xref: /openbmc/linux/arch/parisc/math-emu/dbl_float.h (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
3  *
4  * Floating-point emulation code
5  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2, or (at your option)
10  *    any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 #ifdef __NO_PA_HDRS
22     PA header file -- do not include this header file for non-PA builds.
23 #endif
24 
25 /* 32-bit word grabbing functions */
26 #define Dbl_firstword(value) Dallp1(value)
27 #define Dbl_secondword(value) Dallp2(value)
28 #define Dbl_thirdword(value) dummy_location
29 #define Dbl_fourthword(value) dummy_location
30 
31 #define Dbl_sign(object) Dsign(object)
32 #define Dbl_exponent(object) Dexponent(object)
33 #define Dbl_signexponent(object) Dsignexponent(object)
34 #define Dbl_mantissap1(object) Dmantissap1(object)
35 #define Dbl_mantissap2(object) Dmantissap2(object)
36 #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
37 #define Dbl_allp1(object) Dallp1(object)
38 #define Dbl_allp2(object) Dallp2(object)
39 
40 /* dbl_and_signs ANDs the sign bits of each argument and puts the result
41  * into the first argument. dbl_or_signs ors those same sign bits */
42 #define Dbl_and_signs( src1dst, src2)		\
43     Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
44 #define Dbl_or_signs( src1dst, src2)		\
45     Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
46 
47 /* The hidden bit is always the low bit of the exponent */
48 #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
49 #define Dbl_clear_signexponent_set_hidden(srcdst) \
50     Deposit_dsignexponent(srcdst,1)
51 #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
52 #define Dbl_clear_signexponent(srcdst) \
53     Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
54 
55 /* Exponent field for doubles has already been cleared and may be
56  * included in the shift.  Here we need to generate two double width
57  * variable shifts.  The insignificant bits can be ignored.
58  *      MTSAR f(varamount)
59  *      VSHD	srcdst.high,srcdst.low => srcdst.low
60  *	VSHD	0,srcdst.high => srcdst.high
61  * This is very difficult to model with C expressions since the shift amount
62  * could exceed 32.  */
63 /* varamount must be less than 64 */
64 #define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
65     {if((varamount) >= 32) {						\
66         Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
67         Dallp1(srcdstA)=0;						\
68     }									\
69     else if(varamount > 0) {						\
70 	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\
71 	  (varamount), Dallp2(srcdstB));				\
72 	Dallp1(srcdstA) >>= varamount;					\
73     } }
74 /* varamount must be less than 64 */
75 #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
76     {if((varamount) >= 32) {						\
77         Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
78 	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \
79     }									\
80     else if(varamount > 0) {						\
81 	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
82 	(varamount), Dallp2(srcdstB));					\
83 	Deposit_dexponentmantissap1(srcdstA,				\
84 	    (Dexponentmantissap1(srcdstA)>>varamount));			\
85     } }
86 /* varamount must be less than 64 */
87 #define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
88     {if((varamount) >= 32) {						\
89 	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
90 	Dallp2(srcdstB)=0;						\
91     }									\
92     else {								\
93 	if ((varamount) > 0) {						\
94 	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
95 		(Dallp2(srcdstB) >> (32-(varamount)));			\
96 	    Dallp2(srcdstB) <<= varamount;				\
97 	}								\
98     } }
99 #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
100     Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
101     Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
102 
103 #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
104     Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
105 		  Extlow(right)
106 
107 #define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
108     Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
109     Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
110 
111 /* Sign extend the sign bit with an integer destination */
112 #define Dbl_signextendedsign(value)  Dsignedsign(value)
113 
114 #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
115 /* Singles and doubles may include the sign and exponent fields.  The
116  * hidden bit and the hidden overflow must be included. */
117 #define Dbl_increment(dbl_valueA,dbl_valueB) \
118     if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
119 #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
120     if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
121     Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
122 #define Dbl_decrement(dbl_valueA,dbl_valueB) \
123     if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
124     Dallp2(dbl_valueB) -= 1
125 
126 #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
127 #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
128 #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
129 #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
130 #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
131 #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
132 #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
133     (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
134 #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
135     (Dhiddenhigh7mantissa(dbl_value)!=0)
136 #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
137 #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
138     (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
139 #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
140 #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
141 #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
142     (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
143 #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
144 #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
145     Dallp2(dbl_valueB)==0)
146 #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
147 #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
148 #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
149 #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
150 #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
151     (Dhiddenhigh3mantissa(dbl_value)==0)
152 #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
153     (Dhiddenhigh7mantissa(dbl_value)==0)
154 #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
155 #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
156 #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
157     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
158 #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
159     (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
160 #define Dbl_isinfinity_exponent(dbl_value)		\
161     (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
162 #define Dbl_isnotinfinity_exponent(dbl_value)		\
163     (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
164 #define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
165     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
166     Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
167 #define Dbl_isnan(dbl_valueA,dbl_valueB)		\
168     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
169     (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
170 #define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
171     (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
172     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
173 
174 #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
175     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
176      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
177       Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
178 #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
179     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
180      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
181       Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
182 #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
183     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
184      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
185       Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
186 #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
187     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
188      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
189       Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
190 #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
191      ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
192       (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
193 
194 #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
195     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
196     Dallp2(dbl_valueB) <<= 8
197 #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
198     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
199     Dallp2(dbl_valueB) <<= 7
200 #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
201     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
202     Dallp2(dbl_valueB) <<= 4
203 #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
204     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
205     Dallp2(dbl_valueB) <<= 3
206 #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
207     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
208     Dallp2(dbl_valueB) <<= 2
209 #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
210     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
211     Dallp2(dbl_valueB) <<= 1
212 
213 #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
214     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
215     Dallp1(dbl_valueA) >>= 8
216 #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
217     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
218     Dallp1(dbl_valueA) >>= 4
219 #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
220     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
221     Dallp1(dbl_valueA) >>= 2
222 #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
223     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
224     Dallp1(dbl_valueA) >>= 1
225 
226 /* This magnitude comparison uses the signless first words and
227  * the regular part2 words.  The comparison is graphically:
228  *
229  *       1st greater?  -------------
230  *                                 |
231  *       1st less?-----------------+---------
232  *                                 |        |
233  *       2nd greater or equal----->|        |
234  *                               False     True
235  */
236 #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
237       ((signlessleft <= signlessright) &&				\
238        ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
239 
240 #define Dbl_copytoint_exponentmantissap1(src,dest) \
241     dest = Dexponentmantissap1(src)
242 
243 /* A quiet NaN has the high mantissa bit clear and at least on other (in this
244  * case the adjacent bit) bit set. */
245 #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
246 #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
247 
248 #define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
249     Deposit_dmantissap1(desta,valuea);			\
250     Dmantissap2(destb) = Dmantissap2(valueb)
251 #define Dbl_set_mantissap1(desta,valuea)		\
252     Deposit_dmantissap1(desta,valuea)
253 #define Dbl_set_mantissap2(destb,valueb)		\
254     Dmantissap2(destb) = Dmantissap2(valueb)
255 
256 #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
257     Deposit_dexponentmantissap1(desta,valuea);			\
258     Dmantissap2(destb) = Dmantissap2(valueb)
259 #define Dbl_set_exponentmantissap1(dest,value)			\
260     Deposit_dexponentmantissap1(dest,value)
261 
262 #define Dbl_copyfromptr(src,desta,destb) \
263     Dallp1(desta) = src->wd0;		\
264     Dallp2(destb) = src->wd1
265 #define Dbl_copytoptr(srca,srcb,dest)	\
266     dest->wd0 = Dallp1(srca);		\
267     dest->wd1 = Dallp2(srcb)
268 
269 /*  An infinity is represented with the max exponent and a zero mantissa */
270 #define Dbl_setinfinity_exponent(dbl_value) \
271     Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
272 #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
273     Deposit_dexponentmantissap1(dbl_valueA, 			\
274     (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
275     Dmantissap2(dbl_valueB) = 0
276 #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
277     Dallp1(dbl_valueA) 						\
278         = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
279     Dmantissap2(dbl_valueB) = 0
280 #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
281     Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\
282          (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
283     Dmantissap2(dbl_valueB) = 0
284 #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
285     Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\
286 	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
287     Dmantissap2(dbl_valueB) = 0
288 
289 #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
290 #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
291 #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
292 #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
293 #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
294 #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
295 #define Dbl_setzero_exponent(dbl_value) 		\
296     Dallp1(dbl_value) &= 0x800fffff
297 #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
298     Dallp1(dbl_valueA) &= 0xfff00000; 			\
299     Dallp2(dbl_valueB) = 0
300 #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
301 #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
302 #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
303     Dallp1(dbl_valueA) &= 0x80000000;		\
304     Dallp2(dbl_valueB) = 0
305 #define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
306     Dallp1(dbl_valueA) &= 0x80000000
307 #define Dbl_setzero(dbl_valueA,dbl_valueB) \
308     Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
309 #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
310 #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
311 #define Dbl_setnegativezero(dbl_value) \
312     Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
313 #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
314 
315 /* Use the following macro for both overflow & underflow conditions */
316 #define ovfl -
317 #define unfl +
318 #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
319     Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
320 
321 #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\
322     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
323 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
324     Dallp2(dbl_valueB) = 0xFFFFFFFF
325 #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\
326     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
327 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\
328 			| ((unsigned int)1<<31);			\
329     Dallp2(dbl_valueB) = 0xFFFFFFFF
330 #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
331     Deposit_dexponentmantissap1(dbl_valueA,				\
332 	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
333 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
334     Dallp2(dbl_valueB) = 0xFFFFFFFF
335 
336 #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\
337     Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\
338 			 << (32-(1+DBL_EXP_LENGTH)) ; 			\
339     Dallp2(dbl_valueB) = 0
340 #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
341     Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\
342          ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\
343 	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
344     Dallp2(dbl_valueB) = 0xFFFFFFFF
345 
346 
347 /* The high bit is always zero so arithmetic or logical shifts will work. */
348 #define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
349     if( shift >= 32 ) 							\
350 	{								\
351 	/* Big shift requires examining the portion shift off 		\
352 	the end to properly set inexact.  */				\
353 	if(shift < 64)							\
354 	    {								\
355 	    if(shift > 32)						\
356 		{							\
357 	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
358 		 shift-32, Extall(extent));				\
359 	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
360 	        }							\
361 	    else Extall(extent) = Dallp2(srcdstB);			\
362 	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
363 	    }								\
364 	else								\
365 	    {								\
366 	    Extall(extent) = Dallp1(srcdstA);				\
367 	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
368 	    Dallp2(srcdstB) = 0;					\
369 	    }								\
370 	Dallp1(srcdstA) = 0;						\
371 	}								\
372     else								\
373 	{								\
374 	/* Small alignment is simpler.  Extension is easily set. */	\
375 	if (shift > 0)							\
376 	    {								\
377 	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
378 	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
379 	     Dallp2(srcdstB));						\
380 	    Dallp1(srcdstA) >>= shift;					\
381 	    }								\
382 	else Extall(extent) = 0;					\
383 	}
384 
385 /*
386  * Here we need to shift the result right to correct for an overshift
387  * (due to the exponent becoming negative) during normalization.
388  */
389 #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
390 	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
391 	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\
392 		(Dallp2(srcdstB) >> (shift));				\
393 	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
394 
395 #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
396 #define Dbl_hidden(dbl_value) Dhidden(dbl_value)
397 #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
398 
399 /* The left argument is never smaller than the right argument */
400 #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
401     if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
402     Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
403     Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
404 
405 /* Subtract right augmented with extension from left augmented with zeros and
406  * store into result and extension. */
407 #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
408     Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
409     if( (Extall(extent) = 0-Extall(extent)) )				\
410         {								\
411         if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
412         }
413 
414 #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
415     /* If the sum of the low words is less than either source, then	\
416      * an overflow into the next word occurred. */			\
417     Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
418     if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
419 	Dallp1(resulta)++
420 
421 #define Dbl_xortointp1(left,right,result)			\
422     result = Dallp1(left) XOR Dallp1(right)
423 
424 #define Dbl_xorfromintp1(left,right,result)			\
425     Dallp1(result) = left XOR Dallp1(right)
426 
427 #define Dbl_swap_lower(left,right)				\
428     Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
429     Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
430     Dallp2(left)  = Dallp2(left) XOR Dallp2(right)
431 
432 /* Need to Initialize */
433 #define Dbl_makequietnan(desta,destb)					\
434     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
435                  | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
436     Dallp2(destb) = 0
437 #define Dbl_makesignalingnan(desta,destb)				\
438     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
439                  | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
440     Dallp2(destb) = 0
441 
442 #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
443 	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
444 		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
445 		exponent -= 8;						\
446 	}								\
447 	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
448 		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
449 		exponent -= 4;						\
450 	}								\
451 	while(Dbl_iszero_hidden(dbl_opndA)) {				\
452 		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
453 		exponent -= 1;						\
454 	}
455 
456 #define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
457 	/* 							\
458 	 * want this macro to generate:				\
459 	 *	ADD	src1dstB,src2B,src1dstB;		\
460 	 *	ADDC	src1dstA,src2A,src1dstA;		\
461 	 */							\
462 	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
463 	Dallp1(src1dstA) += (src2A);				\
464 	Dallp2(src1dstB) += (src2B)
465 
466 #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
467 	/* 							\
468 	 * want this macro to generate:				\
469 	 *	SUB	src1dstB,src2B,src1dstB;		\
470 	 *	SUBB	src1dstA,src2A,src1dstA;		\
471 	 */							\
472 	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
473 	Dallp1(src1dstA) -= (src2A);				\
474 	Dallp2(src1dstB) -= (src2B)
475 
476 #define Dbl_setoverflow(resultA,resultB)				\
477 	/* set result to infinity or largest number */			\
478 	switch (Rounding_mode()) {					\
479 		case ROUNDPLUS:						\
480 			if (Dbl_isone_sign(resultA)) {			\
481 				Dbl_setlargestnegative(resultA,resultB); \
482 			}						\
483 			else {						\
484 				Dbl_setinfinitypositive(resultA,resultB); \
485 			}						\
486 			break;						\
487 		case ROUNDMINUS:					\
488 			if (Dbl_iszero_sign(resultA)) {			\
489 				Dbl_setlargestpositive(resultA,resultB); \
490 			}						\
491 			else {						\
492 				Dbl_setinfinitynegative(resultA,resultB); \
493 			}						\
494 			break;						\
495 		case ROUNDNEAREST:					\
496 			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
497 			break;						\
498 		case ROUNDZERO:						\
499 			Dbl_setlargest_exponentmantissa(resultA,resultB); \
500 	}
501 
502 #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
503     Dbl_clear_signexponent_set_hidden(opndp1);				\
504     if (exponent >= (1-DBL_P)) {					\
505 	if (exponent >= -31) {						\
506 	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\
507 	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
508 	    if (exponent > -31) {					\
509 		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
510 		Dallp1(opndp1) >>= 1-exponent;				\
511 	    }								\
512 	    else {							\
513 		Dallp2(opndp2) = Dallp1(opndp1);			\
514 		Dbl_setzerop1(opndp1);					\
515 	    }								\
516 	}								\
517 	else {								\
518 	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\
519 	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
520 	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
521 	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\
522 	    Dbl_setzerop1(opndp1);					\
523 	}								\
524 	inexact = guard | sticky;					\
525     }									\
526     else {								\
527 	guard = 0;							\
528 	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
529 	Dbl_setzero(opndp1,opndp2);					\
530 	inexact = sticky;						\
531     }
532 
533 /*
534  * The fused multiply add instructions requires a double extended format,
535  * with 106 bits of mantissa.
536  */
537 #define DBLEXT_THRESHOLD 106
538 
539 #define Dblext_setzero(valA,valB,valC,valD)	\
540     Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\
541     Dextallp3(valC) = 0; Dextallp4(valD) = 0
542 
543 
544 #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
545 #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
546 #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
547 #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
548 #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
549 #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
550     Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
551 
552 #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
553     Dextallp1(desta) = Dextallp4(srca);	\
554     Dextallp2(destb) = Dextallp4(srcb);	\
555     Dextallp3(destc) = Dextallp4(srcc);	\
556     Dextallp4(destd) = Dextallp4(srcd)
557 
558 #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \
559     Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
560     Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
561     Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
562     Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
563     Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
564     Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
565     Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
566     Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
567     Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4)
568 
569 #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
570 
571 /* The high bit is always zero so arithmetic or logical shifts will work. */
572 #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
573   {int shiftamt, sticky;						\
574     shiftamt = shift % 32;						\
575     sticky = 0;								\
576     switch (shift/32) {							\
577      case 0: if (shiftamt > 0) {					\
578 	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\
579                 Variable_shift_double(Dextallp3(srcdstC),		\
580 		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\
581                 Variable_shift_double(Dextallp2(srcdstB),		\
582 		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\
583                 Variable_shift_double(Dextallp1(srcdstA),		\
584 		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\
585 	        Dextallp1(srcdstA) >>= shiftamt;			\
586 	     }								\
587 	     break;							\
588      case 1: if (shiftamt > 0) {					\
589                 sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\
590 			 Dextallp4(srcdstD);				\
591                 Variable_shift_double(Dextallp2(srcdstB),		\
592 		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\
593                 Variable_shift_double(Dextallp1(srcdstA),		\
594 		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\
595 	     }								\
596 	     else {							\
597 		sticky = Dextallp4(srcdstD);				\
598 		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\
599 		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\
600 	     }								\
601 	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\
602 	     Dextallp1(srcdstA) = 0;					\
603 	     break;							\
604      case 2: if (shiftamt > 0) {					\
605                 sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\
606 			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
607                 Variable_shift_double(Dextallp1(srcdstA),		\
608 		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\
609 	     }								\
610 	     else {							\
611 		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
612 		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\
613 	     }								\
614 	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\
615 	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
616 	     break;							\
617      case 3: if (shiftamt > 0) {					\
618                 sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\
619 			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
620 			 Dextallp4(srcdstD);				\
621 	     }								\
622 	     else {							\
623 		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
624 		    Dextallp4(srcdstD);					\
625 	     }								\
626 	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\
627 	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
628 	     Dextallp3(srcdstC) = 0;					\
629 	     break;							\
630     }									\
631     if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\
632   }
633 
634 /* The left argument is never smaller than the right argument */
635 #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
636     if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\
637 	if( (Dextallp3(leftc)--) == 0)				\
638 	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
639     Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\
640     if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\
641         if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
642     Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\
643     if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
644     Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\
645     Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
646 
647 #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
648     /* If the sum of the low words is less than either source, then \
649      * an overflow into the next word occurred. */ \
650     if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
651 	Dextallp4(rightd)) \
652 	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
653 	    Dextallp3(rightc)) \
654 	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
655 	        <= Dextallp2(rightb))  \
656 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
657 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
658 	else \
659 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
660 	        Dextallp2(rightb)) \
661 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
662 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
663     else \
664 	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
665 	    Dextallp3(rightc))  \
666 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
667 	        <= Dextallp2(rightb)) \
668 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
669 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
670 	else \
671 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
672 	        Dextallp2(rightb)) \
673 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
674 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
675 
676 
677 #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\
678     Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
679     Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
680     Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
681     Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
682 
683 #define Dblext_leftshiftby8(valA,valB,valC,valD) \
684     Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
685     Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
686     Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
687     Dextallp4(valD) <<= 8
688 #define Dblext_leftshiftby4(valA,valB,valC,valD) \
689     Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
690     Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
691     Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
692     Dextallp4(valD) <<= 4
693 #define Dblext_leftshiftby3(valA,valB,valC,valD) \
694     Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
695     Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
696     Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
697     Dextallp4(valD) <<= 3
698 #define Dblext_leftshiftby2(valA,valB,valC,valD) \
699     Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
700     Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
701     Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
702     Dextallp4(valD) <<= 2
703 #define Dblext_leftshiftby1(valA,valB,valC,valD) \
704     Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
705     Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
706     Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
707     Dextallp4(valD) <<= 1
708 
709 #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
710     Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
711     Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
712     Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
713     Dextallp1(valueA) >>= 4
714 #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
715     Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
716     Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
717     Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
718     Dextallp1(valueA) >>= 1
719 
720 #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
721 
722 #define Dblext_xorfromintp1(left,right,result) \
723 	Dbl_xorfromintp1(left,right,result)
724 
725 #define Dblext_copytoint_exponentmantissap1(src,dest) \
726 	Dbl_copytoint_exponentmantissap1(src,dest)
727 
728 #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
729 	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
730 
731 #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
732 	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
733 	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
734 
735 #define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)
736 #define Dblext_clear_signexponent_set_hidden(srcdst) \
737 	Dbl_clear_signexponent_set_hidden(srcdst)
738 #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
739 #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
740 #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
741 
742 /*
743  * The Fourword_add() macro assumes that integers are 4 bytes in size.
744  * It will break if this is not the case.
745  */
746 
747 #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
748 	/* 								\
749 	 * want this macro to generate:					\
750 	 *	ADD	src1dstD,src2D,src1dstD;			\
751 	 *	ADDC	src1dstC,src2C,src1dstC;			\
752 	 *	ADDC	src1dstB,src2B,src1dstB;			\
753 	 *	ADDC	src1dstA,src2A,src1dstA;			\
754 	 */								\
755 	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
756 	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\
757 	       (unsigned int)(src2C)) {					\
758 	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
759 		 (unsigned int)(src2B)) src1dstA++;			\
760 	   }								\
761 	   else if ((unsigned int)(src1dstB += (src2B)) < 		\
762 		    (unsigned int)(src2B)) src1dstA++;			\
763 	}								\
764 	else {								\
765 	   if ((unsigned int)(src1dstC += (src2C)) <			\
766 	       (unsigned int)(src2C)) {					\
767 	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
768 		  (unsigned int)(src2B)) src1dstA++;			\
769 	   }								\
770 	   else if ((unsigned int)(src1dstB += (src2B)) <		\
771 		    (unsigned int)(src2B)) src1dstA++;			\
772 	}								\
773 	src1dstA += (src2A)
774 
775 #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
776   {int shiftamt, sticky;						\
777     is_tiny = TRUE;							\
778     if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\
779 	switch (Rounding_mode()) {					\
780 	case ROUNDPLUS:							\
781 		if (Dbl_iszero_sign(opndp1)) {				\
782 			Dbl_increment(opndp1,opndp2);			\
783 			if (Dbl_isone_hiddenoverflow(opndp1))		\
784 				is_tiny = FALSE;			\
785 			Dbl_decrement(opndp1,opndp2);			\
786 		}							\
787 		break;							\
788 	case ROUNDMINUS:						\
789 		if (Dbl_isone_sign(opndp1)) {				\
790 			Dbl_increment(opndp1,opndp2);			\
791 			if (Dbl_isone_hiddenoverflow(opndp1))		\
792 				is_tiny = FALSE;			\
793 			Dbl_decrement(opndp1,opndp2);			\
794 		}							\
795 		break;							\
796 	case ROUNDNEAREST:						\
797 		if (Dblext_isone_highp3(opndp3) &&			\
798 		    (Dblext_isone_lowp2(opndp2) || 			\
799 		     Dblext_isnotzero_low31p3(opndp3)))	{		\
800 			Dbl_increment(opndp1,opndp2);			\
801 			if (Dbl_isone_hiddenoverflow(opndp1))		\
802 				is_tiny = FALSE;			\
803 			Dbl_decrement(opndp1,opndp2);			\
804 		}							\
805 		break;							\
806 	}								\
807     }									\
808     Dblext_clear_signexponent_set_hidden(opndp1);			\
809     if (exponent >= (1-QUAD_P)) {					\
810 	shiftamt = (1-exponent) % 32;					\
811 	switch((1-exponent)/32) {					\
812 	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\
813 		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\
814 		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\
815 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\
816 		  Dextallp1(opndp1) >>= shiftamt;			\
817 		  break;						\
818 	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\
819 			   Dextallp4(opndp4);				\
820 		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\
821 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\
822 		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\
823 		  Dextallp1(opndp1) = 0;				\
824 		  break;						\
825 	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\
826 			    Dextallp3(opndp3) | Dextallp4(opndp4);	\
827 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\
828 		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\
829 		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
830 		  break;						\
831 	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\
832 		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\
833 			Dextallp4(opndp4);				\
834 		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\
835 		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
836 		  Dextallp3(opndp3) = 0;				\
837 		  break;						\
838 	}								\
839     }									\
840     else {								\
841 	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\
842 		 Dextallp3(opndp3) | Dextallp4(opndp4);			\
843 	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\
844     }									\
845     if (sticky) Dblext_setone_lowmantissap4(opndp4);			\
846     exponent = 0;							\
847   }
848