1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/parisc/mm/init.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright 1999 SuSE GmbH 7 * changed by Philipp Rumpf 8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 9 * Copyright 2004 Randolph Chung (tausq@debian.org) 10 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 11 * 12 */ 13 14 15 #include <linux/module.h> 16 #include <linux/mm.h> 17 #include <linux/bootmem.h> 18 #include <linux/memblock.h> 19 #include <linux/gfp.h> 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 23 #include <linux/initrd.h> 24 #include <linux/swap.h> 25 #include <linux/unistd.h> 26 #include <linux/nodemask.h> /* for node_online_map */ 27 #include <linux/pagemap.h> /* for release_pages */ 28 #include <linux/compat.h> 29 30 #include <asm/pgalloc.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlb.h> 33 #include <asm/pdc_chassis.h> 34 #include <asm/mmzone.h> 35 #include <asm/sections.h> 36 #include <asm/msgbuf.h> 37 38 extern int data_start; 39 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ 40 41 #if CONFIG_PGTABLE_LEVELS == 3 42 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout 43 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually 44 * guarantee that global objects will be laid out in memory in the same order 45 * as the order of declaration, so put these in different sections and use 46 * the linker script to order them. */ 47 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); 48 #endif 49 50 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); 51 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); 52 53 #ifdef CONFIG_DISCONTIGMEM 54 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 55 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 56 #endif 57 58 static struct resource data_resource = { 59 .name = "Kernel data", 60 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 61 }; 62 63 static struct resource code_resource = { 64 .name = "Kernel code", 65 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 66 }; 67 68 static struct resource pdcdata_resource = { 69 .name = "PDC data (Page Zero)", 70 .start = 0, 71 .end = 0x9ff, 72 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 73 }; 74 75 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 76 77 /* The following array is initialized from the firmware specific 78 * information retrieved in kernel/inventory.c. 79 */ 80 81 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 82 int npmem_ranges __read_mostly; 83 84 /* 85 * get_memblock() allocates pages via memblock. 86 * We can't use memblock_find_in_range(0, KERNEL_INITIAL_SIZE) here since it 87 * doesn't allocate from bottom to top which is needed because we only created 88 * the initial mapping up to KERNEL_INITIAL_SIZE in the assembly bootup code. 89 */ 90 static void * __init get_memblock(unsigned long size) 91 { 92 static phys_addr_t search_addr __initdata; 93 phys_addr_t phys; 94 95 if (!search_addr) 96 search_addr = PAGE_ALIGN(__pa((unsigned long) &_end)); 97 search_addr = ALIGN(search_addr, size); 98 while (!memblock_is_region_memory(search_addr, size) || 99 memblock_is_region_reserved(search_addr, size)) { 100 search_addr += size; 101 } 102 phys = search_addr; 103 104 if (phys) 105 memblock_reserve(phys, size); 106 else 107 panic("get_memblock() failed.\n"); 108 109 memset(__va(phys), 0, size); 110 111 return __va(phys); 112 } 113 114 #ifdef CONFIG_64BIT 115 #define MAX_MEM (~0UL) 116 #else /* !CONFIG_64BIT */ 117 #define MAX_MEM (3584U*1024U*1024U) 118 #endif /* !CONFIG_64BIT */ 119 120 static unsigned long mem_limit __read_mostly = MAX_MEM; 121 122 static void __init mem_limit_func(void) 123 { 124 char *cp, *end; 125 unsigned long limit; 126 127 /* We need this before __setup() functions are called */ 128 129 limit = MAX_MEM; 130 for (cp = boot_command_line; *cp; ) { 131 if (memcmp(cp, "mem=", 4) == 0) { 132 cp += 4; 133 limit = memparse(cp, &end); 134 if (end != cp) 135 break; 136 cp = end; 137 } else { 138 while (*cp != ' ' && *cp) 139 ++cp; 140 while (*cp == ' ') 141 ++cp; 142 } 143 } 144 145 if (limit < mem_limit) 146 mem_limit = limit; 147 } 148 149 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 150 151 static void __init setup_bootmem(void) 152 { 153 unsigned long mem_max; 154 #ifndef CONFIG_DISCONTIGMEM 155 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 156 int npmem_holes; 157 #endif 158 int i, sysram_resource_count; 159 160 disable_sr_hashing(); /* Turn off space register hashing */ 161 162 /* 163 * Sort the ranges. Since the number of ranges is typically 164 * small, and performance is not an issue here, just do 165 * a simple insertion sort. 166 */ 167 168 for (i = 1; i < npmem_ranges; i++) { 169 int j; 170 171 for (j = i; j > 0; j--) { 172 unsigned long tmp; 173 174 if (pmem_ranges[j-1].start_pfn < 175 pmem_ranges[j].start_pfn) { 176 177 break; 178 } 179 tmp = pmem_ranges[j-1].start_pfn; 180 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 181 pmem_ranges[j].start_pfn = tmp; 182 tmp = pmem_ranges[j-1].pages; 183 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 184 pmem_ranges[j].pages = tmp; 185 } 186 } 187 188 #ifndef CONFIG_DISCONTIGMEM 189 /* 190 * Throw out ranges that are too far apart (controlled by 191 * MAX_GAP). 192 */ 193 194 for (i = 1; i < npmem_ranges; i++) { 195 if (pmem_ranges[i].start_pfn - 196 (pmem_ranges[i-1].start_pfn + 197 pmem_ranges[i-1].pages) > MAX_GAP) { 198 npmem_ranges = i; 199 printk("Large gap in memory detected (%ld pages). " 200 "Consider turning on CONFIG_DISCONTIGMEM\n", 201 pmem_ranges[i].start_pfn - 202 (pmem_ranges[i-1].start_pfn + 203 pmem_ranges[i-1].pages)); 204 break; 205 } 206 } 207 #endif 208 209 /* Print the memory ranges */ 210 pr_info("Memory Ranges:\n"); 211 212 for (i = 0; i < npmem_ranges; i++) { 213 struct resource *res = &sysram_resources[i]; 214 unsigned long start; 215 unsigned long size; 216 217 size = (pmem_ranges[i].pages << PAGE_SHIFT); 218 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 219 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 220 i, start, start + (size - 1), size >> 20); 221 222 /* request memory resource */ 223 res->name = "System RAM"; 224 res->start = start; 225 res->end = start + size - 1; 226 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 227 request_resource(&iomem_resource, res); 228 } 229 230 sysram_resource_count = npmem_ranges; 231 232 /* 233 * For 32 bit kernels we limit the amount of memory we can 234 * support, in order to preserve enough kernel address space 235 * for other purposes. For 64 bit kernels we don't normally 236 * limit the memory, but this mechanism can be used to 237 * artificially limit the amount of memory (and it is written 238 * to work with multiple memory ranges). 239 */ 240 241 mem_limit_func(); /* check for "mem=" argument */ 242 243 mem_max = 0; 244 for (i = 0; i < npmem_ranges; i++) { 245 unsigned long rsize; 246 247 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 248 if ((mem_max + rsize) > mem_limit) { 249 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 250 if (mem_max == mem_limit) 251 npmem_ranges = i; 252 else { 253 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 254 - (mem_max >> PAGE_SHIFT); 255 npmem_ranges = i + 1; 256 mem_max = mem_limit; 257 } 258 break; 259 } 260 mem_max += rsize; 261 } 262 263 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 264 265 #ifndef CONFIG_DISCONTIGMEM 266 /* Merge the ranges, keeping track of the holes */ 267 268 { 269 unsigned long end_pfn; 270 unsigned long hole_pages; 271 272 npmem_holes = 0; 273 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 274 for (i = 1; i < npmem_ranges; i++) { 275 276 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 277 if (hole_pages) { 278 pmem_holes[npmem_holes].start_pfn = end_pfn; 279 pmem_holes[npmem_holes++].pages = hole_pages; 280 end_pfn += hole_pages; 281 } 282 end_pfn += pmem_ranges[i].pages; 283 } 284 285 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 286 npmem_ranges = 1; 287 } 288 #endif 289 290 #ifdef CONFIG_DISCONTIGMEM 291 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 292 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 293 } 294 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 295 296 for (i = 0; i < npmem_ranges; i++) { 297 node_set_state(i, N_NORMAL_MEMORY); 298 node_set_online(i); 299 } 300 #endif 301 302 /* 303 * Initialize and free the full range of memory in each range. 304 */ 305 306 max_pfn = 0; 307 for (i = 0; i < npmem_ranges; i++) { 308 unsigned long start_pfn; 309 unsigned long npages; 310 unsigned long start; 311 unsigned long size; 312 313 start_pfn = pmem_ranges[i].start_pfn; 314 npages = pmem_ranges[i].pages; 315 316 start = start_pfn << PAGE_SHIFT; 317 size = npages << PAGE_SHIFT; 318 319 /* add system RAM memblock */ 320 memblock_add(start, size); 321 322 if ((start_pfn + npages) > max_pfn) 323 max_pfn = start_pfn + npages; 324 } 325 326 /* IOMMU is always used to access "high mem" on those boxes 327 * that can support enough mem that a PCI device couldn't 328 * directly DMA to any physical addresses. 329 * ISA DMA support will need to revisit this. 330 */ 331 max_low_pfn = max_pfn; 332 333 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 334 335 #define PDC_CONSOLE_IO_IODC_SIZE 32768 336 337 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free + 338 PDC_CONSOLE_IO_IODC_SIZE)); 339 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START), 340 (unsigned long)(_end - KERNEL_BINARY_TEXT_START)); 341 342 #ifndef CONFIG_DISCONTIGMEM 343 344 /* reserve the holes */ 345 346 for (i = 0; i < npmem_holes; i++) { 347 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT), 348 (pmem_holes[i].pages << PAGE_SHIFT)); 349 } 350 #endif 351 352 #ifdef CONFIG_BLK_DEV_INITRD 353 if (initrd_start) { 354 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 355 if (__pa(initrd_start) < mem_max) { 356 unsigned long initrd_reserve; 357 358 if (__pa(initrd_end) > mem_max) { 359 initrd_reserve = mem_max - __pa(initrd_start); 360 } else { 361 initrd_reserve = initrd_end - initrd_start; 362 } 363 initrd_below_start_ok = 1; 364 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 365 366 memblock_reserve(__pa(initrd_start), initrd_reserve); 367 } 368 } 369 #endif 370 371 data_resource.start = virt_to_phys(&data_start); 372 data_resource.end = virt_to_phys(_end) - 1; 373 code_resource.start = virt_to_phys(_text); 374 code_resource.end = virt_to_phys(&data_start)-1; 375 376 /* We don't know which region the kernel will be in, so try 377 * all of them. 378 */ 379 for (i = 0; i < sysram_resource_count; i++) { 380 struct resource *res = &sysram_resources[i]; 381 request_resource(res, &code_resource); 382 request_resource(res, &data_resource); 383 } 384 request_resource(&sysram_resources[0], &pdcdata_resource); 385 386 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */ 387 pdc_pdt_init(); 388 } 389 390 static int __init parisc_text_address(unsigned long vaddr) 391 { 392 static unsigned long head_ptr __initdata; 393 394 if (!head_ptr) 395 head_ptr = PAGE_MASK & (unsigned long) 396 dereference_function_descriptor(&parisc_kernel_start); 397 398 return core_kernel_text(vaddr) || vaddr == head_ptr; 399 } 400 401 static void __init map_pages(unsigned long start_vaddr, 402 unsigned long start_paddr, unsigned long size, 403 pgprot_t pgprot, int force) 404 { 405 pgd_t *pg_dir; 406 pmd_t *pmd; 407 pte_t *pg_table; 408 unsigned long end_paddr; 409 unsigned long start_pmd; 410 unsigned long start_pte; 411 unsigned long tmp1; 412 unsigned long tmp2; 413 unsigned long address; 414 unsigned long vaddr; 415 unsigned long ro_start; 416 unsigned long ro_end; 417 unsigned long kernel_end; 418 419 ro_start = __pa((unsigned long)_text); 420 ro_end = __pa((unsigned long)&data_start); 421 kernel_end = __pa((unsigned long)&_end); 422 423 end_paddr = start_paddr + size; 424 425 pg_dir = pgd_offset_k(start_vaddr); 426 427 #if PTRS_PER_PMD == 1 428 start_pmd = 0; 429 #else 430 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 431 #endif 432 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 433 434 address = start_paddr; 435 vaddr = start_vaddr; 436 while (address < end_paddr) { 437 #if PTRS_PER_PMD == 1 438 pmd = (pmd_t *)__pa(pg_dir); 439 #else 440 pmd = (pmd_t *)pgd_address(*pg_dir); 441 442 /* 443 * pmd is physical at this point 444 */ 445 446 if (!pmd) { 447 pmd = (pmd_t *) get_memblock(PAGE_SIZE << PMD_ORDER); 448 pmd = (pmd_t *) __pa(pmd); 449 } 450 451 pgd_populate(NULL, pg_dir, __va(pmd)); 452 #endif 453 pg_dir++; 454 455 /* now change pmd to kernel virtual addresses */ 456 457 pmd = (pmd_t *)__va(pmd) + start_pmd; 458 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { 459 460 /* 461 * pg_table is physical at this point 462 */ 463 464 pg_table = (pte_t *)pmd_address(*pmd); 465 if (!pg_table) { 466 pg_table = (pte_t *) get_memblock(PAGE_SIZE); 467 pg_table = (pte_t *) __pa(pg_table); 468 } 469 470 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 471 472 /* now change pg_table to kernel virtual addresses */ 473 474 pg_table = (pte_t *) __va(pg_table) + start_pte; 475 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { 476 pte_t pte; 477 478 if (force) 479 pte = __mk_pte(address, pgprot); 480 else if (parisc_text_address(vaddr)) { 481 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 482 if (address >= ro_start && address < kernel_end) 483 pte = pte_mkhuge(pte); 484 } 485 else 486 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 487 if (address >= ro_start && address < ro_end) { 488 pte = __mk_pte(address, PAGE_KERNEL_EXEC); 489 pte = pte_mkhuge(pte); 490 } else 491 #endif 492 { 493 pte = __mk_pte(address, pgprot); 494 if (address >= ro_start && address < kernel_end) 495 pte = pte_mkhuge(pte); 496 } 497 498 if (address >= end_paddr) { 499 if (force) 500 break; 501 else 502 pte_val(pte) = 0; 503 } 504 505 set_pte(pg_table, pte); 506 507 address += PAGE_SIZE; 508 vaddr += PAGE_SIZE; 509 } 510 start_pte = 0; 511 512 if (address >= end_paddr) 513 break; 514 } 515 start_pmd = 0; 516 } 517 } 518 519 void free_initmem(void) 520 { 521 unsigned long init_begin = (unsigned long)__init_begin; 522 unsigned long init_end = (unsigned long)__init_end; 523 524 /* The init text pages are marked R-X. We have to 525 * flush the icache and mark them RW- 526 * 527 * This is tricky, because map_pages is in the init section. 528 * Do a dummy remap of the data section first (the data 529 * section is already PAGE_KERNEL) to pull in the TLB entries 530 * for map_kernel */ 531 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 532 PAGE_KERNEL_RWX, 1); 533 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute 534 * map_pages */ 535 map_pages(init_begin, __pa(init_begin), init_end - init_begin, 536 PAGE_KERNEL, 1); 537 538 /* force the kernel to see the new TLB entries */ 539 __flush_tlb_range(0, init_begin, init_end); 540 541 /* finally dump all the instructions which were cached, since the 542 * pages are no-longer executable */ 543 flush_icache_range(init_begin, init_end); 544 545 free_initmem_default(POISON_FREE_INITMEM); 546 547 /* set up a new led state on systems shipped LED State panel */ 548 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 549 } 550 551 552 #ifdef CONFIG_STRICT_KERNEL_RWX 553 void mark_rodata_ro(void) 554 { 555 /* rodata memory was already mapped with KERNEL_RO access rights by 556 pagetable_init() and map_pages(). No need to do additional stuff here */ 557 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 558 (unsigned long)(__end_rodata - __start_rodata) >> 10); 559 } 560 #endif 561 562 563 /* 564 * Just an arbitrary offset to serve as a "hole" between mapping areas 565 * (between top of physical memory and a potential pcxl dma mapping 566 * area, and below the vmalloc mapping area). 567 * 568 * The current 32K value just means that there will be a 32K "hole" 569 * between mapping areas. That means that any out-of-bounds memory 570 * accesses will hopefully be caught. The vmalloc() routines leaves 571 * a hole of 4kB between each vmalloced area for the same reason. 572 */ 573 574 /* Leave room for gateway page expansion */ 575 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 576 #error KERNEL_MAP_START is in gateway reserved region 577 #endif 578 #define MAP_START (KERNEL_MAP_START) 579 580 #define VM_MAP_OFFSET (32*1024) 581 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 582 & ~(VM_MAP_OFFSET-1))) 583 584 void *parisc_vmalloc_start __read_mostly; 585 EXPORT_SYMBOL(parisc_vmalloc_start); 586 587 #ifdef CONFIG_PA11 588 unsigned long pcxl_dma_start __read_mostly; 589 #endif 590 591 void __init mem_init(void) 592 { 593 /* Do sanity checks on IPC (compat) structures */ 594 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); 595 #ifndef CONFIG_64BIT 596 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); 597 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); 598 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); 599 #endif 600 #ifdef CONFIG_COMPAT 601 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); 602 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); 603 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); 604 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); 605 #endif 606 607 /* Do sanity checks on page table constants */ 608 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); 609 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); 610 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); 611 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD 612 > BITS_PER_LONG); 613 614 high_memory = __va((max_pfn << PAGE_SHIFT)); 615 set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1); 616 free_all_bootmem(); 617 618 #ifdef CONFIG_PA11 619 if (hppa_dma_ops == &pcxl_dma_ops) { 620 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 621 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start 622 + PCXL_DMA_MAP_SIZE); 623 } else { 624 pcxl_dma_start = 0; 625 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 626 } 627 #else 628 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); 629 #endif 630 631 mem_init_print_info(NULL); 632 633 #if 0 634 /* 635 * Do not expose the virtual kernel memory layout to userspace. 636 * But keep code for debugging purposes. 637 */ 638 printk("virtual kernel memory layout:\n" 639 " vmalloc : 0x%px - 0x%px (%4ld MB)\n" 640 " memory : 0x%px - 0x%px (%4ld MB)\n" 641 " .init : 0x%px - 0x%px (%4ld kB)\n" 642 " .data : 0x%px - 0x%px (%4ld kB)\n" 643 " .text : 0x%px - 0x%px (%4ld kB)\n", 644 645 (void*)VMALLOC_START, (void*)VMALLOC_END, 646 (VMALLOC_END - VMALLOC_START) >> 20, 647 648 __va(0), high_memory, 649 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 650 651 __init_begin, __init_end, 652 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 653 654 _etext, _edata, 655 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 656 657 _text, _etext, 658 ((unsigned long)_etext - (unsigned long)_text) >> 10); 659 #endif 660 } 661 662 unsigned long *empty_zero_page __read_mostly; 663 EXPORT_SYMBOL(empty_zero_page); 664 665 /* 666 * pagetable_init() sets up the page tables 667 * 668 * Note that gateway_init() places the Linux gateway page at page 0. 669 * Since gateway pages cannot be dereferenced this has the desirable 670 * side effect of trapping those pesky NULL-reference errors in the 671 * kernel. 672 */ 673 static void __init pagetable_init(void) 674 { 675 int range; 676 677 /* Map each physical memory range to its kernel vaddr */ 678 679 for (range = 0; range < npmem_ranges; range++) { 680 unsigned long start_paddr; 681 unsigned long end_paddr; 682 unsigned long size; 683 684 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 685 size = pmem_ranges[range].pages << PAGE_SHIFT; 686 end_paddr = start_paddr + size; 687 688 map_pages((unsigned long)__va(start_paddr), start_paddr, 689 size, PAGE_KERNEL, 0); 690 } 691 692 #ifdef CONFIG_BLK_DEV_INITRD 693 if (initrd_end && initrd_end > mem_limit) { 694 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 695 map_pages(initrd_start, __pa(initrd_start), 696 initrd_end - initrd_start, PAGE_KERNEL, 0); 697 } 698 #endif 699 700 empty_zero_page = get_memblock(PAGE_SIZE); 701 } 702 703 static void __init gateway_init(void) 704 { 705 unsigned long linux_gateway_page_addr; 706 /* FIXME: This is 'const' in order to trick the compiler 707 into not treating it as DP-relative data. */ 708 extern void * const linux_gateway_page; 709 710 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 711 712 /* 713 * Setup Linux Gateway page. 714 * 715 * The Linux gateway page will reside in kernel space (on virtual 716 * page 0), so it doesn't need to be aliased into user space. 717 */ 718 719 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 720 PAGE_SIZE, PAGE_GATEWAY, 1); 721 } 722 723 void __init paging_init(void) 724 { 725 int i; 726 727 setup_bootmem(); 728 pagetable_init(); 729 gateway_init(); 730 flush_cache_all_local(); /* start with known state */ 731 flush_tlb_all_local(NULL); 732 733 for (i = 0; i < npmem_ranges; i++) { 734 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 735 736 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 737 738 #ifdef CONFIG_DISCONTIGMEM 739 /* Need to initialize the pfnnid_map before we can initialize 740 the zone */ 741 { 742 int j; 743 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 744 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 745 j++) { 746 pfnnid_map[j] = i; 747 } 748 } 749 #endif 750 751 free_area_init_node(i, zones_size, 752 pmem_ranges[i].start_pfn, NULL); 753 } 754 } 755 756 #ifdef CONFIG_PA20 757 758 /* 759 * Currently, all PA20 chips have 18 bit protection IDs, which is the 760 * limiting factor (space ids are 32 bits). 761 */ 762 763 #define NR_SPACE_IDS 262144 764 765 #else 766 767 /* 768 * Currently we have a one-to-one relationship between space IDs and 769 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 770 * support 15 bit protection IDs, so that is the limiting factor. 771 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's 772 * probably not worth the effort for a special case here. 773 */ 774 775 #define NR_SPACE_IDS 32768 776 777 #endif /* !CONFIG_PA20 */ 778 779 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 780 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 781 782 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 783 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 784 static unsigned long space_id_index; 785 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 786 static unsigned long dirty_space_ids = 0; 787 788 static DEFINE_SPINLOCK(sid_lock); 789 790 unsigned long alloc_sid(void) 791 { 792 unsigned long index; 793 794 spin_lock(&sid_lock); 795 796 if (free_space_ids == 0) { 797 if (dirty_space_ids != 0) { 798 spin_unlock(&sid_lock); 799 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 800 spin_lock(&sid_lock); 801 } 802 BUG_ON(free_space_ids == 0); 803 } 804 805 free_space_ids--; 806 807 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 808 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 809 space_id_index = index; 810 811 spin_unlock(&sid_lock); 812 813 return index << SPACEID_SHIFT; 814 } 815 816 void free_sid(unsigned long spaceid) 817 { 818 unsigned long index = spaceid >> SPACEID_SHIFT; 819 unsigned long *dirty_space_offset; 820 821 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 822 index &= (BITS_PER_LONG - 1); 823 824 spin_lock(&sid_lock); 825 826 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 827 828 *dirty_space_offset |= (1L << index); 829 dirty_space_ids++; 830 831 spin_unlock(&sid_lock); 832 } 833 834 835 #ifdef CONFIG_SMP 836 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 837 { 838 int i; 839 840 /* NOTE: sid_lock must be held upon entry */ 841 842 *ndirtyptr = dirty_space_ids; 843 if (dirty_space_ids != 0) { 844 for (i = 0; i < SID_ARRAY_SIZE; i++) { 845 dirty_array[i] = dirty_space_id[i]; 846 dirty_space_id[i] = 0; 847 } 848 dirty_space_ids = 0; 849 } 850 851 return; 852 } 853 854 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 855 { 856 int i; 857 858 /* NOTE: sid_lock must be held upon entry */ 859 860 if (ndirty != 0) { 861 for (i = 0; i < SID_ARRAY_SIZE; i++) { 862 space_id[i] ^= dirty_array[i]; 863 } 864 865 free_space_ids += ndirty; 866 space_id_index = 0; 867 } 868 } 869 870 #else /* CONFIG_SMP */ 871 872 static void recycle_sids(void) 873 { 874 int i; 875 876 /* NOTE: sid_lock must be held upon entry */ 877 878 if (dirty_space_ids != 0) { 879 for (i = 0; i < SID_ARRAY_SIZE; i++) { 880 space_id[i] ^= dirty_space_id[i]; 881 dirty_space_id[i] = 0; 882 } 883 884 free_space_ids += dirty_space_ids; 885 dirty_space_ids = 0; 886 space_id_index = 0; 887 } 888 } 889 #endif 890 891 /* 892 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 893 * purged, we can safely reuse the space ids that were released but 894 * not flushed from the tlb. 895 */ 896 897 #ifdef CONFIG_SMP 898 899 static unsigned long recycle_ndirty; 900 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 901 static unsigned int recycle_inuse; 902 903 void flush_tlb_all(void) 904 { 905 int do_recycle; 906 907 __inc_irq_stat(irq_tlb_count); 908 do_recycle = 0; 909 spin_lock(&sid_lock); 910 if (dirty_space_ids > RECYCLE_THRESHOLD) { 911 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 912 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 913 recycle_inuse++; 914 do_recycle++; 915 } 916 spin_unlock(&sid_lock); 917 on_each_cpu(flush_tlb_all_local, NULL, 1); 918 if (do_recycle) { 919 spin_lock(&sid_lock); 920 recycle_sids(recycle_ndirty,recycle_dirty_array); 921 recycle_inuse = 0; 922 spin_unlock(&sid_lock); 923 } 924 } 925 #else 926 void flush_tlb_all(void) 927 { 928 __inc_irq_stat(irq_tlb_count); 929 spin_lock(&sid_lock); 930 flush_tlb_all_local(NULL); 931 recycle_sids(); 932 spin_unlock(&sid_lock); 933 } 934 #endif 935 936 #ifdef CONFIG_BLK_DEV_INITRD 937 void free_initrd_mem(unsigned long start, unsigned long end) 938 { 939 free_reserved_area((void *)start, (void *)end, -1, "initrd"); 940 } 941 #endif 942