xref: /openbmc/linux/arch/parisc/mm/fault.c (revision 978d13d6)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  *
7  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
9  * Copyright 1999 Hewlett Packard Co.
10  *
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/ptrace.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/interrupt.h>
18 #include <linux/extable.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/traps.h>
22 
23 /* Various important other fields */
24 #define bit22set(x)		(x & 0x00000200)
25 #define bits23_25set(x)		(x & 0x000001c0)
26 #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
27 				/* extended opcode is 0x6a */
28 
29 #define BITSSET		0x1c0	/* for identifying LDCW */
30 
31 
32 int show_unhandled_signals = 1;
33 
34 /*
35  * parisc_acctyp(unsigned int inst) --
36  *    Given a PA-RISC memory access instruction, determine if the
37  *    the instruction would perform a memory read or memory write
38  *    operation.
39  *
40  *    This function assumes that the given instruction is a memory access
41  *    instruction (i.e. you should really only call it if you know that
42  *    the instruction has generated some sort of a memory access fault).
43  *
44  * Returns:
45  *   VM_READ  if read operation
46  *   VM_WRITE if write operation
47  *   VM_EXEC  if execute operation
48  */
49 static unsigned long
50 parisc_acctyp(unsigned long code, unsigned int inst)
51 {
52 	if (code == 6 || code == 16)
53 	    return VM_EXEC;
54 
55 	switch (inst & 0xf0000000) {
56 	case 0x40000000: /* load */
57 	case 0x50000000: /* new load */
58 		return VM_READ;
59 
60 	case 0x60000000: /* store */
61 	case 0x70000000: /* new store */
62 		return VM_WRITE;
63 
64 	case 0x20000000: /* coproc */
65 	case 0x30000000: /* coproc2 */
66 		if (bit22set(inst))
67 			return VM_WRITE;
68 
69 	case 0x0: /* indexed/memory management */
70 		if (bit22set(inst)) {
71 			/*
72 			 * Check for the 'Graphics Flush Read' instruction.
73 			 * It resembles an FDC instruction, except for bits
74 			 * 20 and 21. Any combination other than zero will
75 			 * utilize the block mover functionality on some
76 			 * older PA-RISC platforms.  The case where a block
77 			 * move is performed from VM to graphics IO space
78 			 * should be treated as a READ.
79 			 *
80 			 * The significance of bits 20,21 in the FDC
81 			 * instruction is:
82 			 *
83 			 *   00  Flush data cache (normal instruction behavior)
84 			 *   01  Graphics flush write  (IO space -> VM)
85 			 *   10  Graphics flush read   (VM -> IO space)
86 			 *   11  Graphics flush read/write (VM <-> IO space)
87 			 */
88 			if (isGraphicsFlushRead(inst))
89 				return VM_READ;
90 			return VM_WRITE;
91 		} else {
92 			/*
93 			 * Check for LDCWX and LDCWS (semaphore instructions).
94 			 * If bits 23 through 25 are all 1's it is one of
95 			 * the above two instructions and is a write.
96 			 *
97 			 * Note: With the limited bits we are looking at,
98 			 * this will also catch PROBEW and PROBEWI. However,
99 			 * these should never get in here because they don't
100 			 * generate exceptions of the type:
101 			 *   Data TLB miss fault/data page fault
102 			 *   Data memory protection trap
103 			 */
104 			if (bits23_25set(inst) == BITSSET)
105 				return VM_WRITE;
106 		}
107 		return VM_READ; /* Default */
108 	}
109 	return VM_READ; /* Default */
110 }
111 
112 #undef bit22set
113 #undef bits23_25set
114 #undef isGraphicsFlushRead
115 #undef BITSSET
116 
117 
118 #if 0
119 /* This is the treewalk to find a vma which is the highest that has
120  * a start < addr.  We're using find_vma_prev instead right now, but
121  * we might want to use this at some point in the future.  Probably
122  * not, but I want it committed to CVS so I don't lose it :-)
123  */
124 			while (tree != vm_avl_empty) {
125 				if (tree->vm_start > addr) {
126 					tree = tree->vm_avl_left;
127 				} else {
128 					prev = tree;
129 					if (prev->vm_next == NULL)
130 						break;
131 					if (prev->vm_next->vm_start > addr)
132 						break;
133 					tree = tree->vm_avl_right;
134 				}
135 			}
136 #endif
137 
138 int fixup_exception(struct pt_regs *regs)
139 {
140 	const struct exception_table_entry *fix;
141 
142 	fix = search_exception_tables(regs->iaoq[0]);
143 	if (fix) {
144 		/*
145 		 * Fix up get_user() and put_user().
146 		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
147 		 * bit in the relative address of the fixup routine to indicate
148 		 * that %r8 should be loaded with -EFAULT to report a userspace
149 		 * access error.
150 		 */
151 		if (fix->fixup & 1) {
152 			regs->gr[8] = -EFAULT;
153 
154 			/* zero target register for get_user() */
155 			if (parisc_acctyp(0, regs->iir) == VM_READ) {
156 				int treg = regs->iir & 0x1f;
157 				BUG_ON(treg == 0);
158 				regs->gr[treg] = 0;
159 			}
160 		}
161 
162 		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
163 		regs->iaoq[0] &= ~3;
164 		/*
165 		 * NOTE: In some cases the faulting instruction
166 		 * may be in the delay slot of a branch. We
167 		 * don't want to take the branch, so we don't
168 		 * increment iaoq[1], instead we set it to be
169 		 * iaoq[0]+4, and clear the B bit in the PSW
170 		 */
171 		regs->iaoq[1] = regs->iaoq[0] + 4;
172 		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
173 
174 		return 1;
175 	}
176 
177 	return 0;
178 }
179 
180 /*
181  * parisc hardware trap list
182  *
183  * Documented in section 3 "Addressing and Access Control" of the
184  * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
185  * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
186  *
187  * For implementation see handle_interruption() in traps.c
188  */
189 static const char * const trap_description[] = {
190 	[1] "High-priority machine check (HPMC)",
191 	[2] "Power failure interrupt",
192 	[3] "Recovery counter trap",
193 	[5] "Low-priority machine check",
194 	[6] "Instruction TLB miss fault",
195 	[7] "Instruction access rights / protection trap",
196 	[8] "Illegal instruction trap",
197 	[9] "Break instruction trap",
198 	[10] "Privileged operation trap",
199 	[11] "Privileged register trap",
200 	[12] "Overflow trap",
201 	[13] "Conditional trap",
202 	[14] "FP Assist Exception trap",
203 	[15] "Data TLB miss fault",
204 	[16] "Non-access ITLB miss fault",
205 	[17] "Non-access DTLB miss fault",
206 	[18] "Data memory protection/unaligned access trap",
207 	[19] "Data memory break trap",
208 	[20] "TLB dirty bit trap",
209 	[21] "Page reference trap",
210 	[22] "Assist emulation trap",
211 	[25] "Taken branch trap",
212 	[26] "Data memory access rights trap",
213 	[27] "Data memory protection ID trap",
214 	[28] "Unaligned data reference trap",
215 };
216 
217 const char *trap_name(unsigned long code)
218 {
219 	const char *t = NULL;
220 
221 	if (code < ARRAY_SIZE(trap_description))
222 		t = trap_description[code];
223 
224 	return t ? t : "Unknown trap";
225 }
226 
227 /*
228  * Print out info about fatal segfaults, if the show_unhandled_signals
229  * sysctl is set:
230  */
231 static inline void
232 show_signal_msg(struct pt_regs *regs, unsigned long code,
233 		unsigned long address, struct task_struct *tsk,
234 		struct vm_area_struct *vma)
235 {
236 	if (!unhandled_signal(tsk, SIGSEGV))
237 		return;
238 
239 	if (!printk_ratelimit())
240 		return;
241 
242 	pr_warn("\n");
243 	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
244 	    tsk->comm, code, address);
245 	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
246 
247 	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
248 		vma ? ',':'\n');
249 
250 	if (vma)
251 		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
252 			vma->vm_start, vma->vm_end);
253 
254 	show_regs(regs);
255 }
256 
257 void do_page_fault(struct pt_regs *regs, unsigned long code,
258 			      unsigned long address)
259 {
260 	struct vm_area_struct *vma, *prev_vma;
261 	struct task_struct *tsk;
262 	struct mm_struct *mm;
263 	unsigned long acc_type;
264 	int fault;
265 	unsigned int flags;
266 
267 	if (faulthandler_disabled())
268 		goto no_context;
269 
270 	tsk = current;
271 	mm = tsk->mm;
272 	if (!mm)
273 		goto no_context;
274 
275 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
276 	if (user_mode(regs))
277 		flags |= FAULT_FLAG_USER;
278 
279 	acc_type = parisc_acctyp(code, regs->iir);
280 	if (acc_type & VM_WRITE)
281 		flags |= FAULT_FLAG_WRITE;
282 retry:
283 	down_read(&mm->mmap_sem);
284 	vma = find_vma_prev(mm, address, &prev_vma);
285 	if (!vma || address < vma->vm_start)
286 		goto check_expansion;
287 /*
288  * Ok, we have a good vm_area for this memory access. We still need to
289  * check the access permissions.
290  */
291 
292 good_area:
293 
294 	if ((vma->vm_flags & acc_type) != acc_type)
295 		goto bad_area;
296 
297 	/*
298 	 * If for any reason at all we couldn't handle the fault, make
299 	 * sure we exit gracefully rather than endlessly redo the
300 	 * fault.
301 	 */
302 
303 	fault = handle_mm_fault(vma, address, flags);
304 
305 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
306 		return;
307 
308 	if (unlikely(fault & VM_FAULT_ERROR)) {
309 		/*
310 		 * We hit a shared mapping outside of the file, or some
311 		 * other thing happened to us that made us unable to
312 		 * handle the page fault gracefully.
313 		 */
314 		if (fault & VM_FAULT_OOM)
315 			goto out_of_memory;
316 		else if (fault & VM_FAULT_SIGSEGV)
317 			goto bad_area;
318 		else if (fault & VM_FAULT_SIGBUS)
319 			goto bad_area;
320 		BUG();
321 	}
322 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
323 		if (fault & VM_FAULT_MAJOR)
324 			current->maj_flt++;
325 		else
326 			current->min_flt++;
327 		if (fault & VM_FAULT_RETRY) {
328 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
329 
330 			/*
331 			 * No need to up_read(&mm->mmap_sem) as we would
332 			 * have already released it in __lock_page_or_retry
333 			 * in mm/filemap.c.
334 			 */
335 
336 			goto retry;
337 		}
338 	}
339 	up_read(&mm->mmap_sem);
340 	return;
341 
342 check_expansion:
343 	vma = prev_vma;
344 	if (vma && (expand_stack(vma, address) == 0))
345 		goto good_area;
346 
347 /*
348  * Something tried to access memory that isn't in our memory map..
349  */
350 bad_area:
351 	up_read(&mm->mmap_sem);
352 
353 	if (user_mode(regs)) {
354 		struct siginfo si;
355 
356 		show_signal_msg(regs, code, address, tsk, vma);
357 
358 		switch (code) {
359 		case 15:	/* Data TLB miss fault/Data page fault */
360 			/* send SIGSEGV when outside of vma */
361 			if (!vma ||
362 			    address < vma->vm_start || address >= vma->vm_end) {
363 				si.si_signo = SIGSEGV;
364 				si.si_code = SEGV_MAPERR;
365 				break;
366 			}
367 
368 			/* send SIGSEGV for wrong permissions */
369 			if ((vma->vm_flags & acc_type) != acc_type) {
370 				si.si_signo = SIGSEGV;
371 				si.si_code = SEGV_ACCERR;
372 				break;
373 			}
374 
375 			/* probably address is outside of mapped file */
376 			/* fall through */
377 		case 17:	/* NA data TLB miss / page fault */
378 		case 18:	/* Unaligned access - PCXS only */
379 			si.si_signo = SIGBUS;
380 			si.si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
381 			break;
382 		case 16:	/* Non-access instruction TLB miss fault */
383 		case 26:	/* PCXL: Data memory access rights trap */
384 		default:
385 			si.si_signo = SIGSEGV;
386 			si.si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
387 			break;
388 		}
389 		si.si_errno = 0;
390 		si.si_addr = (void __user *) address;
391 		force_sig_info(si.si_signo, &si, current);
392 		return;
393 	}
394 
395 no_context:
396 
397 	if (!user_mode(regs) && fixup_exception(regs)) {
398 		return;
399 	}
400 
401 	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
402 
403   out_of_memory:
404 	up_read(&mm->mmap_sem);
405 	if (!user_mode(regs))
406 		goto no_context;
407 	pagefault_out_of_memory();
408 }
409