xref: /openbmc/linux/arch/parisc/mm/init.c (revision 25985edc)
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995	Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12 
13 
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>	/* for node_online_map */
25 #include <linux/pagemap.h>	/* for release_pages and page_cache_release */
26 
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35 
36 extern int  data_start;
37 
38 #ifdef CONFIG_DISCONTIGMEM
39 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
41 #endif
42 
43 static struct resource data_resource = {
44 	.name	= "Kernel data",
45 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
46 };
47 
48 static struct resource code_resource = {
49 	.name	= "Kernel code",
50 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
51 };
52 
53 static struct resource pdcdata_resource = {
54 	.name	= "PDC data (Page Zero)",
55 	.start	= 0,
56 	.end	= 0x9ff,
57 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
58 };
59 
60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
61 
62 /* The following array is initialized from the firmware specific
63  * information retrieved in kernel/inventory.c.
64  */
65 
66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67 int npmem_ranges __read_mostly;
68 
69 #ifdef CONFIG_64BIT
70 #define MAX_MEM         (~0UL)
71 #else /* !CONFIG_64BIT */
72 #define MAX_MEM         (3584U*1024U*1024U)
73 #endif /* !CONFIG_64BIT */
74 
75 static unsigned long mem_limit __read_mostly = MAX_MEM;
76 
77 static void __init mem_limit_func(void)
78 {
79 	char *cp, *end;
80 	unsigned long limit;
81 
82 	/* We need this before __setup() functions are called */
83 
84 	limit = MAX_MEM;
85 	for (cp = boot_command_line; *cp; ) {
86 		if (memcmp(cp, "mem=", 4) == 0) {
87 			cp += 4;
88 			limit = memparse(cp, &end);
89 			if (end != cp)
90 				break;
91 			cp = end;
92 		} else {
93 			while (*cp != ' ' && *cp)
94 				++cp;
95 			while (*cp == ' ')
96 				++cp;
97 		}
98 	}
99 
100 	if (limit < mem_limit)
101 		mem_limit = limit;
102 }
103 
104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
105 
106 static void __init setup_bootmem(void)
107 {
108 	unsigned long bootmap_size;
109 	unsigned long mem_max;
110 	unsigned long bootmap_pages;
111 	unsigned long bootmap_start_pfn;
112 	unsigned long bootmap_pfn;
113 #ifndef CONFIG_DISCONTIGMEM
114 	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115 	int npmem_holes;
116 #endif
117 	int i, sysram_resource_count;
118 
119 	disable_sr_hashing(); /* Turn off space register hashing */
120 
121 	/*
122 	 * Sort the ranges. Since the number of ranges is typically
123 	 * small, and performance is not an issue here, just do
124 	 * a simple insertion sort.
125 	 */
126 
127 	for (i = 1; i < npmem_ranges; i++) {
128 		int j;
129 
130 		for (j = i; j > 0; j--) {
131 			unsigned long tmp;
132 
133 			if (pmem_ranges[j-1].start_pfn <
134 			    pmem_ranges[j].start_pfn) {
135 
136 				break;
137 			}
138 			tmp = pmem_ranges[j-1].start_pfn;
139 			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140 			pmem_ranges[j].start_pfn = tmp;
141 			tmp = pmem_ranges[j-1].pages;
142 			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143 			pmem_ranges[j].pages = tmp;
144 		}
145 	}
146 
147 #ifndef CONFIG_DISCONTIGMEM
148 	/*
149 	 * Throw out ranges that are too far apart (controlled by
150 	 * MAX_GAP).
151 	 */
152 
153 	for (i = 1; i < npmem_ranges; i++) {
154 		if (pmem_ranges[i].start_pfn -
155 			(pmem_ranges[i-1].start_pfn +
156 			 pmem_ranges[i-1].pages) > MAX_GAP) {
157 			npmem_ranges = i;
158 			printk("Large gap in memory detected (%ld pages). "
159 			       "Consider turning on CONFIG_DISCONTIGMEM\n",
160 			       pmem_ranges[i].start_pfn -
161 			       (pmem_ranges[i-1].start_pfn +
162 			        pmem_ranges[i-1].pages));
163 			break;
164 		}
165 	}
166 #endif
167 
168 	if (npmem_ranges > 1) {
169 
170 		/* Print the memory ranges */
171 
172 		printk(KERN_INFO "Memory Ranges:\n");
173 
174 		for (i = 0; i < npmem_ranges; i++) {
175 			unsigned long start;
176 			unsigned long size;
177 
178 			size = (pmem_ranges[i].pages << PAGE_SHIFT);
179 			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180 			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181 				i,start, start + (size - 1), size >> 20);
182 		}
183 	}
184 
185 	sysram_resource_count = npmem_ranges;
186 	for (i = 0; i < sysram_resource_count; i++) {
187 		struct resource *res = &sysram_resources[i];
188 		res->name = "System RAM";
189 		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190 		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192 		request_resource(&iomem_resource, res);
193 	}
194 
195 	/*
196 	 * For 32 bit kernels we limit the amount of memory we can
197 	 * support, in order to preserve enough kernel address space
198 	 * for other purposes. For 64 bit kernels we don't normally
199 	 * limit the memory, but this mechanism can be used to
200 	 * artificially limit the amount of memory (and it is written
201 	 * to work with multiple memory ranges).
202 	 */
203 
204 	mem_limit_func();       /* check for "mem=" argument */
205 
206 	mem_max = 0;
207 	num_physpages = 0;
208 	for (i = 0; i < npmem_ranges; i++) {
209 		unsigned long rsize;
210 
211 		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212 		if ((mem_max + rsize) > mem_limit) {
213 			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214 			if (mem_max == mem_limit)
215 				npmem_ranges = i;
216 			else {
217 				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
218 						       - (mem_max >> PAGE_SHIFT);
219 				npmem_ranges = i + 1;
220 				mem_max = mem_limit;
221 			}
222 	        num_physpages += pmem_ranges[i].pages;
223 			break;
224 		}
225 	    num_physpages += pmem_ranges[i].pages;
226 		mem_max += rsize;
227 	}
228 
229 	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
230 
231 #ifndef CONFIG_DISCONTIGMEM
232 	/* Merge the ranges, keeping track of the holes */
233 
234 	{
235 		unsigned long end_pfn;
236 		unsigned long hole_pages;
237 
238 		npmem_holes = 0;
239 		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240 		for (i = 1; i < npmem_ranges; i++) {
241 
242 			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
243 			if (hole_pages) {
244 				pmem_holes[npmem_holes].start_pfn = end_pfn;
245 				pmem_holes[npmem_holes++].pages = hole_pages;
246 				end_pfn += hole_pages;
247 			}
248 			end_pfn += pmem_ranges[i].pages;
249 		}
250 
251 		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
252 		npmem_ranges = 1;
253 	}
254 #endif
255 
256 	bootmap_pages = 0;
257 	for (i = 0; i < npmem_ranges; i++)
258 		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
259 
260 	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
261 
262 #ifdef CONFIG_DISCONTIGMEM
263 	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264 		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265 		NODE_DATA(i)->bdata = &bootmem_node_data[i];
266 	}
267 	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
268 
269 	for (i = 0; i < npmem_ranges; i++)
270 		node_set_online(i);
271 #endif
272 
273 	/*
274 	 * Initialize and free the full range of memory in each range.
275 	 * Note that the only writing these routines do are to the bootmap,
276 	 * and we've made sure to locate the bootmap properly so that they
277 	 * won't be writing over anything important.
278 	 */
279 
280 	bootmap_pfn = bootmap_start_pfn;
281 	max_pfn = 0;
282 	for (i = 0; i < npmem_ranges; i++) {
283 		unsigned long start_pfn;
284 		unsigned long npages;
285 
286 		start_pfn = pmem_ranges[i].start_pfn;
287 		npages = pmem_ranges[i].pages;
288 
289 		bootmap_size = init_bootmem_node(NODE_DATA(i),
290 						bootmap_pfn,
291 						start_pfn,
292 						(start_pfn + npages) );
293 		free_bootmem_node(NODE_DATA(i),
294 				  (start_pfn << PAGE_SHIFT),
295 				  (npages << PAGE_SHIFT) );
296 		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297 		if ((start_pfn + npages) > max_pfn)
298 			max_pfn = start_pfn + npages;
299 	}
300 
301 	/* IOMMU is always used to access "high mem" on those boxes
302 	 * that can support enough mem that a PCI device couldn't
303 	 * directly DMA to any physical addresses.
304 	 * ISA DMA support will need to revisit this.
305 	 */
306 	max_low_pfn = max_pfn;
307 
308 	/* bootmap sizing messed up? */
309 	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
310 
311 	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
312 
313 #define PDC_CONSOLE_IO_IODC_SIZE 32768
314 
315 	reserve_bootmem_node(NODE_DATA(0), 0UL,
316 			(unsigned long)(PAGE0->mem_free +
317 				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
318 	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
319 			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
320 	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
321 			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
322 			BOOTMEM_DEFAULT);
323 
324 #ifndef CONFIG_DISCONTIGMEM
325 
326 	/* reserve the holes */
327 
328 	for (i = 0; i < npmem_holes; i++) {
329 		reserve_bootmem_node(NODE_DATA(0),
330 				(pmem_holes[i].start_pfn << PAGE_SHIFT),
331 				(pmem_holes[i].pages << PAGE_SHIFT),
332 				BOOTMEM_DEFAULT);
333 	}
334 #endif
335 
336 #ifdef CONFIG_BLK_DEV_INITRD
337 	if (initrd_start) {
338 		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
339 		if (__pa(initrd_start) < mem_max) {
340 			unsigned long initrd_reserve;
341 
342 			if (__pa(initrd_end) > mem_max) {
343 				initrd_reserve = mem_max - __pa(initrd_start);
344 			} else {
345 				initrd_reserve = initrd_end - initrd_start;
346 			}
347 			initrd_below_start_ok = 1;
348 			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
349 
350 			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
351 					initrd_reserve, BOOTMEM_DEFAULT);
352 		}
353 	}
354 #endif
355 
356 	data_resource.start =  virt_to_phys(&data_start);
357 	data_resource.end = virt_to_phys(_end) - 1;
358 	code_resource.start = virt_to_phys(_text);
359 	code_resource.end = virt_to_phys(&data_start)-1;
360 
361 	/* We don't know which region the kernel will be in, so try
362 	 * all of them.
363 	 */
364 	for (i = 0; i < sysram_resource_count; i++) {
365 		struct resource *res = &sysram_resources[i];
366 		request_resource(res, &code_resource);
367 		request_resource(res, &data_resource);
368 	}
369 	request_resource(&sysram_resources[0], &pdcdata_resource);
370 }
371 
372 void free_initmem(void)
373 {
374 	unsigned long addr;
375 	unsigned long init_begin = (unsigned long)__init_begin;
376 	unsigned long init_end = (unsigned long)__init_end;
377 
378 #ifdef CONFIG_DEBUG_KERNEL
379 	/* Attempt to catch anyone trying to execute code here
380 	 * by filling the page with BRK insns.
381 	 */
382 	memset((void *)init_begin, 0x00, init_end - init_begin);
383 	flush_icache_range(init_begin, init_end);
384 #endif
385 
386 	/* align __init_begin and __init_end to page size,
387 	   ignoring linker script where we might have tried to save RAM */
388 	init_begin = PAGE_ALIGN(init_begin);
389 	init_end = PAGE_ALIGN(init_end);
390 	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
391 		ClearPageReserved(virt_to_page(addr));
392 		init_page_count(virt_to_page(addr));
393 		free_page(addr);
394 		num_physpages++;
395 		totalram_pages++;
396 	}
397 
398 	/* set up a new led state on systems shipped LED State panel */
399 	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
400 
401 	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
402 		(init_end - init_begin) >> 10);
403 }
404 
405 
406 #ifdef CONFIG_DEBUG_RODATA
407 void mark_rodata_ro(void)
408 {
409 	/* rodata memory was already mapped with KERNEL_RO access rights by
410            pagetable_init() and map_pages(). No need to do additional stuff here */
411 	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
412 		(unsigned long)(__end_rodata - __start_rodata) >> 10);
413 }
414 #endif
415 
416 
417 /*
418  * Just an arbitrary offset to serve as a "hole" between mapping areas
419  * (between top of physical memory and a potential pcxl dma mapping
420  * area, and below the vmalloc mapping area).
421  *
422  * The current 32K value just means that there will be a 32K "hole"
423  * between mapping areas. That means that  any out-of-bounds memory
424  * accesses will hopefully be caught. The vmalloc() routines leaves
425  * a hole of 4kB between each vmalloced area for the same reason.
426  */
427 
428  /* Leave room for gateway page expansion */
429 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
430 #error KERNEL_MAP_START is in gateway reserved region
431 #endif
432 #define MAP_START (KERNEL_MAP_START)
433 
434 #define VM_MAP_OFFSET  (32*1024)
435 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
436 				     & ~(VM_MAP_OFFSET-1)))
437 
438 void *parisc_vmalloc_start __read_mostly;
439 EXPORT_SYMBOL(parisc_vmalloc_start);
440 
441 #ifdef CONFIG_PA11
442 unsigned long pcxl_dma_start __read_mostly;
443 #endif
444 
445 void __init mem_init(void)
446 {
447 	int codesize, reservedpages, datasize, initsize;
448 
449 	/* Do sanity checks on page table constants */
450 	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
451 	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
452 	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
453 	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
454 			> BITS_PER_LONG);
455 
456 	high_memory = __va((max_pfn << PAGE_SHIFT));
457 
458 #ifndef CONFIG_DISCONTIGMEM
459 	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
460 	totalram_pages += free_all_bootmem();
461 #else
462 	{
463 		int i;
464 
465 		for (i = 0; i < npmem_ranges; i++)
466 			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
467 	}
468 #endif
469 
470 	codesize = (unsigned long)_etext - (unsigned long)_text;
471 	datasize = (unsigned long)_edata - (unsigned long)_etext;
472 	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
473 
474 	reservedpages = 0;
475 {
476 	unsigned long pfn;
477 #ifdef CONFIG_DISCONTIGMEM
478 	int i;
479 
480 	for (i = 0; i < npmem_ranges; i++) {
481 		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
482 			if (PageReserved(pfn_to_page(pfn)))
483 				reservedpages++;
484 		}
485 	}
486 #else /* !CONFIG_DISCONTIGMEM */
487 	for (pfn = 0; pfn < max_pfn; pfn++) {
488 		/*
489 		 * Only count reserved RAM pages
490 		 */
491 		if (PageReserved(pfn_to_page(pfn)))
492 			reservedpages++;
493 	}
494 #endif
495 }
496 
497 #ifdef CONFIG_PA11
498 	if (hppa_dma_ops == &pcxl_dma_ops) {
499 		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
500 		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
501 						+ PCXL_DMA_MAP_SIZE);
502 	} else {
503 		pcxl_dma_start = 0;
504 		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
505 	}
506 #else
507 	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
508 #endif
509 
510 	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
511 		nr_free_pages() << (PAGE_SHIFT-10),
512 		num_physpages << (PAGE_SHIFT-10),
513 		codesize >> 10,
514 		reservedpages << (PAGE_SHIFT-10),
515 		datasize >> 10,
516 		initsize >> 10
517 	);
518 
519 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
520 	printk("virtual kernel memory layout:\n"
521 	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
522 	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
523 	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
524 	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
525 	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
526 
527 	       (void*)VMALLOC_START, (void*)VMALLOC_END,
528 	       (VMALLOC_END - VMALLOC_START) >> 20,
529 
530 	       __va(0), high_memory,
531 	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
532 
533 	       __init_begin, __init_end,
534 	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
535 
536 	       _etext, _edata,
537 	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
538 
539 	       _text, _etext,
540 	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
541 #endif
542 }
543 
544 unsigned long *empty_zero_page __read_mostly;
545 EXPORT_SYMBOL(empty_zero_page);
546 
547 void show_mem(unsigned int filter)
548 {
549 	int i,free = 0,total = 0,reserved = 0;
550 	int shared = 0, cached = 0;
551 
552 	printk(KERN_INFO "Mem-info:\n");
553 	show_free_areas();
554 #ifndef CONFIG_DISCONTIGMEM
555 	i = max_mapnr;
556 	while (i-- > 0) {
557 		total++;
558 		if (PageReserved(mem_map+i))
559 			reserved++;
560 		else if (PageSwapCache(mem_map+i))
561 			cached++;
562 		else if (!page_count(&mem_map[i]))
563 			free++;
564 		else
565 			shared += page_count(&mem_map[i]) - 1;
566 	}
567 #else
568 	for (i = 0; i < npmem_ranges; i++) {
569 		int j;
570 
571 		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
572 			struct page *p;
573 			unsigned long flags;
574 
575 			pgdat_resize_lock(NODE_DATA(i), &flags);
576 			p = nid_page_nr(i, j) - node_start_pfn(i);
577 
578 			total++;
579 			if (PageReserved(p))
580 				reserved++;
581 			else if (PageSwapCache(p))
582 				cached++;
583 			else if (!page_count(p))
584 				free++;
585 			else
586 				shared += page_count(p) - 1;
587 			pgdat_resize_unlock(NODE_DATA(i), &flags);
588         	}
589 	}
590 #endif
591 	printk(KERN_INFO "%d pages of RAM\n", total);
592 	printk(KERN_INFO "%d reserved pages\n", reserved);
593 	printk(KERN_INFO "%d pages shared\n", shared);
594 	printk(KERN_INFO "%d pages swap cached\n", cached);
595 
596 
597 #ifdef CONFIG_DISCONTIGMEM
598 	{
599 		struct zonelist *zl;
600 		int i, j;
601 
602 		for (i = 0; i < npmem_ranges; i++) {
603 			zl = node_zonelist(i, 0);
604 			for (j = 0; j < MAX_NR_ZONES; j++) {
605 				struct zoneref *z;
606 				struct zone *zone;
607 
608 				printk("Zone list for zone %d on node %d: ", j, i);
609 				for_each_zone_zonelist(zone, z, zl, j)
610 					printk("[%d/%s] ", zone_to_nid(zone),
611 								zone->name);
612 				printk("\n");
613 			}
614 		}
615 	}
616 #endif
617 }
618 
619 
620 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
621 {
622 	pgd_t *pg_dir;
623 	pmd_t *pmd;
624 	pte_t *pg_table;
625 	unsigned long end_paddr;
626 	unsigned long start_pmd;
627 	unsigned long start_pte;
628 	unsigned long tmp1;
629 	unsigned long tmp2;
630 	unsigned long address;
631 	unsigned long ro_start;
632 	unsigned long ro_end;
633 	unsigned long fv_addr;
634 	unsigned long gw_addr;
635 	extern const unsigned long fault_vector_20;
636 	extern void * const linux_gateway_page;
637 
638 	ro_start = __pa((unsigned long)_text);
639 	ro_end   = __pa((unsigned long)&data_start);
640 	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
641 	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
642 
643 	end_paddr = start_paddr + size;
644 
645 	pg_dir = pgd_offset_k(start_vaddr);
646 
647 #if PTRS_PER_PMD == 1
648 	start_pmd = 0;
649 #else
650 	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
651 #endif
652 	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
653 
654 	address = start_paddr;
655 	while (address < end_paddr) {
656 #if PTRS_PER_PMD == 1
657 		pmd = (pmd_t *)__pa(pg_dir);
658 #else
659 		pmd = (pmd_t *)pgd_address(*pg_dir);
660 
661 		/*
662 		 * pmd is physical at this point
663 		 */
664 
665 		if (!pmd) {
666 			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
667 			pmd = (pmd_t *) __pa(pmd);
668 		}
669 
670 		pgd_populate(NULL, pg_dir, __va(pmd));
671 #endif
672 		pg_dir++;
673 
674 		/* now change pmd to kernel virtual addresses */
675 
676 		pmd = (pmd_t *)__va(pmd) + start_pmd;
677 		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
678 
679 			/*
680 			 * pg_table is physical at this point
681 			 */
682 
683 			pg_table = (pte_t *)pmd_address(*pmd);
684 			if (!pg_table) {
685 				pg_table = (pte_t *)
686 					alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
687 				pg_table = (pte_t *) __pa(pg_table);
688 			}
689 
690 			pmd_populate_kernel(NULL, pmd, __va(pg_table));
691 
692 			/* now change pg_table to kernel virtual addresses */
693 
694 			pg_table = (pte_t *) __va(pg_table) + start_pte;
695 			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
696 				pte_t pte;
697 
698 				/*
699 				 * Map the fault vector writable so we can
700 				 * write the HPMC checksum.
701 				 */
702 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
703 				if (address >= ro_start && address < ro_end
704 							&& address != fv_addr
705 							&& address != gw_addr)
706 				    pte = __mk_pte(address, PAGE_KERNEL_RO);
707 				else
708 #endif
709 				    pte = __mk_pte(address, pgprot);
710 
711 				if (address >= end_paddr)
712 					pte_val(pte) = 0;
713 
714 				set_pte(pg_table, pte);
715 
716 				address += PAGE_SIZE;
717 			}
718 			start_pte = 0;
719 
720 			if (address >= end_paddr)
721 			    break;
722 		}
723 		start_pmd = 0;
724 	}
725 }
726 
727 /*
728  * pagetable_init() sets up the page tables
729  *
730  * Note that gateway_init() places the Linux gateway page at page 0.
731  * Since gateway pages cannot be dereferenced this has the desirable
732  * side effect of trapping those pesky NULL-reference errors in the
733  * kernel.
734  */
735 static void __init pagetable_init(void)
736 {
737 	int range;
738 
739 	/* Map each physical memory range to its kernel vaddr */
740 
741 	for (range = 0; range < npmem_ranges; range++) {
742 		unsigned long start_paddr;
743 		unsigned long end_paddr;
744 		unsigned long size;
745 
746 		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
747 		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
748 		size = pmem_ranges[range].pages << PAGE_SHIFT;
749 
750 		map_pages((unsigned long)__va(start_paddr), start_paddr,
751 			size, PAGE_KERNEL);
752 	}
753 
754 #ifdef CONFIG_BLK_DEV_INITRD
755 	if (initrd_end && initrd_end > mem_limit) {
756 		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
757 		map_pages(initrd_start, __pa(initrd_start),
758 			initrd_end - initrd_start, PAGE_KERNEL);
759 	}
760 #endif
761 
762 	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
763 	memset(empty_zero_page, 0, PAGE_SIZE);
764 }
765 
766 static void __init gateway_init(void)
767 {
768 	unsigned long linux_gateway_page_addr;
769 	/* FIXME: This is 'const' in order to trick the compiler
770 	   into not treating it as DP-relative data. */
771 	extern void * const linux_gateway_page;
772 
773 	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
774 
775 	/*
776 	 * Setup Linux Gateway page.
777 	 *
778 	 * The Linux gateway page will reside in kernel space (on virtual
779 	 * page 0), so it doesn't need to be aliased into user space.
780 	 */
781 
782 	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
783 		PAGE_SIZE, PAGE_GATEWAY);
784 }
785 
786 #ifdef CONFIG_HPUX
787 void
788 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
789 {
790 	pgd_t *pg_dir;
791 	pmd_t *pmd;
792 	pte_t *pg_table;
793 	unsigned long start_pmd;
794 	unsigned long start_pte;
795 	unsigned long address;
796 	unsigned long hpux_gw_page_addr;
797 	/* FIXME: This is 'const' in order to trick the compiler
798 	   into not treating it as DP-relative data. */
799 	extern void * const hpux_gateway_page;
800 
801 	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
802 
803 	/*
804 	 * Setup HP-UX Gateway page.
805 	 *
806 	 * The HP-UX gateway page resides in the user address space,
807 	 * so it needs to be aliased into each process.
808 	 */
809 
810 	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
811 
812 #if PTRS_PER_PMD == 1
813 	start_pmd = 0;
814 #else
815 	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
816 #endif
817 	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
818 
819 	address = __pa(&hpux_gateway_page);
820 #if PTRS_PER_PMD == 1
821 	pmd = (pmd_t *)__pa(pg_dir);
822 #else
823 	pmd = (pmd_t *) pgd_address(*pg_dir);
824 
825 	/*
826 	 * pmd is physical at this point
827 	 */
828 
829 	if (!pmd) {
830 		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
831 		pmd = (pmd_t *) __pa(pmd);
832 	}
833 
834 	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
835 #endif
836 	/* now change pmd to kernel virtual addresses */
837 
838 	pmd = (pmd_t *)__va(pmd) + start_pmd;
839 
840 	/*
841 	 * pg_table is physical at this point
842 	 */
843 
844 	pg_table = (pte_t *) pmd_address(*pmd);
845 	if (!pg_table)
846 		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
847 
848 	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
849 
850 	/* now change pg_table to kernel virtual addresses */
851 
852 	pg_table = (pte_t *) __va(pg_table) + start_pte;
853 	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
854 }
855 EXPORT_SYMBOL(map_hpux_gateway_page);
856 #endif
857 
858 void __init paging_init(void)
859 {
860 	int i;
861 
862 	setup_bootmem();
863 	pagetable_init();
864 	gateway_init();
865 	flush_cache_all_local(); /* start with known state */
866 	flush_tlb_all_local(NULL);
867 
868 	for (i = 0; i < npmem_ranges; i++) {
869 		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
870 
871 		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
872 
873 #ifdef CONFIG_DISCONTIGMEM
874 		/* Need to initialize the pfnnid_map before we can initialize
875 		   the zone */
876 		{
877 		    int j;
878 		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
879 			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
880 			 j++) {
881 			pfnnid_map[j] = i;
882 		    }
883 		}
884 #endif
885 
886 		free_area_init_node(i, zones_size,
887 				pmem_ranges[i].start_pfn, NULL);
888 	}
889 }
890 
891 #ifdef CONFIG_PA20
892 
893 /*
894  * Currently, all PA20 chips have 18 bit protection IDs, which is the
895  * limiting factor (space ids are 32 bits).
896  */
897 
898 #define NR_SPACE_IDS 262144
899 
900 #else
901 
902 /*
903  * Currently we have a one-to-one relationship between space IDs and
904  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
905  * support 15 bit protection IDs, so that is the limiting factor.
906  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
907  * probably not worth the effort for a special case here.
908  */
909 
910 #define NR_SPACE_IDS 32768
911 
912 #endif  /* !CONFIG_PA20 */
913 
914 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
915 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
916 
917 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
918 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
919 static unsigned long space_id_index;
920 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
921 static unsigned long dirty_space_ids = 0;
922 
923 static DEFINE_SPINLOCK(sid_lock);
924 
925 unsigned long alloc_sid(void)
926 {
927 	unsigned long index;
928 
929 	spin_lock(&sid_lock);
930 
931 	if (free_space_ids == 0) {
932 		if (dirty_space_ids != 0) {
933 			spin_unlock(&sid_lock);
934 			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
935 			spin_lock(&sid_lock);
936 		}
937 		BUG_ON(free_space_ids == 0);
938 	}
939 
940 	free_space_ids--;
941 
942 	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
943 	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
944 	space_id_index = index;
945 
946 	spin_unlock(&sid_lock);
947 
948 	return index << SPACEID_SHIFT;
949 }
950 
951 void free_sid(unsigned long spaceid)
952 {
953 	unsigned long index = spaceid >> SPACEID_SHIFT;
954 	unsigned long *dirty_space_offset;
955 
956 	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
957 	index &= (BITS_PER_LONG - 1);
958 
959 	spin_lock(&sid_lock);
960 
961 	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
962 
963 	*dirty_space_offset |= (1L << index);
964 	dirty_space_ids++;
965 
966 	spin_unlock(&sid_lock);
967 }
968 
969 
970 #ifdef CONFIG_SMP
971 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
972 {
973 	int i;
974 
975 	/* NOTE: sid_lock must be held upon entry */
976 
977 	*ndirtyptr = dirty_space_ids;
978 	if (dirty_space_ids != 0) {
979 	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
980 		dirty_array[i] = dirty_space_id[i];
981 		dirty_space_id[i] = 0;
982 	    }
983 	    dirty_space_ids = 0;
984 	}
985 
986 	return;
987 }
988 
989 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
990 {
991 	int i;
992 
993 	/* NOTE: sid_lock must be held upon entry */
994 
995 	if (ndirty != 0) {
996 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
997 			space_id[i] ^= dirty_array[i];
998 		}
999 
1000 		free_space_ids += ndirty;
1001 		space_id_index = 0;
1002 	}
1003 }
1004 
1005 #else /* CONFIG_SMP */
1006 
1007 static void recycle_sids(void)
1008 {
1009 	int i;
1010 
1011 	/* NOTE: sid_lock must be held upon entry */
1012 
1013 	if (dirty_space_ids != 0) {
1014 		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1015 			space_id[i] ^= dirty_space_id[i];
1016 			dirty_space_id[i] = 0;
1017 		}
1018 
1019 		free_space_ids += dirty_space_ids;
1020 		dirty_space_ids = 0;
1021 		space_id_index = 0;
1022 	}
1023 }
1024 #endif
1025 
1026 /*
1027  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1028  * purged, we can safely reuse the space ids that were released but
1029  * not flushed from the tlb.
1030  */
1031 
1032 #ifdef CONFIG_SMP
1033 
1034 static unsigned long recycle_ndirty;
1035 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1036 static unsigned int recycle_inuse;
1037 
1038 void flush_tlb_all(void)
1039 {
1040 	int do_recycle;
1041 
1042 	do_recycle = 0;
1043 	spin_lock(&sid_lock);
1044 	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1045 	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1046 	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1047 	    recycle_inuse++;
1048 	    do_recycle++;
1049 	}
1050 	spin_unlock(&sid_lock);
1051 	on_each_cpu(flush_tlb_all_local, NULL, 1);
1052 	if (do_recycle) {
1053 	    spin_lock(&sid_lock);
1054 	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1055 	    recycle_inuse = 0;
1056 	    spin_unlock(&sid_lock);
1057 	}
1058 }
1059 #else
1060 void flush_tlb_all(void)
1061 {
1062 	spin_lock(&sid_lock);
1063 	flush_tlb_all_local(NULL);
1064 	recycle_sids();
1065 	spin_unlock(&sid_lock);
1066 }
1067 #endif
1068 
1069 #ifdef CONFIG_BLK_DEV_INITRD
1070 void free_initrd_mem(unsigned long start, unsigned long end)
1071 {
1072 	if (start >= end)
1073 		return;
1074 	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1075 	for (; start < end; start += PAGE_SIZE) {
1076 		ClearPageReserved(virt_to_page(start));
1077 		init_page_count(virt_to_page(start));
1078 		free_page(start);
1079 		num_physpages++;
1080 		totalram_pages++;
1081 	}
1082 }
1083 #endif
1084