 929 spin_lock(&sid_lock); 930 931 if (free_space_ids == 0) { 932 if (dirty_space_ids != 0) { 933 spin_unlock(&sid_lock); 934 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 935 spin_lock(&sid_lock); 936 } 937 BUG_ON(free_space_ids == 0); 938 } 939 940 free_space_ids--; 941 942 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 943 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 944 space_id_index = index; 945 946 spin_unlock(&sid_lock); 947 948 return index << SPACEID_SHIFT; 949 } 950 951 void free_sid(unsigned long spaceid) 952 { 953 unsigned long index = spaceid >> SPACEID_SHIFT; 954 unsigned long *dirty_space_offset; 955 956 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 957 index &= (BITS_PER_LONG - 1); 958 959 spin_lock(&sid_lock); 960 961 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 962 963 *dirty_space_offset |= (1L << index); 964 dirty_space_ids++; 965 966 spin_unlock(&sid_lock); 967 } 968 969 970 #ifdef CONFIG_SMP 971 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 972 { 973 int i; 974 975 /* NOTE: sid_lock must be held upon entry */ 976 977 *ndirtyptr = dirty_space_ids; 978 if (dirty_space_ids != 0) { 979 for (i = 0; i < SID_ARRAY_SIZE; i++) { 980 dirty_array[i] = dirty_space_id[i]; 981 dirty_space_id[i] = 0; 982 } 983 dirty_space_ids = 0; 984 } 985 986 return; 987 } 988 989 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 990 { 991 int i; 992 993 /* NOTE: sid_lock must be held upon entry */ 994 995 if (ndirty != 0) { 996 for (i = 0; i < SID_ARRAY_SIZE; i++) { 997 space_id[i] ^= dirty_array[i]; 998 } 999 1000 free_space_ids += ndirty; 1001 space_id_index = 0; 1002 } 1003 } 1004 1005 #else /* CONFIG_SMP */ 1006 1007 static void recycle_sids(void) 1008 { 1009 int i; 1010 1011 /* NOTE: sid_lock must be held upon entry */ 1012 1013 if (dirty_space_ids != 0) { 1014 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1015 space_id[i] ^= dirty_space_id[i]; 1016 dirty_space_id[i] = 0; 1017 } 1018 1019 free_space_ids += dirty_space_ids; 1020 dirty_space_ids = 0; 1021 space_id_index = 0; 1022 } 1023 } 1024 #endif 1025 1026 /* 1027 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1028 * purged, we can safely reuse the space ids that were released but 1029 * not flushed from the tlb. 1030 */ 1031 1032 #ifdef CONFIG_SMP 1033 1034 static unsigned long recycle_ndirty; 1035 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1036 static unsigned int recycle_inuse; 1037 1038 void flush_tlb_all(void) 1039 { 1040 int do_recycle; 1041 1042 do_recycle = 0; 1043 spin_lock(&sid_lock); 1044 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1045 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1046 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1047 recycle_inuse++; 1048 do_recycle++; 1049 } 1050 spin_unlock(&sid_lock); 1051 on_each_cpu(flush_tlb_all_local, NULL, 1); 1052 if (do_recycle) { 1053 spin_lock(&sid_lock); 1054 recycle_sids(recycle_ndirty,recycle_dirty_array); 1055 recycle_inuse = 0; 1056 spin_unlock(&sid_lock); 1057 } 1058 } 1059 #else 1060 void flush_tlb_all(void) 1061 { 1062 spin_lock(&sid_lock); 1063 flush_tlb_all_local(NULL); 1064 recycle_sids(); 1065 spin_unlock(&sid_lock); 1066 } 1067 #endif 1068 1069 #ifdef CONFIG_BLK_DEV_INITRD 1070 void free_initrd_mem(unsigned long start, unsigned long end) 1071 { 1072 if (start >= end) 1073 return; 1074 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1075 for (; start < end; start += PAGE_SIZE) { 1076 ClearPageReserved(virt_to_page(start)); 1077 init_page_count(virt_to_page(start)); 1078 free_page(start); 1079 num_physpages++; 1080 totalram_pages++; 1081 } 1082 } 1083 #endif 1084