1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * 7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle 8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) 9 * Copyright 1999 Hewlett Packard Co. 10 * 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/ptrace.h> 15 #include <linux/sched.h> 16 #include <linux/sched/debug.h> 17 #include <linux/interrupt.h> 18 #include <linux/extable.h> 19 #include <linux/uaccess.h> 20 #include <linux/hugetlb.h> 21 22 #include <asm/traps.h> 23 24 /* Various important other fields */ 25 #define bit22set(x) (x & 0x00000200) 26 #define bits23_25set(x) (x & 0x000001c0) 27 #define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80) 28 /* extended opcode is 0x6a */ 29 30 #define BITSSET 0x1c0 /* for identifying LDCW */ 31 32 33 int show_unhandled_signals = 1; 34 35 /* 36 * parisc_acctyp(unsigned int inst) -- 37 * Given a PA-RISC memory access instruction, determine if the 38 * the instruction would perform a memory read or memory write 39 * operation. 40 * 41 * This function assumes that the given instruction is a memory access 42 * instruction (i.e. you should really only call it if you know that 43 * the instruction has generated some sort of a memory access fault). 44 * 45 * Returns: 46 * VM_READ if read operation 47 * VM_WRITE if write operation 48 * VM_EXEC if execute operation 49 */ 50 static unsigned long 51 parisc_acctyp(unsigned long code, unsigned int inst) 52 { 53 if (code == 6 || code == 16) 54 return VM_EXEC; 55 56 switch (inst & 0xf0000000) { 57 case 0x40000000: /* load */ 58 case 0x50000000: /* new load */ 59 return VM_READ; 60 61 case 0x60000000: /* store */ 62 case 0x70000000: /* new store */ 63 return VM_WRITE; 64 65 case 0x20000000: /* coproc */ 66 case 0x30000000: /* coproc2 */ 67 if (bit22set(inst)) 68 return VM_WRITE; 69 70 case 0x0: /* indexed/memory management */ 71 if (bit22set(inst)) { 72 /* 73 * Check for the 'Graphics Flush Read' instruction. 74 * It resembles an FDC instruction, except for bits 75 * 20 and 21. Any combination other than zero will 76 * utilize the block mover functionality on some 77 * older PA-RISC platforms. The case where a block 78 * move is performed from VM to graphics IO space 79 * should be treated as a READ. 80 * 81 * The significance of bits 20,21 in the FDC 82 * instruction is: 83 * 84 * 00 Flush data cache (normal instruction behavior) 85 * 01 Graphics flush write (IO space -> VM) 86 * 10 Graphics flush read (VM -> IO space) 87 * 11 Graphics flush read/write (VM <-> IO space) 88 */ 89 if (isGraphicsFlushRead(inst)) 90 return VM_READ; 91 return VM_WRITE; 92 } else { 93 /* 94 * Check for LDCWX and LDCWS (semaphore instructions). 95 * If bits 23 through 25 are all 1's it is one of 96 * the above two instructions and is a write. 97 * 98 * Note: With the limited bits we are looking at, 99 * this will also catch PROBEW and PROBEWI. However, 100 * these should never get in here because they don't 101 * generate exceptions of the type: 102 * Data TLB miss fault/data page fault 103 * Data memory protection trap 104 */ 105 if (bits23_25set(inst) == BITSSET) 106 return VM_WRITE; 107 } 108 return VM_READ; /* Default */ 109 } 110 return VM_READ; /* Default */ 111 } 112 113 #undef bit22set 114 #undef bits23_25set 115 #undef isGraphicsFlushRead 116 #undef BITSSET 117 118 119 #if 0 120 /* This is the treewalk to find a vma which is the highest that has 121 * a start < addr. We're using find_vma_prev instead right now, but 122 * we might want to use this at some point in the future. Probably 123 * not, but I want it committed to CVS so I don't lose it :-) 124 */ 125 while (tree != vm_avl_empty) { 126 if (tree->vm_start > addr) { 127 tree = tree->vm_avl_left; 128 } else { 129 prev = tree; 130 if (prev->vm_next == NULL) 131 break; 132 if (prev->vm_next->vm_start > addr) 133 break; 134 tree = tree->vm_avl_right; 135 } 136 } 137 #endif 138 139 int fixup_exception(struct pt_regs *regs) 140 { 141 const struct exception_table_entry *fix; 142 143 fix = search_exception_tables(regs->iaoq[0]); 144 if (fix) { 145 /* 146 * Fix up get_user() and put_user(). 147 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant 148 * bit in the relative address of the fixup routine to indicate 149 * that %r8 should be loaded with -EFAULT to report a userspace 150 * access error. 151 */ 152 if (fix->fixup & 1) { 153 regs->gr[8] = -EFAULT; 154 155 /* zero target register for get_user() */ 156 if (parisc_acctyp(0, regs->iir) == VM_READ) { 157 int treg = regs->iir & 0x1f; 158 BUG_ON(treg == 0); 159 regs->gr[treg] = 0; 160 } 161 } 162 163 regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup; 164 regs->iaoq[0] &= ~3; 165 /* 166 * NOTE: In some cases the faulting instruction 167 * may be in the delay slot of a branch. We 168 * don't want to take the branch, so we don't 169 * increment iaoq[1], instead we set it to be 170 * iaoq[0]+4, and clear the B bit in the PSW 171 */ 172 regs->iaoq[1] = regs->iaoq[0] + 4; 173 regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */ 174 175 return 1; 176 } 177 178 return 0; 179 } 180 181 /* 182 * parisc hardware trap list 183 * 184 * Documented in section 3 "Addressing and Access Control" of the 185 * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual" 186 * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf 187 * 188 * For implementation see handle_interruption() in traps.c 189 */ 190 static const char * const trap_description[] = { 191 [1] "High-priority machine check (HPMC)", 192 [2] "Power failure interrupt", 193 [3] "Recovery counter trap", 194 [5] "Low-priority machine check", 195 [6] "Instruction TLB miss fault", 196 [7] "Instruction access rights / protection trap", 197 [8] "Illegal instruction trap", 198 [9] "Break instruction trap", 199 [10] "Privileged operation trap", 200 [11] "Privileged register trap", 201 [12] "Overflow trap", 202 [13] "Conditional trap", 203 [14] "FP Assist Exception trap", 204 [15] "Data TLB miss fault", 205 [16] "Non-access ITLB miss fault", 206 [17] "Non-access DTLB miss fault", 207 [18] "Data memory protection/unaligned access trap", 208 [19] "Data memory break trap", 209 [20] "TLB dirty bit trap", 210 [21] "Page reference trap", 211 [22] "Assist emulation trap", 212 [25] "Taken branch trap", 213 [26] "Data memory access rights trap", 214 [27] "Data memory protection ID trap", 215 [28] "Unaligned data reference trap", 216 }; 217 218 const char *trap_name(unsigned long code) 219 { 220 const char *t = NULL; 221 222 if (code < ARRAY_SIZE(trap_description)) 223 t = trap_description[code]; 224 225 return t ? t : "Unknown trap"; 226 } 227 228 /* 229 * Print out info about fatal segfaults, if the show_unhandled_signals 230 * sysctl is set: 231 */ 232 static inline void 233 show_signal_msg(struct pt_regs *regs, unsigned long code, 234 unsigned long address, struct task_struct *tsk, 235 struct vm_area_struct *vma) 236 { 237 if (!unhandled_signal(tsk, SIGSEGV)) 238 return; 239 240 if (!printk_ratelimit()) 241 return; 242 243 pr_warn("\n"); 244 pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx", 245 tsk->comm, code, address); 246 print_vma_addr(KERN_CONT " in ", regs->iaoq[0]); 247 248 pr_cont("\ntrap #%lu: %s%c", code, trap_name(code), 249 vma ? ',':'\n'); 250 251 if (vma) 252 pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n", 253 vma->vm_start, vma->vm_end); 254 255 show_regs(regs); 256 } 257 258 void do_page_fault(struct pt_regs *regs, unsigned long code, 259 unsigned long address) 260 { 261 struct vm_area_struct *vma, *prev_vma; 262 struct task_struct *tsk; 263 struct mm_struct *mm; 264 unsigned long acc_type; 265 vm_fault_t fault = 0; 266 unsigned int flags; 267 268 if (faulthandler_disabled()) 269 goto no_context; 270 271 tsk = current; 272 mm = tsk->mm; 273 if (!mm) 274 goto no_context; 275 276 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 277 if (user_mode(regs)) 278 flags |= FAULT_FLAG_USER; 279 280 acc_type = parisc_acctyp(code, regs->iir); 281 if (acc_type & VM_WRITE) 282 flags |= FAULT_FLAG_WRITE; 283 retry: 284 down_read(&mm->mmap_sem); 285 vma = find_vma_prev(mm, address, &prev_vma); 286 if (!vma || address < vma->vm_start) 287 goto check_expansion; 288 /* 289 * Ok, we have a good vm_area for this memory access. We still need to 290 * check the access permissions. 291 */ 292 293 good_area: 294 295 if ((vma->vm_flags & acc_type) != acc_type) 296 goto bad_area; 297 298 /* 299 * If for any reason at all we couldn't handle the fault, make 300 * sure we exit gracefully rather than endlessly redo the 301 * fault. 302 */ 303 304 fault = handle_mm_fault(vma, address, flags); 305 306 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 307 return; 308 309 if (unlikely(fault & VM_FAULT_ERROR)) { 310 /* 311 * We hit a shared mapping outside of the file, or some 312 * other thing happened to us that made us unable to 313 * handle the page fault gracefully. 314 */ 315 if (fault & VM_FAULT_OOM) 316 goto out_of_memory; 317 else if (fault & VM_FAULT_SIGSEGV) 318 goto bad_area; 319 else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 320 VM_FAULT_HWPOISON_LARGE)) 321 goto bad_area; 322 BUG(); 323 } 324 if (flags & FAULT_FLAG_ALLOW_RETRY) { 325 if (fault & VM_FAULT_MAJOR) 326 current->maj_flt++; 327 else 328 current->min_flt++; 329 if (fault & VM_FAULT_RETRY) { 330 flags &= ~FAULT_FLAG_ALLOW_RETRY; 331 332 /* 333 * No need to up_read(&mm->mmap_sem) as we would 334 * have already released it in __lock_page_or_retry 335 * in mm/filemap.c. 336 */ 337 338 goto retry; 339 } 340 } 341 up_read(&mm->mmap_sem); 342 return; 343 344 check_expansion: 345 vma = prev_vma; 346 if (vma && (expand_stack(vma, address) == 0)) 347 goto good_area; 348 349 /* 350 * Something tried to access memory that isn't in our memory map.. 351 */ 352 bad_area: 353 up_read(&mm->mmap_sem); 354 355 if (user_mode(regs)) { 356 int signo, si_code; 357 358 switch (code) { 359 case 15: /* Data TLB miss fault/Data page fault */ 360 /* send SIGSEGV when outside of vma */ 361 if (!vma || 362 address < vma->vm_start || address >= vma->vm_end) { 363 signo = SIGSEGV; 364 si_code = SEGV_MAPERR; 365 break; 366 } 367 368 /* send SIGSEGV for wrong permissions */ 369 if ((vma->vm_flags & acc_type) != acc_type) { 370 signo = SIGSEGV; 371 si_code = SEGV_ACCERR; 372 break; 373 } 374 375 /* probably address is outside of mapped file */ 376 /* fall through */ 377 case 17: /* NA data TLB miss / page fault */ 378 case 18: /* Unaligned access - PCXS only */ 379 signo = SIGBUS; 380 si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR; 381 break; 382 case 16: /* Non-access instruction TLB miss fault */ 383 case 26: /* PCXL: Data memory access rights trap */ 384 default: 385 signo = SIGSEGV; 386 si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR; 387 break; 388 } 389 #ifdef CONFIG_MEMORY_FAILURE 390 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 391 unsigned int lsb = 0; 392 printk(KERN_ERR 393 "MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n", 394 tsk->comm, tsk->pid, address); 395 /* 396 * Either small page or large page may be poisoned. 397 * In other words, VM_FAULT_HWPOISON_LARGE and 398 * VM_FAULT_HWPOISON are mutually exclusive. 399 */ 400 if (fault & VM_FAULT_HWPOISON_LARGE) 401 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 402 else if (fault & VM_FAULT_HWPOISON) 403 lsb = PAGE_SHIFT; 404 405 force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address, 406 lsb); 407 return; 408 } 409 #endif 410 show_signal_msg(regs, code, address, tsk, vma); 411 412 force_sig_fault(signo, si_code, (void __user *) address); 413 return; 414 } 415 416 no_context: 417 418 if (!user_mode(regs) && fixup_exception(regs)) { 419 return; 420 } 421 422 parisc_terminate("Bad Address (null pointer deref?)", regs, code, address); 423 424 out_of_memory: 425 up_read(&mm->mmap_sem); 426 if (!user_mode(regs)) 427 goto no_context; 428 pagefault_out_of_memory(); 429 } 430