xref: /openbmc/linux/arch/parisc/mm/fault.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
2  *
3  * This file is subject to the terms and conditions of the GNU General Public
4  * License.  See the file "COPYING" in the main directory of this archive
5  * for more details.
6  *
7  *
8  * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9  * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10  * Copyright 1999 Hewlett Packard Co.
11  *
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/ptrace.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/traps.h>
22 
23 #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24 			 /*  dumped to the console via printk)          */
25 
26 
27 /* Various important other fields */
28 #define bit22set(x)		(x & 0x00000200)
29 #define bits23_25set(x)		(x & 0x000001c0)
30 #define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
31 				/* extended opcode is 0x6a */
32 
33 #define BITSSET		0x1c0	/* for identifying LDCW */
34 
35 
36 DEFINE_PER_CPU(struct exception_data, exception_data);
37 
38 /*
39  * parisc_acctyp(unsigned int inst) --
40  *    Given a PA-RISC memory access instruction, determine if the
41  *    the instruction would perform a memory read or memory write
42  *    operation.
43  *
44  *    This function assumes that the given instruction is a memory access
45  *    instruction (i.e. you should really only call it if you know that
46  *    the instruction has generated some sort of a memory access fault).
47  *
48  * Returns:
49  *   VM_READ  if read operation
50  *   VM_WRITE if write operation
51  *   VM_EXEC  if execute operation
52  */
53 static unsigned long
54 parisc_acctyp(unsigned long code, unsigned int inst)
55 {
56 	if (code == 6 || code == 16)
57 	    return VM_EXEC;
58 
59 	switch (inst & 0xf0000000) {
60 	case 0x40000000: /* load */
61 	case 0x50000000: /* new load */
62 		return VM_READ;
63 
64 	case 0x60000000: /* store */
65 	case 0x70000000: /* new store */
66 		return VM_WRITE;
67 
68 	case 0x20000000: /* coproc */
69 	case 0x30000000: /* coproc2 */
70 		if (bit22set(inst))
71 			return VM_WRITE;
72 
73 	case 0x0: /* indexed/memory management */
74 		if (bit22set(inst)) {
75 			/*
76 			 * Check for the 'Graphics Flush Read' instruction.
77 			 * It resembles an FDC instruction, except for bits
78 			 * 20 and 21. Any combination other than zero will
79 			 * utilize the block mover functionality on some
80 			 * older PA-RISC platforms.  The case where a block
81 			 * move is performed from VM to graphics IO space
82 			 * should be treated as a READ.
83 			 *
84 			 * The significance of bits 20,21 in the FDC
85 			 * instruction is:
86 			 *
87 			 *   00  Flush data cache (normal instruction behavior)
88 			 *   01  Graphics flush write  (IO space -> VM)
89 			 *   10  Graphics flush read   (VM -> IO space)
90 			 *   11  Graphics flush read/write (VM <-> IO space)
91 			 */
92 			if (isGraphicsFlushRead(inst))
93 				return VM_READ;
94 			return VM_WRITE;
95 		} else {
96 			/*
97 			 * Check for LDCWX and LDCWS (semaphore instructions).
98 			 * If bits 23 through 25 are all 1's it is one of
99 			 * the above two instructions and is a write.
100 			 *
101 			 * Note: With the limited bits we are looking at,
102 			 * this will also catch PROBEW and PROBEWI. However,
103 			 * these should never get in here because they don't
104 			 * generate exceptions of the type:
105 			 *   Data TLB miss fault/data page fault
106 			 *   Data memory protection trap
107 			 */
108 			if (bits23_25set(inst) == BITSSET)
109 				return VM_WRITE;
110 		}
111 		return VM_READ; /* Default */
112 	}
113 	return VM_READ; /* Default */
114 }
115 
116 #undef bit22set
117 #undef bits23_25set
118 #undef isGraphicsFlushRead
119 #undef BITSSET
120 
121 
122 #if 0
123 /* This is the treewalk to find a vma which is the highest that has
124  * a start < addr.  We're using find_vma_prev instead right now, but
125  * we might want to use this at some point in the future.  Probably
126  * not, but I want it committed to CVS so I don't lose it :-)
127  */
128 			while (tree != vm_avl_empty) {
129 				if (tree->vm_start > addr) {
130 					tree = tree->vm_avl_left;
131 				} else {
132 					prev = tree;
133 					if (prev->vm_next == NULL)
134 						break;
135 					if (prev->vm_next->vm_start > addr)
136 						break;
137 					tree = tree->vm_avl_right;
138 				}
139 			}
140 #endif
141 
142 void do_page_fault(struct pt_regs *regs, unsigned long code,
143 			      unsigned long address)
144 {
145 	struct vm_area_struct *vma, *prev_vma;
146 	struct task_struct *tsk = current;
147 	struct mm_struct *mm = tsk->mm;
148 	const struct exception_table_entry *fix;
149 	unsigned long acc_type;
150 	int fault;
151 
152 	if (in_atomic() || !mm)
153 		goto no_context;
154 
155 	down_read(&mm->mmap_sem);
156 	vma = find_vma_prev(mm, address, &prev_vma);
157 	if (!vma || address < vma->vm_start)
158 		goto check_expansion;
159 /*
160  * Ok, we have a good vm_area for this memory access. We still need to
161  * check the access permissions.
162  */
163 
164 good_area:
165 
166 	acc_type = parisc_acctyp(code,regs->iir);
167 
168 	if ((vma->vm_flags & acc_type) != acc_type)
169 		goto bad_area;
170 
171 	/*
172 	 * If for any reason at all we couldn't handle the fault, make
173 	 * sure we exit gracefully rather than endlessly redo the
174 	 * fault.
175 	 */
176 
177 	fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0);
178 	if (unlikely(fault & VM_FAULT_ERROR)) {
179 		/*
180 		 * We hit a shared mapping outside of the file, or some
181 		 * other thing happened to us that made us unable to
182 		 * handle the page fault gracefully.
183 		 */
184 		if (fault & VM_FAULT_OOM)
185 			goto out_of_memory;
186 		else if (fault & VM_FAULT_SIGBUS)
187 			goto bad_area;
188 		BUG();
189 	}
190 	if (fault & VM_FAULT_MAJOR)
191 		current->maj_flt++;
192 	else
193 		current->min_flt++;
194 	up_read(&mm->mmap_sem);
195 	return;
196 
197 check_expansion:
198 	vma = prev_vma;
199 	if (vma && (expand_stack(vma, address) == 0))
200 		goto good_area;
201 
202 /*
203  * Something tried to access memory that isn't in our memory map..
204  */
205 bad_area:
206 	up_read(&mm->mmap_sem);
207 
208 	if (user_mode(regs)) {
209 		struct siginfo si;
210 
211 #ifdef PRINT_USER_FAULTS
212 		printk(KERN_DEBUG "\n");
213 		printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
214 		    task_pid_nr(tsk), tsk->comm, code, address);
215 		if (vma) {
216 			printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
217 					vma->vm_start, vma->vm_end);
218 		}
219 		show_regs(regs);
220 #endif
221 		/* FIXME: actually we need to get the signo and code correct */
222 		si.si_signo = SIGSEGV;
223 		si.si_errno = 0;
224 		si.si_code = SEGV_MAPERR;
225 		si.si_addr = (void __user *) address;
226 		force_sig_info(SIGSEGV, &si, current);
227 		return;
228 	}
229 
230 no_context:
231 
232 	if (!user_mode(regs)) {
233 		fix = search_exception_tables(regs->iaoq[0]);
234 
235 		if (fix) {
236 			struct exception_data *d;
237 
238 			d = &__get_cpu_var(exception_data);
239 			d->fault_ip = regs->iaoq[0];
240 			d->fault_space = regs->isr;
241 			d->fault_addr = regs->ior;
242 
243 			regs->iaoq[0] = ((fix->fixup) & ~3);
244 
245 			/*
246 			 * NOTE: In some cases the faulting instruction
247 			 * may be in the delay slot of a branch. We
248 			 * don't want to take the branch, so we don't
249 			 * increment iaoq[1], instead we set it to be
250 			 * iaoq[0]+4, and clear the B bit in the PSW
251 			 */
252 
253 			regs->iaoq[1] = regs->iaoq[0] + 4;
254 			regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
255 
256 			return;
257 		}
258 	}
259 
260 	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
261 
262   out_of_memory:
263 	up_read(&mm->mmap_sem);
264 	printk(KERN_CRIT "VM: killing process %s\n", current->comm);
265 	if (user_mode(regs))
266 		do_group_exit(SIGKILL);
267 	goto no_context;
268 }
269