xref: /openbmc/linux/arch/parisc/mm/fault.c (revision c3e5523f)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  *
7  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
9  * Copyright 1999 Hewlett Packard Co.
10  *
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/ptrace.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/interrupt.h>
18 #include <linux/extable.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/traps.h>
22 
23 /* Various important other fields */
24 #define bit22set(x)		(x & 0x00000200)
25 #define bits23_25set(x)		(x & 0x000001c0)
26 #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
27 				/* extended opcode is 0x6a */
28 
29 #define BITSSET		0x1c0	/* for identifying LDCW */
30 
31 
32 int show_unhandled_signals = 1;
33 
34 /*
35  * parisc_acctyp(unsigned int inst) --
36  *    Given a PA-RISC memory access instruction, determine if the
37  *    the instruction would perform a memory read or memory write
38  *    operation.
39  *
40  *    This function assumes that the given instruction is a memory access
41  *    instruction (i.e. you should really only call it if you know that
42  *    the instruction has generated some sort of a memory access fault).
43  *
44  * Returns:
45  *   VM_READ  if read operation
46  *   VM_WRITE if write operation
47  *   VM_EXEC  if execute operation
48  */
49 static unsigned long
50 parisc_acctyp(unsigned long code, unsigned int inst)
51 {
52 	if (code == 6 || code == 16)
53 	    return VM_EXEC;
54 
55 	switch (inst & 0xf0000000) {
56 	case 0x40000000: /* load */
57 	case 0x50000000: /* new load */
58 		return VM_READ;
59 
60 	case 0x60000000: /* store */
61 	case 0x70000000: /* new store */
62 		return VM_WRITE;
63 
64 	case 0x20000000: /* coproc */
65 	case 0x30000000: /* coproc2 */
66 		if (bit22set(inst))
67 			return VM_WRITE;
68 
69 	case 0x0: /* indexed/memory management */
70 		if (bit22set(inst)) {
71 			/*
72 			 * Check for the 'Graphics Flush Read' instruction.
73 			 * It resembles an FDC instruction, except for bits
74 			 * 20 and 21. Any combination other than zero will
75 			 * utilize the block mover functionality on some
76 			 * older PA-RISC platforms.  The case where a block
77 			 * move is performed from VM to graphics IO space
78 			 * should be treated as a READ.
79 			 *
80 			 * The significance of bits 20,21 in the FDC
81 			 * instruction is:
82 			 *
83 			 *   00  Flush data cache (normal instruction behavior)
84 			 *   01  Graphics flush write  (IO space -> VM)
85 			 *   10  Graphics flush read   (VM -> IO space)
86 			 *   11  Graphics flush read/write (VM <-> IO space)
87 			 */
88 			if (isGraphicsFlushRead(inst))
89 				return VM_READ;
90 			return VM_WRITE;
91 		} else {
92 			/*
93 			 * Check for LDCWX and LDCWS (semaphore instructions).
94 			 * If bits 23 through 25 are all 1's it is one of
95 			 * the above two instructions and is a write.
96 			 *
97 			 * Note: With the limited bits we are looking at,
98 			 * this will also catch PROBEW and PROBEWI. However,
99 			 * these should never get in here because they don't
100 			 * generate exceptions of the type:
101 			 *   Data TLB miss fault/data page fault
102 			 *   Data memory protection trap
103 			 */
104 			if (bits23_25set(inst) == BITSSET)
105 				return VM_WRITE;
106 		}
107 		return VM_READ; /* Default */
108 	}
109 	return VM_READ; /* Default */
110 }
111 
112 #undef bit22set
113 #undef bits23_25set
114 #undef isGraphicsFlushRead
115 #undef BITSSET
116 
117 
118 #if 0
119 /* This is the treewalk to find a vma which is the highest that has
120  * a start < addr.  We're using find_vma_prev instead right now, but
121  * we might want to use this at some point in the future.  Probably
122  * not, but I want it committed to CVS so I don't lose it :-)
123  */
124 			while (tree != vm_avl_empty) {
125 				if (tree->vm_start > addr) {
126 					tree = tree->vm_avl_left;
127 				} else {
128 					prev = tree;
129 					if (prev->vm_next == NULL)
130 						break;
131 					if (prev->vm_next->vm_start > addr)
132 						break;
133 					tree = tree->vm_avl_right;
134 				}
135 			}
136 #endif
137 
138 int fixup_exception(struct pt_regs *regs)
139 {
140 	const struct exception_table_entry *fix;
141 
142 	fix = search_exception_tables(regs->iaoq[0]);
143 	if (fix) {
144 		/*
145 		 * Fix up get_user() and put_user().
146 		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
147 		 * bit in the relative address of the fixup routine to indicate
148 		 * that %r8 should be loaded with -EFAULT to report a userspace
149 		 * access error.
150 		 */
151 		if (fix->fixup & 1) {
152 			regs->gr[8] = -EFAULT;
153 
154 			/* zero target register for get_user() */
155 			if (parisc_acctyp(0, regs->iir) == VM_READ) {
156 				int treg = regs->iir & 0x1f;
157 				regs->gr[treg] = 0;
158 			}
159 		}
160 
161 		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
162 		regs->iaoq[0] &= ~3;
163 		/*
164 		 * NOTE: In some cases the faulting instruction
165 		 * may be in the delay slot of a branch. We
166 		 * don't want to take the branch, so we don't
167 		 * increment iaoq[1], instead we set it to be
168 		 * iaoq[0]+4, and clear the B bit in the PSW
169 		 */
170 		regs->iaoq[1] = regs->iaoq[0] + 4;
171 		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
172 
173 		return 1;
174 	}
175 
176 	return 0;
177 }
178 
179 /*
180  * parisc hardware trap list
181  *
182  * Documented in section 3 "Addressing and Access Control" of the
183  * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
184  * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
185  *
186  * For implementation see handle_interruption() in traps.c
187  */
188 static const char * const trap_description[] = {
189 	[1] "High-priority machine check (HPMC)",
190 	[2] "Power failure interrupt",
191 	[3] "Recovery counter trap",
192 	[5] "Low-priority machine check",
193 	[6] "Instruction TLB miss fault",
194 	[7] "Instruction access rights / protection trap",
195 	[8] "Illegal instruction trap",
196 	[9] "Break instruction trap",
197 	[10] "Privileged operation trap",
198 	[11] "Privileged register trap",
199 	[12] "Overflow trap",
200 	[13] "Conditional trap",
201 	[14] "FP Assist Exception trap",
202 	[15] "Data TLB miss fault",
203 	[16] "Non-access ITLB miss fault",
204 	[17] "Non-access DTLB miss fault",
205 	[18] "Data memory protection/unaligned access trap",
206 	[19] "Data memory break trap",
207 	[20] "TLB dirty bit trap",
208 	[21] "Page reference trap",
209 	[22] "Assist emulation trap",
210 	[25] "Taken branch trap",
211 	[26] "Data memory access rights trap",
212 	[27] "Data memory protection ID trap",
213 	[28] "Unaligned data reference trap",
214 };
215 
216 const char *trap_name(unsigned long code)
217 {
218 	const char *t = NULL;
219 
220 	if (code < ARRAY_SIZE(trap_description))
221 		t = trap_description[code];
222 
223 	return t ? t : "Unknown trap";
224 }
225 
226 /*
227  * Print out info about fatal segfaults, if the show_unhandled_signals
228  * sysctl is set:
229  */
230 static inline void
231 show_signal_msg(struct pt_regs *regs, unsigned long code,
232 		unsigned long address, struct task_struct *tsk,
233 		struct vm_area_struct *vma)
234 {
235 	if (!unhandled_signal(tsk, SIGSEGV))
236 		return;
237 
238 	if (!printk_ratelimit())
239 		return;
240 
241 	pr_warn("\n");
242 	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
243 	    tsk->comm, code, address);
244 	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
245 
246 	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
247 		vma ? ',':'\n');
248 
249 	if (vma)
250 		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
251 			vma->vm_start, vma->vm_end);
252 
253 	show_regs(regs);
254 }
255 
256 void do_page_fault(struct pt_regs *regs, unsigned long code,
257 			      unsigned long address)
258 {
259 	struct vm_area_struct *vma, *prev_vma;
260 	struct task_struct *tsk;
261 	struct mm_struct *mm;
262 	unsigned long acc_type;
263 	int fault;
264 	unsigned int flags;
265 
266 	if (faulthandler_disabled())
267 		goto no_context;
268 
269 	tsk = current;
270 	mm = tsk->mm;
271 	if (!mm)
272 		goto no_context;
273 
274 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
275 	if (user_mode(regs))
276 		flags |= FAULT_FLAG_USER;
277 
278 	acc_type = parisc_acctyp(code, regs->iir);
279 	if (acc_type & VM_WRITE)
280 		flags |= FAULT_FLAG_WRITE;
281 retry:
282 	down_read(&mm->mmap_sem);
283 	vma = find_vma_prev(mm, address, &prev_vma);
284 	if (!vma || address < vma->vm_start)
285 		goto check_expansion;
286 /*
287  * Ok, we have a good vm_area for this memory access. We still need to
288  * check the access permissions.
289  */
290 
291 good_area:
292 
293 	if ((vma->vm_flags & acc_type) != acc_type)
294 		goto bad_area;
295 
296 	/*
297 	 * If for any reason at all we couldn't handle the fault, make
298 	 * sure we exit gracefully rather than endlessly redo the
299 	 * fault.
300 	 */
301 
302 	fault = handle_mm_fault(vma, address, flags);
303 
304 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
305 		return;
306 
307 	if (unlikely(fault & VM_FAULT_ERROR)) {
308 		/*
309 		 * We hit a shared mapping outside of the file, or some
310 		 * other thing happened to us that made us unable to
311 		 * handle the page fault gracefully.
312 		 */
313 		if (fault & VM_FAULT_OOM)
314 			goto out_of_memory;
315 		else if (fault & VM_FAULT_SIGSEGV)
316 			goto bad_area;
317 		else if (fault & VM_FAULT_SIGBUS)
318 			goto bad_area;
319 		BUG();
320 	}
321 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
322 		if (fault & VM_FAULT_MAJOR)
323 			current->maj_flt++;
324 		else
325 			current->min_flt++;
326 		if (fault & VM_FAULT_RETRY) {
327 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
328 
329 			/*
330 			 * No need to up_read(&mm->mmap_sem) as we would
331 			 * have already released it in __lock_page_or_retry
332 			 * in mm/filemap.c.
333 			 */
334 
335 			goto retry;
336 		}
337 	}
338 	up_read(&mm->mmap_sem);
339 	return;
340 
341 check_expansion:
342 	vma = prev_vma;
343 	if (vma && (expand_stack(vma, address) == 0))
344 		goto good_area;
345 
346 /*
347  * Something tried to access memory that isn't in our memory map..
348  */
349 bad_area:
350 	up_read(&mm->mmap_sem);
351 
352 	if (user_mode(regs)) {
353 		struct siginfo si;
354 
355 		show_signal_msg(regs, code, address, tsk, vma);
356 
357 		switch (code) {
358 		case 15:	/* Data TLB miss fault/Data page fault */
359 			/* send SIGSEGV when outside of vma */
360 			if (!vma ||
361 			    address < vma->vm_start || address > vma->vm_end) {
362 				si.si_signo = SIGSEGV;
363 				si.si_code = SEGV_MAPERR;
364 				break;
365 			}
366 
367 			/* send SIGSEGV for wrong permissions */
368 			if ((vma->vm_flags & acc_type) != acc_type) {
369 				si.si_signo = SIGSEGV;
370 				si.si_code = SEGV_ACCERR;
371 				break;
372 			}
373 
374 			/* probably address is outside of mapped file */
375 			/* fall through */
376 		case 17:	/* NA data TLB miss / page fault */
377 		case 18:	/* Unaligned access - PCXS only */
378 			si.si_signo = SIGBUS;
379 			si.si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
380 			break;
381 		case 16:	/* Non-access instruction TLB miss fault */
382 		case 26:	/* PCXL: Data memory access rights trap */
383 		default:
384 			si.si_signo = SIGSEGV;
385 			si.si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
386 			break;
387 		}
388 		si.si_errno = 0;
389 		si.si_addr = (void __user *) address;
390 		force_sig_info(si.si_signo, &si, current);
391 		return;
392 	}
393 
394 no_context:
395 
396 	if (!user_mode(regs) && fixup_exception(regs)) {
397 		return;
398 	}
399 
400 	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
401 
402   out_of_memory:
403 	up_read(&mm->mmap_sem);
404 	if (!user_mode(regs))
405 		goto no_context;
406 	pagefault_out_of_memory();
407 }
408