xref: /openbmc/linux/arch/parisc/mm/hugetlbpage.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PARISC64 Huge TLB page support.
4  *
5  * This parisc implementation is heavily based on the SPARC and x86 code.
6  *
7  * Copyright (C) 2015 Helge Deller <deller@gmx.de>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/sched/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/sysctl.h>
16 
17 #include <asm/mman.h>
18 #include <asm/tlb.h>
19 #include <asm/tlbflush.h>
20 #include <asm/cacheflush.h>
21 #include <asm/mmu_context.h>
22 
23 
24 unsigned long
25 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
26 		unsigned long len, unsigned long pgoff, unsigned long flags)
27 {
28 	struct hstate *h = hstate_file(file);
29 
30 	if (len & ~huge_page_mask(h))
31 		return -EINVAL;
32 	if (len > TASK_SIZE)
33 		return -ENOMEM;
34 
35 	if (flags & MAP_FIXED)
36 		if (prepare_hugepage_range(file, addr, len))
37 			return -EINVAL;
38 
39 	if (addr)
40 		addr = ALIGN(addr, huge_page_size(h));
41 
42 	/* we need to make sure the colouring is OK */
43 	return arch_get_unmapped_area(file, addr, len, pgoff, flags);
44 }
45 
46 
47 pte_t *huge_pte_alloc(struct mm_struct *mm,
48 			unsigned long addr, unsigned long sz)
49 {
50 	pgd_t *pgd;
51 	p4d_t *p4d;
52 	pud_t *pud;
53 	pmd_t *pmd;
54 	pte_t *pte = NULL;
55 
56 	/* We must align the address, because our caller will run
57 	 * set_huge_pte_at() on whatever we return, which writes out
58 	 * all of the sub-ptes for the hugepage range.  So we have
59 	 * to give it the first such sub-pte.
60 	 */
61 	addr &= HPAGE_MASK;
62 
63 	pgd = pgd_offset(mm, addr);
64 	p4d = p4d_offset(pgd, addr);
65 	pud = pud_alloc(mm, p4d, addr);
66 	if (pud) {
67 		pmd = pmd_alloc(mm, pud, addr);
68 		if (pmd)
69 			pte = pte_alloc_map(mm, pmd, addr);
70 	}
71 	return pte;
72 }
73 
74 pte_t *huge_pte_offset(struct mm_struct *mm,
75 		       unsigned long addr, unsigned long sz)
76 {
77 	pgd_t *pgd;
78 	p4d_t *p4d;
79 	pud_t *pud;
80 	pmd_t *pmd;
81 	pte_t *pte = NULL;
82 
83 	addr &= HPAGE_MASK;
84 
85 	pgd = pgd_offset(mm, addr);
86 	if (!pgd_none(*pgd)) {
87 		p4d = p4d_offset(pgd, addr);
88 		if (!p4d_none(*p4d)) {
89 			pud = pud_offset(p4d, addr);
90 			if (!pud_none(*pud)) {
91 				pmd = pmd_offset(pud, addr);
92 				if (!pmd_none(*pmd))
93 					pte = pte_offset_map(pmd, addr);
94 			}
95 		}
96 	}
97 	return pte;
98 }
99 
100 /* Purge data and instruction TLB entries.  Must be called holding
101  * the pa_tlb_lock.  The TLB purge instructions are slow on SMP
102  * machines since the purge must be broadcast to all CPUs.
103  */
104 static inline void purge_tlb_entries_huge(struct mm_struct *mm, unsigned long addr)
105 {
106 	int i;
107 
108 	/* We may use multiple physical huge pages (e.g. 2x1 MB) to emulate
109 	 * Linux standard huge pages (e.g. 2 MB) */
110 	BUILD_BUG_ON(REAL_HPAGE_SHIFT > HPAGE_SHIFT);
111 
112 	addr &= HPAGE_MASK;
113 	addr |= _HUGE_PAGE_SIZE_ENCODING_DEFAULT;
114 
115 	for (i = 0; i < (1 << (HPAGE_SHIFT-REAL_HPAGE_SHIFT)); i++) {
116 		purge_tlb_entries(mm, addr);
117 		addr += (1UL << REAL_HPAGE_SHIFT);
118 	}
119 }
120 
121 /* __set_huge_pte_at() must be called holding the pa_tlb_lock. */
122 static void __set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
123 		     pte_t *ptep, pte_t entry)
124 {
125 	unsigned long addr_start;
126 	int i;
127 
128 	addr &= HPAGE_MASK;
129 	addr_start = addr;
130 
131 	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
132 		set_pte(ptep, entry);
133 		ptep++;
134 
135 		addr += PAGE_SIZE;
136 		pte_val(entry) += PAGE_SIZE;
137 	}
138 
139 	purge_tlb_entries_huge(mm, addr_start);
140 }
141 
142 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
143 		     pte_t *ptep, pte_t entry)
144 {
145 	unsigned long flags;
146 
147 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
148 	__set_huge_pte_at(mm, addr, ptep, entry);
149 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
150 }
151 
152 
153 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
154 			      pte_t *ptep)
155 {
156 	unsigned long flags;
157 	pte_t entry;
158 
159 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
160 	entry = *ptep;
161 	__set_huge_pte_at(mm, addr, ptep, __pte(0));
162 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
163 
164 	return entry;
165 }
166 
167 
168 void huge_ptep_set_wrprotect(struct mm_struct *mm,
169 				unsigned long addr, pte_t *ptep)
170 {
171 	unsigned long flags;
172 	pte_t old_pte;
173 
174 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
175 	old_pte = *ptep;
176 	__set_huge_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
177 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
178 }
179 
180 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
181 				unsigned long addr, pte_t *ptep,
182 				pte_t pte, int dirty)
183 {
184 	unsigned long flags;
185 	int changed;
186 	struct mm_struct *mm = vma->vm_mm;
187 
188 	spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);
189 	changed = !pte_same(*ptep, pte);
190 	if (changed) {
191 		__set_huge_pte_at(mm, addr, ptep, pte);
192 	}
193 	spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);
194 	return changed;
195 }
196 
197 
198 int pmd_huge(pmd_t pmd)
199 {
200 	return 0;
201 }
202 
203 int pud_huge(pud_t pud)
204 {
205 	return 0;
206 }
207