xref: /openbmc/linux/arch/parisc/math-emu/fpudispatch.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
3  *
4  * Floating-point emulation code
5  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2, or (at your option)
10  *    any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 /*
22  * BEGIN_DESC
23  *
24  *  File:
25  *	@(#)	pa/fp/fpudispatch.c		$Revision: 1.1 $
26  *
27  *  Purpose:
28  *	<<please update with a synopsis of the functionality provided by this file>>
29  *
30  *  External Interfaces:
31  *	<<the following list was autogenerated, please review>>
32  *	emfpudispatch(ir, dummy1, dummy2, fpregs)
33  *	fpudispatch(ir, excp_code, holder, fpregs)
34  *
35  *  Internal Interfaces:
36  *	<<the following list was autogenerated, please review>>
37  *	static u_int decode_06(u_int, u_int *)
38  *	static u_int decode_0c(u_int, u_int, u_int, u_int *)
39  *	static u_int decode_0e(u_int, u_int, u_int, u_int *)
40  *	static u_int decode_26(u_int, u_int *)
41  *	static u_int decode_2e(u_int, u_int *)
42  *	static void update_status_cbit(u_int *, u_int, u_int, u_int)
43  *
44  *  Theory:
45  *	<<please update with a overview of the operation of this file>>
46  *
47  * END_DESC
48 */
49 
50 #define FPUDEBUG 0
51 
52 #include "float.h"
53 #include <linux/kernel.h>
54 #include <asm/processor.h>
55 /* #include <sys/debug.h> */
56 /* #include <machine/sys/mdep_private.h> */
57 
58 #define COPR_INST 0x30000000
59 
60 /*
61  * definition of extru macro.  If pos and len are constants, the compiler
62  * will generate an extru instruction when optimized
63  */
64 #define extru(r,pos,len)	(((r) >> (31-(pos))) & (( 1 << (len)) - 1))
65 /* definitions of bit field locations in the instruction */
66 #define fpmajorpos 5
67 #define fpr1pos	10
68 #define fpr2pos 15
69 #define fptpos	31
70 #define fpsubpos 18
71 #define fpclass1subpos 16
72 #define fpclasspos 22
73 #define fpfmtpos 20
74 #define fpdfpos 18
75 #define fpnulpos 26
76 /*
77  * the following are the extra bits for the 0E major op
78  */
79 #define fpxr1pos 24
80 #define fpxr2pos 19
81 #define fpxtpos 25
82 #define fpxpos 23
83 #define fp0efmtpos 20
84 /*
85  * the following are for the multi-ops
86  */
87 #define fprm1pos 10
88 #define fprm2pos 15
89 #define fptmpos 31
90 #define fprapos 25
91 #define fptapos 20
92 #define fpmultifmt 26
93 /*
94  * the following are for the fused FP instructions
95  */
96      /* fprm1pos 10 */
97      /* fprm2pos 15 */
98 #define fpraupos 18
99 #define fpxrm2pos 19
100      /* fpfmtpos 20 */
101 #define fpralpos 23
102 #define fpxrm1pos 24
103      /* fpxtpos 25 */
104 #define fpfusedsubop 26
105      /* fptpos	31 */
106 
107 /*
108  * offset to constant zero in the FP emulation registers
109  */
110 #define fpzeroreg (32*sizeof(double)/sizeof(u_int))
111 
112 /*
113  * extract the major opcode from the instruction
114  */
115 #define get_major(op) extru(op,fpmajorpos,6)
116 /*
117  * extract the two bit class field from the FP instruction. The class is at bit
118  * positions 21-22
119  */
120 #define get_class(op) extru(op,fpclasspos,2)
121 /*
122  * extract the 3 bit subop field.  For all but class 1 instructions, it is
123  * located at bit positions 16-18
124  */
125 #define get_subop(op) extru(op,fpsubpos,3)
126 /*
127  * extract the 2 or 3 bit subop field from class 1 instructions.  It is located
128  * at bit positions 15-16 (PA1.1) or 14-16 (PA2.0)
129  */
130 #define get_subop1_PA1_1(op) extru(op,fpclass1subpos,2)	/* PA89 (1.1) fmt */
131 #define get_subop1_PA2_0(op) extru(op,fpclass1subpos,3)	/* PA 2.0 fmt */
132 
133 /* definitions of unimplemented exceptions */
134 #define MAJOR_0C_EXCP	0x09
135 #define MAJOR_0E_EXCP	0x0b
136 #define MAJOR_06_EXCP	0x03
137 #define MAJOR_26_EXCP	0x23
138 #define MAJOR_2E_EXCP	0x2b
139 #define PA83_UNIMP_EXCP	0x01
140 
141 /*
142  * Special Defines for TIMEX specific code
143  */
144 
145 #define FPU_TYPE_FLAG_POS (EM_FPU_TYPE_OFFSET>>2)
146 #define TIMEX_ROLEX_FPU_MASK (TIMEX_EXTEN_FLAG|ROLEX_EXTEN_FLAG)
147 
148 /*
149  * Static function definitions
150  */
151 #define _PROTOTYPES
152 #if defined(_PROTOTYPES) || defined(_lint)
153 static u_int decode_0c(u_int, u_int, u_int, u_int *);
154 static u_int decode_0e(u_int, u_int, u_int, u_int *);
155 static u_int decode_06(u_int, u_int *);
156 static u_int decode_26(u_int, u_int *);
157 static u_int decode_2e(u_int, u_int *);
158 static void update_status_cbit(u_int *, u_int, u_int, u_int);
159 #else /* !_PROTOTYPES&&!_lint */
160 static u_int decode_0c();
161 static u_int decode_0e();
162 static u_int decode_06();
163 static u_int decode_26();
164 static u_int decode_2e();
165 static void update_status_cbit();
166 #endif /* _PROTOTYPES&&!_lint */
167 
168 #define VASSERT(x)
169 
170 static void parisc_linux_get_fpu_type(u_int fpregs[])
171 {
172 	/* on pa-linux the fpu type is not filled in by the
173 	 * caller; it is constructed here
174 	 */
175 	if (boot_cpu_data.cpu_type == pcxs)
176 		fpregs[FPU_TYPE_FLAG_POS] = TIMEX_EXTEN_FLAG;
177 	else if (boot_cpu_data.cpu_type == pcxt ||
178 	         boot_cpu_data.cpu_type == pcxt_)
179 		fpregs[FPU_TYPE_FLAG_POS] = ROLEX_EXTEN_FLAG;
180 	else if (boot_cpu_data.cpu_type >= pcxu)
181 		fpregs[FPU_TYPE_FLAG_POS] = PA2_0_FPU_FLAG;
182 }
183 
184 /*
185  * this routine will decode the excepting floating point instruction and
186  * call the approiate emulation routine.
187  * It is called by decode_fpu with the following parameters:
188  * fpudispatch(current_ir, unimplemented_code, 0, &Fpu_register)
189  * where current_ir is the instruction to be emulated,
190  * unimplemented_code is the exception_code that the hardware generated
191  * and &Fpu_register is the address of emulated FP reg 0.
192  */
193 u_int
194 fpudispatch(u_int ir, u_int excp_code, u_int holder, u_int fpregs[])
195 {
196 	u_int class, subop;
197 	u_int fpu_type_flags;
198 
199 	/* All FP emulation code assumes that ints are 4-bytes in length */
200 	VASSERT(sizeof(int) == 4);
201 
202 	parisc_linux_get_fpu_type(fpregs);
203 
204 	fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];  /* get fpu type flags */
205 
206 	class = get_class(ir);
207 	if (class == 1) {
208 		if  (fpu_type_flags & PA2_0_FPU_FLAG)
209 			subop = get_subop1_PA2_0(ir);
210 		else
211 			subop = get_subop1_PA1_1(ir);
212 	}
213 	else
214 		subop = get_subop(ir);
215 
216 	if (FPUDEBUG) printk("class %d subop %d\n", class, subop);
217 
218 	switch (excp_code) {
219 		case MAJOR_0C_EXCP:
220 		case PA83_UNIMP_EXCP:
221 			return(decode_0c(ir,class,subop,fpregs));
222 		case MAJOR_0E_EXCP:
223 			return(decode_0e(ir,class,subop,fpregs));
224 		case MAJOR_06_EXCP:
225 			return(decode_06(ir,fpregs));
226 		case MAJOR_26_EXCP:
227 			return(decode_26(ir,fpregs));
228 		case MAJOR_2E_EXCP:
229 			return(decode_2e(ir,fpregs));
230 		default:
231 			/* "crashme Night Gallery painting nr 2. (asm_crash.s).
232 			 * This was fixed for multi-user kernels, but
233 			 * workstation kernels had a panic here.  This allowed
234 			 * any arbitrary user to panic the kernel by executing
235 			 * setting the FP exception registers to strange values
236 			 * and generating an emulation trap.  The emulation and
237 			 * exception code must never be able to panic the
238 			 * kernel.
239 			 */
240 			return(UNIMPLEMENTEDEXCEPTION);
241 	}
242 }
243 
244 /*
245  * this routine is called by $emulation_trap to emulate a coprocessor
246  * instruction if one doesn't exist
247  */
248 u_int
249 emfpudispatch(u_int ir, u_int dummy1, u_int dummy2, u_int fpregs[])
250 {
251 	u_int class, subop, major;
252 	u_int fpu_type_flags;
253 
254 	/* All FP emulation code assumes that ints are 4-bytes in length */
255 	VASSERT(sizeof(int) == 4);
256 
257 	fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];  /* get fpu type flags */
258 
259 	major = get_major(ir);
260 	class = get_class(ir);
261 	if (class == 1) {
262 		if  (fpu_type_flags & PA2_0_FPU_FLAG)
263 			subop = get_subop1_PA2_0(ir);
264 		else
265 			subop = get_subop1_PA1_1(ir);
266 	}
267 	else
268 		subop = get_subop(ir);
269 	switch (major) {
270 		case 0x0C:
271 			return(decode_0c(ir,class,subop,fpregs));
272 		case 0x0E:
273 			return(decode_0e(ir,class,subop,fpregs));
274 		case 0x06:
275 			return(decode_06(ir,fpregs));
276 		case 0x26:
277 			return(decode_26(ir,fpregs));
278 		case 0x2E:
279 			return(decode_2e(ir,fpregs));
280 		default:
281 			return(PA83_UNIMP_EXCP);
282 	}
283 }
284 
285 
286 static u_int
287 decode_0c(u_int ir, u_int class, u_int subop, u_int fpregs[])
288 {
289 	u_int r1,r2,t;		/* operand register offsets */
290 	u_int fmt;		/* also sf for class 1 conversions */
291 	u_int  df;		/* for class 1 conversions */
292 	u_int *status;
293 	u_int retval, local_status;
294 	u_int fpu_type_flags;
295 
296 	if (ir == COPR_INST) {
297 		fpregs[0] = EMULATION_VERSION << 11;
298 		return(NOEXCEPTION);
299 	}
300 	status = &fpregs[0];	/* fp status register */
301 	local_status = fpregs[0]; /* and local copy */
302 	r1 = extru(ir,fpr1pos,5) * sizeof(double)/sizeof(u_int);
303 	if (r1 == 0)		/* map fr0 source to constant zero */
304 		r1 = fpzeroreg;
305 	t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
306 	if (t == 0 && class != 2)	/* don't allow fr0 as a dest */
307 		return(MAJOR_0C_EXCP);
308 	fmt = extru(ir,fpfmtpos,2);	/* get fmt completer */
309 
310 	switch (class) {
311 	    case 0:
312 		switch (subop) {
313 			case 0:	/* COPR 0,0 emulated above*/
314 			case 1:
315 				return(MAJOR_0C_EXCP);
316 			case 2:	/* FCPY */
317 				switch (fmt) {
318 				    case 2: /* illegal */
319 					return(MAJOR_0C_EXCP);
320 				    case 3: /* quad */
321 					t &= ~3;  /* force to even reg #s */
322 					r1 &= ~3;
323 					fpregs[t+3] = fpregs[r1+3];
324 					fpregs[t+2] = fpregs[r1+2];
325 				    case 1: /* double */
326 					fpregs[t+1] = fpregs[r1+1];
327 				    case 0: /* single */
328 					fpregs[t] = fpregs[r1];
329 					return(NOEXCEPTION);
330 				}
331 			case 3: /* FABS */
332 				switch (fmt) {
333 				    case 2: /* illegal */
334 					return(MAJOR_0C_EXCP);
335 				    case 3: /* quad */
336 					t &= ~3;  /* force to even reg #s */
337 					r1 &= ~3;
338 					fpregs[t+3] = fpregs[r1+3];
339 					fpregs[t+2] = fpregs[r1+2];
340 				    case 1: /* double */
341 					fpregs[t+1] = fpregs[r1+1];
342 				    case 0: /* single */
343 					/* copy and clear sign bit */
344 					fpregs[t] = fpregs[r1] & 0x7fffffff;
345 					return(NOEXCEPTION);
346 				}
347 			case 6: /* FNEG */
348 				switch (fmt) {
349 				    case 2: /* illegal */
350 					return(MAJOR_0C_EXCP);
351 				    case 3: /* quad */
352 					t &= ~3;  /* force to even reg #s */
353 					r1 &= ~3;
354 					fpregs[t+3] = fpregs[r1+3];
355 					fpregs[t+2] = fpregs[r1+2];
356 				    case 1: /* double */
357 					fpregs[t+1] = fpregs[r1+1];
358 				    case 0: /* single */
359 					/* copy and invert sign bit */
360 					fpregs[t] = fpregs[r1] ^ 0x80000000;
361 					return(NOEXCEPTION);
362 				}
363 			case 7: /* FNEGABS */
364 				switch (fmt) {
365 				    case 2: /* illegal */
366 					return(MAJOR_0C_EXCP);
367 				    case 3: /* quad */
368 					t &= ~3;  /* force to even reg #s */
369 					r1 &= ~3;
370 					fpregs[t+3] = fpregs[r1+3];
371 					fpregs[t+2] = fpregs[r1+2];
372 				    case 1: /* double */
373 					fpregs[t+1] = fpregs[r1+1];
374 				    case 0: /* single */
375 					/* copy and set sign bit */
376 					fpregs[t] = fpregs[r1] | 0x80000000;
377 					return(NOEXCEPTION);
378 				}
379 			case 4: /* FSQRT */
380 				switch (fmt) {
381 				    case 0:
382 					return(sgl_fsqrt(&fpregs[r1],0,
383 						&fpregs[t],status));
384 				    case 1:
385 					return(dbl_fsqrt(&fpregs[r1],0,
386 						&fpregs[t],status));
387 				    case 2:
388 				    case 3: /* quad not implemented */
389 					return(MAJOR_0C_EXCP);
390 				}
391 			case 5: /* FRND */
392 				switch (fmt) {
393 				    case 0:
394 					return(sgl_frnd(&fpregs[r1],0,
395 						&fpregs[t],status));
396 				    case 1:
397 					return(dbl_frnd(&fpregs[r1],0,
398 						&fpregs[t],status));
399 				    case 2:
400 				    case 3: /* quad not implemented */
401 					return(MAJOR_0C_EXCP);
402 				}
403 		} /* end of switch (subop) */
404 
405 	case 1: /* class 1 */
406 		df = extru(ir,fpdfpos,2); /* get dest format */
407 		if ((df & 2) || (fmt & 2)) {
408 			/*
409 			 * fmt's 2 and 3 are illegal of not implemented
410 			 * quad conversions
411 			 */
412 			return(MAJOR_0C_EXCP);
413 		}
414 		/*
415 		 * encode source and dest formats into 2 bits.
416 		 * high bit is source, low bit is dest.
417 		 * bit = 1 --> double precision
418 		 */
419 		fmt = (fmt << 1) | df;
420 		switch (subop) {
421 			case 0: /* FCNVFF */
422 				switch(fmt) {
423 				    case 0: /* sgl/sgl */
424 					return(MAJOR_0C_EXCP);
425 				    case 1: /* sgl/dbl */
426 					return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
427 						&fpregs[t],status));
428 				    case 2: /* dbl/sgl */
429 					return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
430 						&fpregs[t],status));
431 				    case 3: /* dbl/dbl */
432 					return(MAJOR_0C_EXCP);
433 				}
434 			case 1: /* FCNVXF */
435 				switch(fmt) {
436 				    case 0: /* sgl/sgl */
437 					return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
438 						&fpregs[t],status));
439 				    case 1: /* sgl/dbl */
440 					return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
441 						&fpregs[t],status));
442 				    case 2: /* dbl/sgl */
443 					return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
444 						&fpregs[t],status));
445 				    case 3: /* dbl/dbl */
446 					return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
447 						&fpregs[t],status));
448 				}
449 			case 2: /* FCNVFX */
450 				switch(fmt) {
451 				    case 0: /* sgl/sgl */
452 					return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
453 						&fpregs[t],status));
454 				    case 1: /* sgl/dbl */
455 					return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
456 						&fpregs[t],status));
457 				    case 2: /* dbl/sgl */
458 					return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
459 						&fpregs[t],status));
460 				    case 3: /* dbl/dbl */
461 					return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
462 						&fpregs[t],status));
463 				}
464 			case 3: /* FCNVFXT */
465 				switch(fmt) {
466 				    case 0: /* sgl/sgl */
467 					return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
468 						&fpregs[t],status));
469 				    case 1: /* sgl/dbl */
470 					return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
471 						&fpregs[t],status));
472 				    case 2: /* dbl/sgl */
473 					return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
474 						&fpregs[t],status));
475 				    case 3: /* dbl/dbl */
476 					return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
477 						&fpregs[t],status));
478 				}
479 			case 5: /* FCNVUF (PA2.0 only) */
480 				switch(fmt) {
481 				    case 0: /* sgl/sgl */
482 					return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
483 						&fpregs[t],status));
484 				    case 1: /* sgl/dbl */
485 					return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
486 						&fpregs[t],status));
487 				    case 2: /* dbl/sgl */
488 					return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
489 						&fpregs[t],status));
490 				    case 3: /* dbl/dbl */
491 					return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
492 						&fpregs[t],status));
493 				}
494 			case 6: /* FCNVFU (PA2.0 only) */
495 				switch(fmt) {
496 				    case 0: /* sgl/sgl */
497 					return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
498 						&fpregs[t],status));
499 				    case 1: /* sgl/dbl */
500 					return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
501 						&fpregs[t],status));
502 				    case 2: /* dbl/sgl */
503 					return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
504 						&fpregs[t],status));
505 				    case 3: /* dbl/dbl */
506 					return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
507 						&fpregs[t],status));
508 				}
509 			case 7: /* FCNVFUT (PA2.0 only) */
510 				switch(fmt) {
511 				    case 0: /* sgl/sgl */
512 					return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
513 						&fpregs[t],status));
514 				    case 1: /* sgl/dbl */
515 					return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
516 						&fpregs[t],status));
517 				    case 2: /* dbl/sgl */
518 					return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
519 						&fpregs[t],status));
520 				    case 3: /* dbl/dbl */
521 					return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
522 						&fpregs[t],status));
523 				}
524 			case 4: /* undefined */
525 				return(MAJOR_0C_EXCP);
526 		} /* end of switch subop */
527 
528 	case 2: /* class 2 */
529 		fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
530 		r2 = extru(ir, fpr2pos, 5) * sizeof(double)/sizeof(u_int);
531 		if (r2 == 0)
532 			r2 = fpzeroreg;
533 		if  (fpu_type_flags & PA2_0_FPU_FLAG) {
534 			/* FTEST if nullify bit set, otherwise FCMP */
535 			if (extru(ir, fpnulpos, 1)) {  /* FTEST */
536 				switch (fmt) {
537 				    case 0:
538 					/*
539 					 * arg0 is not used
540 					 * second param is the t field used for
541 					 * ftest,acc and ftest,rej
542 					 * third param is the subop (y-field)
543 					 */
544 					BUG();
545 					/* Unsupported
546 					 * return(ftest(0L,extru(ir,fptpos,5),
547 					 *	 &fpregs[0],subop));
548 					 */
549 				    case 1:
550 				    case 2:
551 				    case 3:
552 					return(MAJOR_0C_EXCP);
553 				}
554 			} else {  /* FCMP */
555 				switch (fmt) {
556 				    case 0:
557 					retval = sgl_fcmp(&fpregs[r1],
558 						&fpregs[r2],extru(ir,fptpos,5),
559 						&local_status);
560 					update_status_cbit(status,local_status,
561 						fpu_type_flags, subop);
562 					return(retval);
563 				    case 1:
564 					retval = dbl_fcmp(&fpregs[r1],
565 						&fpregs[r2],extru(ir,fptpos,5),
566 						&local_status);
567 					update_status_cbit(status,local_status,
568 						fpu_type_flags, subop);
569 					return(retval);
570 				    case 2: /* illegal */
571 				    case 3: /* quad not implemented */
572 					return(MAJOR_0C_EXCP);
573 				}
574 			}
575 		}  /* end of if for PA2.0 */
576 		else {	/* PA1.0 & PA1.1 */
577 		    switch (subop) {
578 			case 2:
579 			case 3:
580 			case 4:
581 			case 5:
582 			case 6:
583 			case 7:
584 				return(MAJOR_0C_EXCP);
585 			case 0: /* FCMP */
586 				switch (fmt) {
587 				    case 0:
588 					retval = sgl_fcmp(&fpregs[r1],
589 						&fpregs[r2],extru(ir,fptpos,5),
590 						&local_status);
591 					update_status_cbit(status,local_status,
592 						fpu_type_flags, subop);
593 					return(retval);
594 				    case 1:
595 					retval = dbl_fcmp(&fpregs[r1],
596 						&fpregs[r2],extru(ir,fptpos,5),
597 						&local_status);
598 					update_status_cbit(status,local_status,
599 						fpu_type_flags, subop);
600 					return(retval);
601 				    case 2: /* illegal */
602 				    case 3: /* quad not implemented */
603 					return(MAJOR_0C_EXCP);
604 				}
605 			case 1: /* FTEST */
606 				switch (fmt) {
607 				    case 0:
608 					/*
609 					 * arg0 is not used
610 					 * second param is the t field used for
611 					 * ftest,acc and ftest,rej
612 					 * third param is the subop (y-field)
613 					 */
614 					BUG();
615 					/* unsupported
616 					 * return(ftest(0L,extru(ir,fptpos,5),
617 					 *     &fpregs[0],subop));
618 					 */
619 				    case 1:
620 				    case 2:
621 				    case 3:
622 					return(MAJOR_0C_EXCP);
623 				}
624 		    } /* end of switch subop */
625 		} /* end of else for PA1.0 & PA1.1 */
626 	case 3: /* class 3 */
627 		r2 = extru(ir,fpr2pos,5) * sizeof(double)/sizeof(u_int);
628 		if (r2 == 0)
629 			r2 = fpzeroreg;
630 		switch (subop) {
631 			case 5:
632 			case 6:
633 			case 7:
634 				return(MAJOR_0C_EXCP);
635 
636 			case 0: /* FADD */
637 				switch (fmt) {
638 				    case 0:
639 					return(sgl_fadd(&fpregs[r1],&fpregs[r2],
640 						&fpregs[t],status));
641 				    case 1:
642 					return(dbl_fadd(&fpregs[r1],&fpregs[r2],
643 						&fpregs[t],status));
644 				    case 2: /* illegal */
645 				    case 3: /* quad not implemented */
646 					return(MAJOR_0C_EXCP);
647 				}
648 			case 1: /* FSUB */
649 				switch (fmt) {
650 				    case 0:
651 					return(sgl_fsub(&fpregs[r1],&fpregs[r2],
652 						&fpregs[t],status));
653 				    case 1:
654 					return(dbl_fsub(&fpregs[r1],&fpregs[r2],
655 						&fpregs[t],status));
656 				    case 2: /* illegal */
657 				    case 3: /* quad not implemented */
658 					return(MAJOR_0C_EXCP);
659 				}
660 			case 2: /* FMPY */
661 				switch (fmt) {
662 				    case 0:
663 					return(sgl_fmpy(&fpregs[r1],&fpregs[r2],
664 						&fpregs[t],status));
665 				    case 1:
666 					return(dbl_fmpy(&fpregs[r1],&fpregs[r2],
667 						&fpregs[t],status));
668 				    case 2: /* illegal */
669 				    case 3: /* quad not implemented */
670 					return(MAJOR_0C_EXCP);
671 				}
672 			case 3: /* FDIV */
673 				switch (fmt) {
674 				    case 0:
675 					return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
676 						&fpregs[t],status));
677 				    case 1:
678 					return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
679 						&fpregs[t],status));
680 				    case 2: /* illegal */
681 				    case 3: /* quad not implemented */
682 					return(MAJOR_0C_EXCP);
683 				}
684 			case 4: /* FREM */
685 				switch (fmt) {
686 				    case 0:
687 					return(sgl_frem(&fpregs[r1],&fpregs[r2],
688 						&fpregs[t],status));
689 				    case 1:
690 					return(dbl_frem(&fpregs[r1],&fpregs[r2],
691 						&fpregs[t],status));
692 				    case 2: /* illegal */
693 				    case 3: /* quad not implemented */
694 					return(MAJOR_0C_EXCP);
695 				}
696 		} /* end of class 3 switch */
697 	} /* end of switch(class) */
698 
699 	/* If we get here, something is really wrong! */
700 	return(MAJOR_0C_EXCP);
701 }
702 
703 static u_int
704 decode_0e(ir,class,subop,fpregs)
705 u_int ir,class,subop;
706 u_int fpregs[];
707 {
708 	u_int r1,r2,t;		/* operand register offsets */
709 	u_int fmt;		/* also sf for class 1 conversions */
710 	u_int df;		/* dest format for class 1 conversions */
711 	u_int *status;
712 	u_int retval, local_status;
713 	u_int fpu_type_flags;
714 
715 	status = &fpregs[0];
716 	local_status = fpregs[0];
717 	r1 = ((extru(ir,fpr1pos,5)<<1)|(extru(ir,fpxr1pos,1)));
718 	if (r1 == 0)
719 		r1 = fpzeroreg;
720 	t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
721 	if (t == 0 && class != 2)
722 		return(MAJOR_0E_EXCP);
723 	if (class < 2)		/* class 0 or 1 has 2 bit fmt */
724 		fmt = extru(ir,fpfmtpos,2);
725 	else 			/* class 2 and 3 have 1 bit fmt */
726 		fmt = extru(ir,fp0efmtpos,1);
727 	/*
728 	 * An undefined combination, double precision accessing the
729 	 * right half of a FPR, can get us into trouble.
730 	 * Let's just force proper alignment on it.
731 	 */
732 	if (fmt == DBL) {
733 		r1 &= ~1;
734 		if (class != 1)
735 			t &= ~1;
736 	}
737 
738 	switch (class) {
739 	    case 0:
740 		switch (subop) {
741 			case 0: /* unimplemented */
742 			case 1:
743 				return(MAJOR_0E_EXCP);
744 			case 2: /* FCPY */
745 				switch (fmt) {
746 				    case 2:
747 				    case 3:
748 					return(MAJOR_0E_EXCP);
749 				    case 1: /* double */
750 					fpregs[t+1] = fpregs[r1+1];
751 				    case 0: /* single */
752 					fpregs[t] = fpregs[r1];
753 					return(NOEXCEPTION);
754 				}
755 			case 3: /* FABS */
756 				switch (fmt) {
757 				    case 2:
758 				    case 3:
759 					return(MAJOR_0E_EXCP);
760 				    case 1: /* double */
761 					fpregs[t+1] = fpregs[r1+1];
762 				    case 0: /* single */
763 					fpregs[t] = fpregs[r1] & 0x7fffffff;
764 					return(NOEXCEPTION);
765 				}
766 			case 6: /* FNEG */
767 				switch (fmt) {
768 				    case 2:
769 				    case 3:
770 					return(MAJOR_0E_EXCP);
771 				    case 1: /* double */
772 					fpregs[t+1] = fpregs[r1+1];
773 				    case 0: /* single */
774 					fpregs[t] = fpregs[r1] ^ 0x80000000;
775 					return(NOEXCEPTION);
776 				}
777 			case 7: /* FNEGABS */
778 				switch (fmt) {
779 				    case 2:
780 				    case 3:
781 					return(MAJOR_0E_EXCP);
782 				    case 1: /* double */
783 					fpregs[t+1] = fpregs[r1+1];
784 				    case 0: /* single */
785 					fpregs[t] = fpregs[r1] | 0x80000000;
786 					return(NOEXCEPTION);
787 				}
788 			case 4: /* FSQRT */
789 				switch (fmt) {
790 				    case 0:
791 					return(sgl_fsqrt(&fpregs[r1],0,
792 						&fpregs[t], status));
793 				    case 1:
794 					return(dbl_fsqrt(&fpregs[r1],0,
795 						&fpregs[t], status));
796 				    case 2:
797 				    case 3:
798 					return(MAJOR_0E_EXCP);
799 				}
800 			case 5: /* FRMD */
801 				switch (fmt) {
802 				    case 0:
803 					return(sgl_frnd(&fpregs[r1],0,
804 						&fpregs[t], status));
805 				    case 1:
806 					return(dbl_frnd(&fpregs[r1],0,
807 						&fpregs[t], status));
808 				    case 2:
809 				    case 3:
810 					return(MAJOR_0E_EXCP);
811 				}
812 		} /* end of switch (subop */
813 
814 	case 1: /* class 1 */
815 		df = extru(ir,fpdfpos,2); /* get dest format */
816 		/*
817 		 * Fix Crashme problem (writing to 31R in double precision)
818 		 * here too.
819 		 */
820 		if (df == DBL) {
821 			t &= ~1;
822 		}
823 		if ((df & 2) || (fmt & 2))
824 			return(MAJOR_0E_EXCP);
825 
826 		fmt = (fmt << 1) | df;
827 		switch (subop) {
828 			case 0: /* FCNVFF */
829 				switch(fmt) {
830 				    case 0: /* sgl/sgl */
831 					return(MAJOR_0E_EXCP);
832 				    case 1: /* sgl/dbl */
833 					return(sgl_to_dbl_fcnvff(&fpregs[r1],0,
834 						&fpregs[t],status));
835 				    case 2: /* dbl/sgl */
836 					return(dbl_to_sgl_fcnvff(&fpregs[r1],0,
837 						&fpregs[t],status));
838 				    case 3: /* dbl/dbl */
839 					return(MAJOR_0E_EXCP);
840 				}
841 			case 1: /* FCNVXF */
842 				switch(fmt) {
843 				    case 0: /* sgl/sgl */
844 					return(sgl_to_sgl_fcnvxf(&fpregs[r1],0,
845 						&fpregs[t],status));
846 				    case 1: /* sgl/dbl */
847 					return(sgl_to_dbl_fcnvxf(&fpregs[r1],0,
848 						&fpregs[t],status));
849 				    case 2: /* dbl/sgl */
850 					return(dbl_to_sgl_fcnvxf(&fpregs[r1],0,
851 						&fpregs[t],status));
852 				    case 3: /* dbl/dbl */
853 					return(dbl_to_dbl_fcnvxf(&fpregs[r1],0,
854 						&fpregs[t],status));
855 				}
856 			case 2: /* FCNVFX */
857 				switch(fmt) {
858 				    case 0: /* sgl/sgl */
859 					return(sgl_to_sgl_fcnvfx(&fpregs[r1],0,
860 						&fpregs[t],status));
861 				    case 1: /* sgl/dbl */
862 					return(sgl_to_dbl_fcnvfx(&fpregs[r1],0,
863 						&fpregs[t],status));
864 				    case 2: /* dbl/sgl */
865 					return(dbl_to_sgl_fcnvfx(&fpregs[r1],0,
866 						&fpregs[t],status));
867 				    case 3: /* dbl/dbl */
868 					return(dbl_to_dbl_fcnvfx(&fpregs[r1],0,
869 						&fpregs[t],status));
870 				}
871 			case 3: /* FCNVFXT */
872 				switch(fmt) {
873 				    case 0: /* sgl/sgl */
874 					return(sgl_to_sgl_fcnvfxt(&fpregs[r1],0,
875 						&fpregs[t],status));
876 				    case 1: /* sgl/dbl */
877 					return(sgl_to_dbl_fcnvfxt(&fpregs[r1],0,
878 						&fpregs[t],status));
879 				    case 2: /* dbl/sgl */
880 					return(dbl_to_sgl_fcnvfxt(&fpregs[r1],0,
881 						&fpregs[t],status));
882 				    case 3: /* dbl/dbl */
883 					return(dbl_to_dbl_fcnvfxt(&fpregs[r1],0,
884 						&fpregs[t],status));
885 				}
886 			case 5: /* FCNVUF (PA2.0 only) */
887 				switch(fmt) {
888 				    case 0: /* sgl/sgl */
889 					return(sgl_to_sgl_fcnvuf(&fpregs[r1],0,
890 						&fpregs[t],status));
891 				    case 1: /* sgl/dbl */
892 					return(sgl_to_dbl_fcnvuf(&fpregs[r1],0,
893 						&fpregs[t],status));
894 				    case 2: /* dbl/sgl */
895 					return(dbl_to_sgl_fcnvuf(&fpregs[r1],0,
896 						&fpregs[t],status));
897 				    case 3: /* dbl/dbl */
898 					return(dbl_to_dbl_fcnvuf(&fpregs[r1],0,
899 						&fpregs[t],status));
900 				}
901 			case 6: /* FCNVFU (PA2.0 only) */
902 				switch(fmt) {
903 				    case 0: /* sgl/sgl */
904 					return(sgl_to_sgl_fcnvfu(&fpregs[r1],0,
905 						&fpregs[t],status));
906 				    case 1: /* sgl/dbl */
907 					return(sgl_to_dbl_fcnvfu(&fpregs[r1],0,
908 						&fpregs[t],status));
909 				    case 2: /* dbl/sgl */
910 					return(dbl_to_sgl_fcnvfu(&fpregs[r1],0,
911 						&fpregs[t],status));
912 				    case 3: /* dbl/dbl */
913 					return(dbl_to_dbl_fcnvfu(&fpregs[r1],0,
914 						&fpregs[t],status));
915 				}
916 			case 7: /* FCNVFUT (PA2.0 only) */
917 				switch(fmt) {
918 				    case 0: /* sgl/sgl */
919 					return(sgl_to_sgl_fcnvfut(&fpregs[r1],0,
920 						&fpregs[t],status));
921 				    case 1: /* sgl/dbl */
922 					return(sgl_to_dbl_fcnvfut(&fpregs[r1],0,
923 						&fpregs[t],status));
924 				    case 2: /* dbl/sgl */
925 					return(dbl_to_sgl_fcnvfut(&fpregs[r1],0,
926 						&fpregs[t],status));
927 				    case 3: /* dbl/dbl */
928 					return(dbl_to_dbl_fcnvfut(&fpregs[r1],0,
929 						&fpregs[t],status));
930 				}
931 			case 4: /* undefined */
932 				return(MAJOR_0C_EXCP);
933 		} /* end of switch subop */
934 	case 2: /* class 2 */
935 		/*
936 		 * Be careful out there.
937 		 * Crashme can generate cases where FR31R is specified
938 		 * as the source or target of a double precision operation.
939 		 * Since we just pass the address of the floating-point
940 		 * register to the emulation routines, this can cause
941 		 * corruption of fpzeroreg.
942 		 */
943 		if (fmt == DBL)
944 			r2 = (extru(ir,fpr2pos,5)<<1);
945 		else
946 			r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
947 		fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];
948 		if (r2 == 0)
949 			r2 = fpzeroreg;
950 		if  (fpu_type_flags & PA2_0_FPU_FLAG) {
951 			/* FTEST if nullify bit set, otherwise FCMP */
952 			if (extru(ir, fpnulpos, 1)) {  /* FTEST */
953 				/* not legal */
954 				return(MAJOR_0E_EXCP);
955 			} else {  /* FCMP */
956 			switch (fmt) {
957 				    /*
958 				     * fmt is only 1 bit long
959 				     */
960 				    case 0:
961 					retval = sgl_fcmp(&fpregs[r1],
962 						&fpregs[r2],extru(ir,fptpos,5),
963 						&local_status);
964 					update_status_cbit(status,local_status,
965 						fpu_type_flags, subop);
966 					return(retval);
967 				    case 1:
968 					retval = dbl_fcmp(&fpregs[r1],
969 						&fpregs[r2],extru(ir,fptpos,5),
970 						&local_status);
971 					update_status_cbit(status,local_status,
972 						fpu_type_flags, subop);
973 					return(retval);
974 				}
975 			}
976 		}  /* end of if for PA2.0 */
977 		else {  /* PA1.0 & PA1.1 */
978 		    switch (subop) {
979 			case 1:
980 			case 2:
981 			case 3:
982 			case 4:
983 			case 5:
984 			case 6:
985 			case 7:
986 				return(MAJOR_0E_EXCP);
987 			case 0: /* FCMP */
988 				switch (fmt) {
989 				    /*
990 				     * fmt is only 1 bit long
991 				     */
992 				    case 0:
993 					retval = sgl_fcmp(&fpregs[r1],
994 						&fpregs[r2],extru(ir,fptpos,5),
995 						&local_status);
996 					update_status_cbit(status,local_status,
997 						fpu_type_flags, subop);
998 					return(retval);
999 				    case 1:
1000 					retval = dbl_fcmp(&fpregs[r1],
1001 						&fpregs[r2],extru(ir,fptpos,5),
1002 						&local_status);
1003 					update_status_cbit(status,local_status,
1004 						fpu_type_flags, subop);
1005 					return(retval);
1006 				}
1007 		    } /* end of switch subop */
1008 		} /* end of else for PA1.0 & PA1.1 */
1009 	case 3: /* class 3 */
1010 		/*
1011 		 * Be careful out there.
1012 		 * Crashme can generate cases where FR31R is specified
1013 		 * as the source or target of a double precision operation.
1014 		 * Since we just pass the address of the floating-point
1015 		 * register to the emulation routines, this can cause
1016 		 * corruption of fpzeroreg.
1017 		 */
1018 		if (fmt == DBL)
1019 			r2 = (extru(ir,fpr2pos,5)<<1);
1020 		else
1021 			r2 = ((extru(ir,fpr2pos,5)<<1)|(extru(ir,fpxr2pos,1)));
1022 		if (r2 == 0)
1023 			r2 = fpzeroreg;
1024 		switch (subop) {
1025 			case 5:
1026 			case 6:
1027 			case 7:
1028 				return(MAJOR_0E_EXCP);
1029 
1030 			/*
1031 			 * Note that fmt is only 1 bit for class 3 */
1032 			case 0: /* FADD */
1033 				switch (fmt) {
1034 				    case 0:
1035 					return(sgl_fadd(&fpregs[r1],&fpregs[r2],
1036 						&fpregs[t],status));
1037 				    case 1:
1038 					return(dbl_fadd(&fpregs[r1],&fpregs[r2],
1039 						&fpregs[t],status));
1040 				}
1041 			case 1: /* FSUB */
1042 				switch (fmt) {
1043 				    case 0:
1044 					return(sgl_fsub(&fpregs[r1],&fpregs[r2],
1045 						&fpregs[t],status));
1046 				    case 1:
1047 					return(dbl_fsub(&fpregs[r1],&fpregs[r2],
1048 						&fpregs[t],status));
1049 				}
1050 			case 2: /* FMPY or XMPYU */
1051 				/*
1052 				 * check for integer multiply (x bit set)
1053 				 */
1054 				if (extru(ir,fpxpos,1)) {
1055 				    /*
1056 				     * emulate XMPYU
1057 				     */
1058 				    switch (fmt) {
1059 					case 0:
1060 					    /*
1061 					     * bad instruction if t specifies
1062 					     * the right half of a register
1063 					     */
1064 					    if (t & 1)
1065 						return(MAJOR_0E_EXCP);
1066 					    BUG();
1067 					    /* unsupported
1068 					     * impyu(&fpregs[r1],&fpregs[r2],
1069 						 * &fpregs[t]);
1070 					     */
1071 					    return(NOEXCEPTION);
1072 					case 1:
1073 						return(MAJOR_0E_EXCP);
1074 				    }
1075 				}
1076 				else { /* FMPY */
1077 				    switch (fmt) {
1078 				        case 0:
1079 					    return(sgl_fmpy(&fpregs[r1],
1080 					       &fpregs[r2],&fpregs[t],status));
1081 				        case 1:
1082 					    return(dbl_fmpy(&fpregs[r1],
1083 					       &fpregs[r2],&fpregs[t],status));
1084 				    }
1085 				}
1086 			case 3: /* FDIV */
1087 				switch (fmt) {
1088 				    case 0:
1089 					return(sgl_fdiv(&fpregs[r1],&fpregs[r2],
1090 						&fpregs[t],status));
1091 				    case 1:
1092 					return(dbl_fdiv(&fpregs[r1],&fpregs[r2],
1093 						&fpregs[t],status));
1094 				}
1095 			case 4: /* FREM */
1096 				switch (fmt) {
1097 				    case 0:
1098 					return(sgl_frem(&fpregs[r1],&fpregs[r2],
1099 						&fpregs[t],status));
1100 				    case 1:
1101 					return(dbl_frem(&fpregs[r1],&fpregs[r2],
1102 						&fpregs[t],status));
1103 				}
1104 		} /* end of class 3 switch */
1105 	} /* end of switch(class) */
1106 
1107 	/* If we get here, something is really wrong! */
1108 	return(MAJOR_0E_EXCP);
1109 }
1110 
1111 
1112 /*
1113  * routine to decode the 06 (FMPYADD and FMPYCFXT) instruction
1114  */
1115 static u_int
1116 decode_06(ir,fpregs)
1117 u_int ir;
1118 u_int fpregs[];
1119 {
1120 	u_int rm1, rm2, tm, ra, ta; /* operands */
1121 	u_int fmt;
1122 	u_int error = 0;
1123 	u_int status;
1124 	u_int fpu_type_flags;
1125 	union {
1126 		double dbl;
1127 		float flt;
1128 		struct { u_int i1; u_int i2; } ints;
1129 	} mtmp, atmp;
1130 
1131 
1132 	status = fpregs[0];		/* use a local copy of status reg */
1133 	fpu_type_flags=fpregs[FPU_TYPE_FLAG_POS];  /* get fpu type flags */
1134 	fmt = extru(ir, fpmultifmt, 1);	/* get sgl/dbl flag */
1135 	if (fmt == 0) { /* DBL */
1136 		rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
1137 		if (rm1 == 0)
1138 			rm1 = fpzeroreg;
1139 		rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
1140 		if (rm2 == 0)
1141 			rm2 = fpzeroreg;
1142 		tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
1143 		if (tm == 0)
1144 			return(MAJOR_06_EXCP);
1145 		ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
1146 		ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
1147 		if (ta == 0)
1148 			return(MAJOR_06_EXCP);
1149 
1150 		if  (fpu_type_flags & TIMEX_ROLEX_FPU_MASK)  {
1151 
1152 			if (ra == 0) {
1153 			 	/* special case FMPYCFXT, see sgl case below */
1154 				if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],
1155 					&mtmp.ints.i1,&status))
1156 					error = 1;
1157 				if (dbl_to_sgl_fcnvfxt(&fpregs[ta],
1158 					&atmp.ints.i1,&atmp.ints.i1,&status))
1159 					error = 1;
1160 				}
1161 			else {
1162 
1163 			if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1164 					&status))
1165 				error = 1;
1166 			if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
1167 					&status))
1168 				error = 1;
1169 				}
1170 			}
1171 
1172 		else
1173 
1174 			{
1175 			if (ra == 0)
1176 				ra = fpzeroreg;
1177 
1178 			if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1179 					&status))
1180 				error = 1;
1181 			if (dbl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
1182 					&status))
1183 				error = 1;
1184 
1185 			}
1186 
1187 		if (error)
1188 			return(MAJOR_06_EXCP);
1189 		else {
1190 			/* copy results */
1191 			fpregs[tm] = mtmp.ints.i1;
1192 			fpregs[tm+1] = mtmp.ints.i2;
1193 			fpregs[ta] = atmp.ints.i1;
1194 			fpregs[ta+1] = atmp.ints.i2;
1195 			fpregs[0] = status;
1196 			return(NOEXCEPTION);
1197 		}
1198 	}
1199 	else { /* SGL */
1200 		/*
1201 		 * calculate offsets for single precision numbers
1202 		 * See table 6-14 in PA-89 architecture for mapping
1203 		 */
1204 		rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1;	/* get offset */
1205 		rm1 |= extru(ir,fprm1pos-4,1);	/* add right word offset */
1206 
1207 		rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1;	/* get offset */
1208 		rm2 |= extru(ir,fprm2pos-4,1);	/* add right word offset */
1209 
1210 		tm = (extru(ir,fptmpos,4) | 0x10 ) << 1;	/* get offset */
1211 		tm |= extru(ir,fptmpos-4,1);	/* add right word offset */
1212 
1213 		ra = (extru(ir,fprapos,4) | 0x10 ) << 1;	/* get offset */
1214 		ra |= extru(ir,fprapos-4,1);	/* add right word offset */
1215 
1216 		ta = (extru(ir,fptapos,4) | 0x10 ) << 1;	/* get offset */
1217 		ta |= extru(ir,fptapos-4,1);	/* add right word offset */
1218 
1219 		if (ra == 0x20 &&(fpu_type_flags & TIMEX_ROLEX_FPU_MASK)) {
1220 			/* special case FMPYCFXT (really 0)
1221 			  * This instruction is only present on the Timex and
1222 			  * Rolex fpu's in so if it is the special case and
1223 			  * one of these fpu's we run the FMPYCFXT instruction
1224 			  */
1225 			if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1226 					&status))
1227 				error = 1;
1228 			if (sgl_to_sgl_fcnvfxt(&fpregs[ta],&atmp.ints.i1,
1229 				&atmp.ints.i1,&status))
1230 				error = 1;
1231 		}
1232 		else {
1233 			if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,
1234 					&status))
1235 				error = 1;
1236 			if (sgl_fadd(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,
1237 					&status))
1238 				error = 1;
1239 		}
1240 		if (error)
1241 			return(MAJOR_06_EXCP);
1242 		else {
1243 			/* copy results */
1244 			fpregs[tm] = mtmp.ints.i1;
1245 			fpregs[ta] = atmp.ints.i1;
1246 			fpregs[0] = status;
1247 			return(NOEXCEPTION);
1248 		}
1249 	}
1250 }
1251 
1252 /*
1253  * routine to decode the 26 (FMPYSUB) instruction
1254  */
1255 static u_int
1256 decode_26(ir,fpregs)
1257 u_int ir;
1258 u_int fpregs[];
1259 {
1260 	u_int rm1, rm2, tm, ra, ta; /* operands */
1261 	u_int fmt;
1262 	u_int error = 0;
1263 	u_int status;
1264 	union {
1265 		double dbl;
1266 		float flt;
1267 		struct { u_int i1; u_int i2; } ints;
1268 	} mtmp, atmp;
1269 
1270 
1271 	status = fpregs[0];
1272 	fmt = extru(ir, fpmultifmt, 1);	/* get sgl/dbl flag */
1273 	if (fmt == 0) { /* DBL */
1274 		rm1 = extru(ir, fprm1pos, 5) * sizeof(double)/sizeof(u_int);
1275 		if (rm1 == 0)
1276 			rm1 = fpzeroreg;
1277 		rm2 = extru(ir, fprm2pos, 5) * sizeof(double)/sizeof(u_int);
1278 		if (rm2 == 0)
1279 			rm2 = fpzeroreg;
1280 		tm = extru(ir, fptmpos, 5) * sizeof(double)/sizeof(u_int);
1281 		if (tm == 0)
1282 			return(MAJOR_26_EXCP);
1283 		ra = extru(ir, fprapos, 5) * sizeof(double)/sizeof(u_int);
1284 		if (ra == 0)
1285 			return(MAJOR_26_EXCP);
1286 		ta = extru(ir, fptapos, 5) * sizeof(double)/sizeof(u_int);
1287 		if (ta == 0)
1288 			return(MAJOR_26_EXCP);
1289 
1290 		if (dbl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
1291 			error = 1;
1292 		if (dbl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
1293 			error = 1;
1294 		if (error)
1295 			return(MAJOR_26_EXCP);
1296 		else {
1297 			/* copy results */
1298 			fpregs[tm] = mtmp.ints.i1;
1299 			fpregs[tm+1] = mtmp.ints.i2;
1300 			fpregs[ta] = atmp.ints.i1;
1301 			fpregs[ta+1] = atmp.ints.i2;
1302 			fpregs[0] = status;
1303 			return(NOEXCEPTION);
1304 		}
1305 	}
1306 	else { /* SGL */
1307 		/*
1308 		 * calculate offsets for single precision numbers
1309 		 * See table 6-14 in PA-89 architecture for mapping
1310 		 */
1311 		rm1 = (extru(ir,fprm1pos,4) | 0x10 ) << 1;	/* get offset */
1312 		rm1 |= extru(ir,fprm1pos-4,1);	/* add right word offset */
1313 
1314 		rm2 = (extru(ir,fprm2pos,4) | 0x10 ) << 1;	/* get offset */
1315 		rm2 |= extru(ir,fprm2pos-4,1);	/* add right word offset */
1316 
1317 		tm = (extru(ir,fptmpos,4) | 0x10 ) << 1;	/* get offset */
1318 		tm |= extru(ir,fptmpos-4,1);	/* add right word offset */
1319 
1320 		ra = (extru(ir,fprapos,4) | 0x10 ) << 1;	/* get offset */
1321 		ra |= extru(ir,fprapos-4,1);	/* add right word offset */
1322 
1323 		ta = (extru(ir,fptapos,4) | 0x10 ) << 1;	/* get offset */
1324 		ta |= extru(ir,fptapos-4,1);	/* add right word offset */
1325 
1326 		if (sgl_fmpy(&fpregs[rm1],&fpregs[rm2],&mtmp.ints.i1,&status))
1327 			error = 1;
1328 		if (sgl_fsub(&fpregs[ta], &fpregs[ra], &atmp.ints.i1,&status))
1329 			error = 1;
1330 		if (error)
1331 			return(MAJOR_26_EXCP);
1332 		else {
1333 			/* copy results */
1334 			fpregs[tm] = mtmp.ints.i1;
1335 			fpregs[ta] = atmp.ints.i1;
1336 			fpregs[0] = status;
1337 			return(NOEXCEPTION);
1338 		}
1339 	}
1340 
1341 }
1342 
1343 /*
1344  * routine to decode the 2E (FMPYFADD,FMPYNFADD) instructions
1345  */
1346 static u_int
1347 decode_2e(ir,fpregs)
1348 u_int ir;
1349 u_int fpregs[];
1350 {
1351 	u_int rm1, rm2, ra, t; /* operands */
1352 	u_int fmt;
1353 
1354 	fmt = extru(ir,fpfmtpos,1);	/* get fmt completer */
1355 	if (fmt == DBL) { /* DBL */
1356 		rm1 = extru(ir,fprm1pos,5) * sizeof(double)/sizeof(u_int);
1357 		if (rm1 == 0)
1358 			rm1 = fpzeroreg;
1359 		rm2 = extru(ir,fprm2pos,5) * sizeof(double)/sizeof(u_int);
1360 		if (rm2 == 0)
1361 			rm2 = fpzeroreg;
1362 		ra = ((extru(ir,fpraupos,3)<<2)|(extru(ir,fpralpos,3)>>1)) *
1363 		     sizeof(double)/sizeof(u_int);
1364 		if (ra == 0)
1365 			ra = fpzeroreg;
1366 		t = extru(ir,fptpos,5) * sizeof(double)/sizeof(u_int);
1367 		if (t == 0)
1368 			return(MAJOR_2E_EXCP);
1369 
1370 		if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
1371 			return(dbl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
1372 					&fpregs[ra], &fpregs[0], &fpregs[t]));
1373 		} else {
1374 			return(dbl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
1375 					&fpregs[ra], &fpregs[0], &fpregs[t]));
1376 		}
1377 	} /* end DBL */
1378 	else { /* SGL */
1379 		rm1 = (extru(ir,fprm1pos,5)<<1)|(extru(ir,fpxrm1pos,1));
1380 		if (rm1 == 0)
1381 			rm1 = fpzeroreg;
1382 		rm2 = (extru(ir,fprm2pos,5)<<1)|(extru(ir,fpxrm2pos,1));
1383 		if (rm2 == 0)
1384 			rm2 = fpzeroreg;
1385 		ra = (extru(ir,fpraupos,3)<<3)|extru(ir,fpralpos,3);
1386 		if (ra == 0)
1387 			ra = fpzeroreg;
1388 		t = ((extru(ir,fptpos,5)<<1)|(extru(ir,fpxtpos,1)));
1389 		if (t == 0)
1390 			return(MAJOR_2E_EXCP);
1391 
1392 		if (extru(ir,fpfusedsubop,1)) { /* fmpyfadd or fmpynfadd? */
1393 			return(sgl_fmpynfadd(&fpregs[rm1], &fpregs[rm2],
1394 					&fpregs[ra], &fpregs[0], &fpregs[t]));
1395 		} else {
1396 			return(sgl_fmpyfadd(&fpregs[rm1], &fpregs[rm2],
1397 					&fpregs[ra], &fpregs[0], &fpregs[t]));
1398 		}
1399 	} /* end SGL */
1400 }
1401 
1402 /*
1403  * update_status_cbit
1404  *
1405  *	This routine returns the correct FP status register value in
1406  *	*status, based on the C-bit & V-bit returned by the FCMP
1407  *	emulation routine in new_status.  The architecture type
1408  *	(PA83, PA89 or PA2.0) is available in fpu_type.  The y_field
1409  *	and the architecture type are used to determine what flavor
1410  *	of FCMP is being emulated.
1411  */
1412 static void
1413 update_status_cbit(status, new_status, fpu_type, y_field)
1414 u_int *status, new_status;
1415 u_int fpu_type;
1416 u_int y_field;
1417 {
1418 	/*
1419 	 * For PA89 FPU's which implement the Compare Queue and
1420 	 * for PA2.0 FPU's, update the Compare Queue if the y-field = 0,
1421 	 * otherwise update the specified bit in the Compare Array.
1422 	 * Note that the y-field will always be 0 for non-PA2.0 FPU's.
1423 	 */
1424 	if ((fpu_type & TIMEX_EXTEN_FLAG) ||
1425 	    (fpu_type & ROLEX_EXTEN_FLAG) ||
1426 	    (fpu_type & PA2_0_FPU_FLAG)) {
1427 		if (y_field == 0) {
1428 			*status = ((*status & 0x04000000) >> 5) | /* old Cbit */
1429 				  ((*status & 0x003ff000) >> 1) | /* old CQ   */
1430 				  (new_status & 0xffc007ff); /* all other bits*/
1431 		} else {
1432 			*status = (*status & 0x04000000) |     /* old Cbit */
1433 				  ((new_status & 0x04000000) >> (y_field+4)) |
1434 				  (new_status & ~0x04000000 &  /* other bits */
1435 				   ~(0x04000000 >> (y_field+4)));
1436 		}
1437 	}
1438 	/* if PA83, just update the C-bit */
1439 	else {
1440 		*status = new_status;
1441 	}
1442 }
1443