1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/parisc/traps.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org> 7 */ 8 9 /* 10 * 'Traps.c' handles hardware traps and faults after we have saved some 11 * state in 'asm.s'. 12 */ 13 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/kernel.h> 17 #include <linux/string.h> 18 #include <linux/errno.h> 19 #include <linux/ptrace.h> 20 #include <linux/timer.h> 21 #include <linux/delay.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/smp.h> 25 #include <linux/spinlock.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/console.h> 29 #include <linux/bug.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uaccess.h> 32 #include <linux/kdebug.h> 33 #include <linux/kfence.h> 34 35 #include <asm/assembly.h> 36 #include <asm/io.h> 37 #include <asm/irq.h> 38 #include <asm/traps.h> 39 #include <asm/unaligned.h> 40 #include <linux/atomic.h> 41 #include <asm/smp.h> 42 #include <asm/pdc.h> 43 #include <asm/pdc_chassis.h> 44 #include <asm/unwind.h> 45 #include <asm/tlbflush.h> 46 #include <asm/cacheflush.h> 47 #include <linux/kgdb.h> 48 #include <linux/kprobes.h> 49 50 #if defined(CONFIG_LIGHTWEIGHT_SPINLOCK_CHECK) 51 #include <asm/spinlock.h> 52 #endif 53 54 #include "../math-emu/math-emu.h" /* for handle_fpe() */ 55 56 static void parisc_show_stack(struct task_struct *task, 57 struct pt_regs *regs, const char *loglvl); 58 59 static int printbinary(char *buf, unsigned long x, int nbits) 60 { 61 unsigned long mask = 1UL << (nbits - 1); 62 while (mask != 0) { 63 *buf++ = (mask & x ? '1' : '0'); 64 mask >>= 1; 65 } 66 *buf = '\0'; 67 68 return nbits; 69 } 70 71 #ifdef CONFIG_64BIT 72 #define RFMT "%016lx" 73 #else 74 #define RFMT "%08lx" 75 #endif 76 #define FFMT "%016llx" /* fpregs are 64-bit always */ 77 78 #define PRINTREGS(lvl,r,f,fmt,x) \ 79 printk("%s%s%02d-%02d " fmt " " fmt " " fmt " " fmt "\n", \ 80 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1], \ 81 (r)[(x)+2], (r)[(x)+3]) 82 83 static void print_gr(const char *level, struct pt_regs *regs) 84 { 85 int i; 86 char buf[64]; 87 88 printk("%s\n", level); 89 printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level); 90 printbinary(buf, regs->gr[0], 32); 91 printk("%sPSW: %s %s\n", level, buf, print_tainted()); 92 93 for (i = 0; i < 32; i += 4) 94 PRINTREGS(level, regs->gr, "r", RFMT, i); 95 } 96 97 static void print_fr(const char *level, struct pt_regs *regs) 98 { 99 int i; 100 char buf[64]; 101 struct { u32 sw[2]; } s; 102 103 /* FR are 64bit everywhere. Need to use asm to get the content 104 * of fpsr/fper1, and we assume that we won't have a FP Identify 105 * in our way, otherwise we're screwed. 106 * The fldd is used to restore the T-bit if there was one, as the 107 * store clears it anyway. 108 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */ 109 asm volatile ("fstd %%fr0,0(%1) \n\t" 110 "fldd 0(%1),%%fr0 \n\t" 111 : "=m" (s) : "r" (&s) : "r0"); 112 113 printk("%s\n", level); 114 printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level); 115 printbinary(buf, s.sw[0], 32); 116 printk("%sFPSR: %s\n", level, buf); 117 printk("%sFPER1: %08x\n", level, s.sw[1]); 118 119 /* here we'll print fr0 again, tho it'll be meaningless */ 120 for (i = 0; i < 32; i += 4) 121 PRINTREGS(level, regs->fr, "fr", FFMT, i); 122 } 123 124 void show_regs(struct pt_regs *regs) 125 { 126 int i, user; 127 const char *level; 128 unsigned long cr30, cr31; 129 130 user = user_mode(regs); 131 level = user ? KERN_DEBUG : KERN_CRIT; 132 133 show_regs_print_info(level); 134 135 print_gr(level, regs); 136 137 for (i = 0; i < 8; i += 4) 138 PRINTREGS(level, regs->sr, "sr", RFMT, i); 139 140 if (user) 141 print_fr(level, regs); 142 143 cr30 = mfctl(30); 144 cr31 = mfctl(31); 145 printk("%s\n", level); 146 printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n", 147 level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]); 148 printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n", 149 level, regs->iir, regs->isr, regs->ior); 150 printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n", 151 level, task_cpu(current), cr30, cr31); 152 printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28); 153 154 if (user) { 155 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]); 156 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]); 157 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]); 158 } else { 159 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]); 160 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]); 161 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]); 162 163 parisc_show_stack(current, regs, KERN_DEFAULT); 164 } 165 } 166 167 static DEFINE_RATELIMIT_STATE(_hppa_rs, 168 DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); 169 170 #define parisc_printk_ratelimited(critical, regs, fmt, ...) { \ 171 if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \ 172 printk(fmt, ##__VA_ARGS__); \ 173 show_regs(regs); \ 174 } \ 175 } 176 177 178 static void do_show_stack(struct unwind_frame_info *info, const char *loglvl) 179 { 180 int i = 1; 181 182 printk("%sBacktrace:\n", loglvl); 183 while (i <= MAX_UNWIND_ENTRIES) { 184 if (unwind_once(info) < 0 || info->ip == 0) 185 break; 186 187 if (__kernel_text_address(info->ip)) { 188 printk("%s [<" RFMT ">] %pS\n", 189 loglvl, info->ip, (void *) info->ip); 190 i++; 191 } 192 } 193 printk("%s\n", loglvl); 194 } 195 196 static void parisc_show_stack(struct task_struct *task, 197 struct pt_regs *regs, const char *loglvl) 198 { 199 struct unwind_frame_info info; 200 201 unwind_frame_init_task(&info, task, regs); 202 203 do_show_stack(&info, loglvl); 204 } 205 206 void show_stack(struct task_struct *t, unsigned long *sp, const char *loglvl) 207 { 208 parisc_show_stack(t, NULL, loglvl); 209 } 210 211 int is_valid_bugaddr(unsigned long iaoq) 212 { 213 return 1; 214 } 215 216 void die_if_kernel(char *str, struct pt_regs *regs, long err) 217 { 218 if (user_mode(regs)) { 219 if (err == 0) 220 return; /* STFU */ 221 222 parisc_printk_ratelimited(1, regs, 223 KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n", 224 current->comm, task_pid_nr(current), str, err, regs->iaoq[0]); 225 226 return; 227 } 228 229 bust_spinlocks(1); 230 231 oops_enter(); 232 233 /* Amuse the user in a SPARC fashion */ 234 if (err) printk(KERN_CRIT 235 " _______________________________ \n" 236 " < Your System ate a SPARC! Gah! >\n" 237 " ------------------------------- \n" 238 " \\ ^__^\n" 239 " (__)\\ )\\/\\\n" 240 " U ||----w |\n" 241 " || ||\n"); 242 243 /* unlock the pdc lock if necessary */ 244 pdc_emergency_unlock(); 245 246 if (err) 247 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n", 248 current->comm, task_pid_nr(current), str, err); 249 250 /* Wot's wrong wif bein' racy? */ 251 if (current->thread.flags & PARISC_KERNEL_DEATH) { 252 printk(KERN_CRIT "%s() recursion detected.\n", __func__); 253 local_irq_enable(); 254 while (1); 255 } 256 current->thread.flags |= PARISC_KERNEL_DEATH; 257 258 show_regs(regs); 259 dump_stack(); 260 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 261 262 if (in_interrupt()) 263 panic("Fatal exception in interrupt"); 264 265 if (panic_on_oops) 266 panic("Fatal exception"); 267 268 oops_exit(); 269 make_task_dead(SIGSEGV); 270 } 271 272 /* gdb uses break 4,8 */ 273 #define GDB_BREAK_INSN 0x10004 274 static void handle_gdb_break(struct pt_regs *regs, int wot) 275 { 276 force_sig_fault(SIGTRAP, wot, 277 (void __user *) (regs->iaoq[0] & ~3)); 278 } 279 280 static void handle_break(struct pt_regs *regs) 281 { 282 unsigned iir = regs->iir; 283 284 if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) { 285 /* check if a BUG() or WARN() trapped here. */ 286 enum bug_trap_type tt; 287 tt = report_bug(regs->iaoq[0] & ~3, regs); 288 if (tt == BUG_TRAP_TYPE_WARN) { 289 regs->iaoq[0] += 4; 290 regs->iaoq[1] += 4; 291 return; /* return to next instruction when WARN_ON(). */ 292 } 293 die_if_kernel("Unknown kernel breakpoint", regs, 294 (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0); 295 } 296 297 #ifdef CONFIG_KPROBES 298 if (unlikely(iir == PARISC_KPROBES_BREAK_INSN && !user_mode(regs))) { 299 parisc_kprobe_break_handler(regs); 300 return; 301 } 302 if (unlikely(iir == PARISC_KPROBES_BREAK_INSN2 && !user_mode(regs))) { 303 parisc_kprobe_ss_handler(regs); 304 return; 305 } 306 #endif 307 308 #ifdef CONFIG_KGDB 309 if (unlikely((iir == PARISC_KGDB_COMPILED_BREAK_INSN || 310 iir == PARISC_KGDB_BREAK_INSN)) && !user_mode(regs)) { 311 kgdb_handle_exception(9, SIGTRAP, 0, regs); 312 return; 313 } 314 #endif 315 316 #ifdef CONFIG_LIGHTWEIGHT_SPINLOCK_CHECK 317 if ((iir == SPINLOCK_BREAK_INSN) && !user_mode(regs)) { 318 die_if_kernel("Spinlock was trashed", regs, 1); 319 } 320 #endif 321 322 if (unlikely(iir != GDB_BREAK_INSN)) 323 parisc_printk_ratelimited(0, regs, 324 KERN_DEBUG "break %d,%d: pid=%d command='%s'\n", 325 iir & 31, (iir>>13) & ((1<<13)-1), 326 task_pid_nr(current), current->comm); 327 328 /* send standard GDB signal */ 329 handle_gdb_break(regs, TRAP_BRKPT); 330 } 331 332 static void default_trap(int code, struct pt_regs *regs) 333 { 334 printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id()); 335 show_regs(regs); 336 } 337 338 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap; 339 340 341 static void transfer_pim_to_trap_frame(struct pt_regs *regs) 342 { 343 register int i; 344 extern unsigned int hpmc_pim_data[]; 345 struct pdc_hpmc_pim_11 *pim_narrow; 346 struct pdc_hpmc_pim_20 *pim_wide; 347 348 if (boot_cpu_data.cpu_type >= pcxu) { 349 350 pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data; 351 352 /* 353 * Note: The following code will probably generate a 354 * bunch of truncation error warnings from the compiler. 355 * Could be handled with an ifdef, but perhaps there 356 * is a better way. 357 */ 358 359 regs->gr[0] = pim_wide->cr[22]; 360 361 for (i = 1; i < 32; i++) 362 regs->gr[i] = pim_wide->gr[i]; 363 364 for (i = 0; i < 32; i++) 365 regs->fr[i] = pim_wide->fr[i]; 366 367 for (i = 0; i < 8; i++) 368 regs->sr[i] = pim_wide->sr[i]; 369 370 regs->iasq[0] = pim_wide->cr[17]; 371 regs->iasq[1] = pim_wide->iasq_back; 372 regs->iaoq[0] = pim_wide->cr[18]; 373 regs->iaoq[1] = pim_wide->iaoq_back; 374 375 regs->sar = pim_wide->cr[11]; 376 regs->iir = pim_wide->cr[19]; 377 regs->isr = pim_wide->cr[20]; 378 regs->ior = pim_wide->cr[21]; 379 } 380 else { 381 pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data; 382 383 regs->gr[0] = pim_narrow->cr[22]; 384 385 for (i = 1; i < 32; i++) 386 regs->gr[i] = pim_narrow->gr[i]; 387 388 for (i = 0; i < 32; i++) 389 regs->fr[i] = pim_narrow->fr[i]; 390 391 for (i = 0; i < 8; i++) 392 regs->sr[i] = pim_narrow->sr[i]; 393 394 regs->iasq[0] = pim_narrow->cr[17]; 395 regs->iasq[1] = pim_narrow->iasq_back; 396 regs->iaoq[0] = pim_narrow->cr[18]; 397 regs->iaoq[1] = pim_narrow->iaoq_back; 398 399 regs->sar = pim_narrow->cr[11]; 400 regs->iir = pim_narrow->cr[19]; 401 regs->isr = pim_narrow->cr[20]; 402 regs->ior = pim_narrow->cr[21]; 403 } 404 405 /* 406 * The following fields only have meaning if we came through 407 * another path. So just zero them here. 408 */ 409 410 regs->ksp = 0; 411 regs->kpc = 0; 412 regs->orig_r28 = 0; 413 } 414 415 416 /* 417 * This routine is called as a last resort when everything else 418 * has gone clearly wrong. We get called for faults in kernel space, 419 * and HPMC's. 420 */ 421 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset) 422 { 423 static DEFINE_SPINLOCK(terminate_lock); 424 425 (void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP); 426 bust_spinlocks(1); 427 428 set_eiem(0); 429 local_irq_disable(); 430 spin_lock(&terminate_lock); 431 432 /* unlock the pdc lock if necessary */ 433 pdc_emergency_unlock(); 434 435 /* Not all paths will gutter the processor... */ 436 switch(code){ 437 438 case 1: 439 transfer_pim_to_trap_frame(regs); 440 break; 441 442 default: 443 break; 444 445 } 446 447 { 448 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */ 449 struct unwind_frame_info info; 450 unwind_frame_init(&info, current, regs); 451 do_show_stack(&info, KERN_CRIT); 452 } 453 454 printk("\n"); 455 pr_crit("%s: Code=%d (%s) at addr " RFMT "\n", 456 msg, code, trap_name(code), offset); 457 show_regs(regs); 458 459 spin_unlock(&terminate_lock); 460 461 /* put soft power button back under hardware control; 462 * if the user had pressed it once at any time, the 463 * system will shut down immediately right here. */ 464 pdc_soft_power_button(0); 465 466 /* Call kernel panic() so reboot timeouts work properly 467 * FIXME: This function should be on the list of 468 * panic notifiers, and we should call panic 469 * directly from the location that we wish. 470 * e.g. We should not call panic from 471 * parisc_terminate, but rather the other way around. 472 * This hack works, prints the panic message twice, 473 * and it enables reboot timers! 474 */ 475 panic(msg); 476 } 477 478 void notrace handle_interruption(int code, struct pt_regs *regs) 479 { 480 unsigned long fault_address = 0; 481 unsigned long fault_space = 0; 482 int si_code; 483 484 if (!irqs_disabled_flags(regs->gr[0])) 485 local_irq_enable(); 486 487 /* Security check: 488 * If the priority level is still user, and the 489 * faulting space is not equal to the active space 490 * then the user is attempting something in a space 491 * that does not belong to them. Kill the process. 492 * 493 * This is normally the situation when the user 494 * attempts to jump into the kernel space at the 495 * wrong offset, be it at the gateway page or a 496 * random location. 497 * 498 * We cannot normally signal the process because it 499 * could *be* on the gateway page, and processes 500 * executing on the gateway page can't have signals 501 * delivered. 502 * 503 * We merely readjust the address into the users 504 * space, at a destination address of zero, and 505 * allow processing to continue. 506 */ 507 if (((unsigned long)regs->iaoq[0] & 3) && 508 ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 509 /* Kill the user process later */ 510 regs->iaoq[0] = 0 | 3; 511 regs->iaoq[1] = regs->iaoq[0] + 4; 512 regs->iasq[0] = regs->iasq[1] = regs->sr[7]; 513 regs->gr[0] &= ~PSW_B; 514 return; 515 } 516 517 #if 0 518 printk(KERN_CRIT "Interruption # %d\n", code); 519 #endif 520 521 switch(code) { 522 523 case 1: 524 /* High-priority machine check (HPMC) */ 525 526 /* set up a new led state on systems shipped with a LED State panel */ 527 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC); 528 529 parisc_terminate("High Priority Machine Check (HPMC)", 530 regs, code, 0); 531 /* NOT REACHED */ 532 533 case 2: 534 /* Power failure interrupt */ 535 printk(KERN_CRIT "Power failure interrupt !\n"); 536 return; 537 538 case 3: 539 /* Recovery counter trap */ 540 regs->gr[0] &= ~PSW_R; 541 542 #ifdef CONFIG_KGDB 543 if (kgdb_single_step) { 544 kgdb_handle_exception(0, SIGTRAP, 0, regs); 545 return; 546 } 547 #endif 548 549 if (user_space(regs)) 550 handle_gdb_break(regs, TRAP_TRACE); 551 /* else this must be the start of a syscall - just let it run */ 552 return; 553 554 case 5: 555 /* Low-priority machine check */ 556 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC); 557 558 flush_cache_all(); 559 flush_tlb_all(); 560 cpu_lpmc(5, regs); 561 return; 562 563 case PARISC_ITLB_TRAP: 564 /* Instruction TLB miss fault/Instruction page fault */ 565 fault_address = regs->iaoq[0]; 566 fault_space = regs->iasq[0]; 567 break; 568 569 case 8: 570 /* Illegal instruction trap */ 571 die_if_kernel("Illegal instruction", regs, code); 572 si_code = ILL_ILLOPC; 573 goto give_sigill; 574 575 case 9: 576 /* Break instruction trap */ 577 handle_break(regs); 578 return; 579 580 case 10: 581 /* Privileged operation trap */ 582 die_if_kernel("Privileged operation", regs, code); 583 si_code = ILL_PRVOPC; 584 goto give_sigill; 585 586 case 11: 587 /* Privileged register trap */ 588 if ((regs->iir & 0xffdfffe0) == 0x034008a0) { 589 590 /* This is a MFCTL cr26/cr27 to gr instruction. 591 * PCXS traps on this, so we need to emulate it. 592 */ 593 594 if (regs->iir & 0x00200000) 595 regs->gr[regs->iir & 0x1f] = mfctl(27); 596 else 597 regs->gr[regs->iir & 0x1f] = mfctl(26); 598 599 regs->iaoq[0] = regs->iaoq[1]; 600 regs->iaoq[1] += 4; 601 regs->iasq[0] = regs->iasq[1]; 602 return; 603 } 604 605 die_if_kernel("Privileged register usage", regs, code); 606 si_code = ILL_PRVREG; 607 give_sigill: 608 force_sig_fault(SIGILL, si_code, 609 (void __user *) regs->iaoq[0]); 610 return; 611 612 case 12: 613 /* Overflow Trap, let the userland signal handler do the cleanup */ 614 force_sig_fault(SIGFPE, FPE_INTOVF, 615 (void __user *) regs->iaoq[0]); 616 return; 617 618 case 13: 619 /* Conditional Trap 620 The condition succeeds in an instruction which traps 621 on condition */ 622 if(user_mode(regs)){ 623 /* Let userspace app figure it out from the insn pointed 624 * to by si_addr. 625 */ 626 force_sig_fault(SIGFPE, FPE_CONDTRAP, 627 (void __user *) regs->iaoq[0]); 628 return; 629 } 630 /* The kernel doesn't want to handle condition codes */ 631 break; 632 633 case 14: 634 /* Assist Exception Trap, i.e. floating point exception. */ 635 die_if_kernel("Floating point exception", regs, 0); /* quiet */ 636 __inc_irq_stat(irq_fpassist_count); 637 handle_fpe(regs); 638 return; 639 640 case 15: 641 /* Data TLB miss fault/Data page fault */ 642 fallthrough; 643 case 16: 644 /* Non-access instruction TLB miss fault */ 645 /* The instruction TLB entry needed for the target address of the FIC 646 is absent, and hardware can't find it, so we get to cleanup */ 647 fallthrough; 648 case 17: 649 /* Non-access data TLB miss fault/Non-access data page fault */ 650 /* FIXME: 651 Still need to add slow path emulation code here! 652 If the insn used a non-shadow register, then the tlb 653 handlers could not have their side-effect (e.g. probe 654 writing to a target register) emulated since rfir would 655 erase the changes to said register. Instead we have to 656 setup everything, call this function we are in, and emulate 657 by hand. Technically we need to emulate: 658 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw 659 */ 660 if (code == 17 && handle_nadtlb_fault(regs)) 661 return; 662 fault_address = regs->ior; 663 fault_space = regs->isr; 664 break; 665 666 case 18: 667 /* PCXS only -- later cpu's split this into types 26,27 & 28 */ 668 /* Check for unaligned access */ 669 if (check_unaligned(regs)) { 670 handle_unaligned(regs); 671 return; 672 } 673 fallthrough; 674 case 26: 675 /* PCXL: Data memory access rights trap */ 676 fault_address = regs->ior; 677 fault_space = regs->isr; 678 break; 679 680 case 19: 681 /* Data memory break trap */ 682 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */ 683 fallthrough; 684 case 21: 685 /* Page reference trap */ 686 handle_gdb_break(regs, TRAP_HWBKPT); 687 return; 688 689 case 25: 690 /* Taken branch trap */ 691 regs->gr[0] &= ~PSW_T; 692 if (user_space(regs)) 693 handle_gdb_break(regs, TRAP_BRANCH); 694 /* else this must be the start of a syscall - just let it 695 * run. 696 */ 697 return; 698 699 case 7: 700 /* Instruction access rights */ 701 /* PCXL: Instruction memory protection trap */ 702 703 /* 704 * This could be caused by either: 1) a process attempting 705 * to execute within a vma that does not have execute 706 * permission, or 2) an access rights violation caused by a 707 * flush only translation set up by ptep_get_and_clear(). 708 * So we check the vma permissions to differentiate the two. 709 * If the vma indicates we have execute permission, then 710 * the cause is the latter one. In this case, we need to 711 * call do_page_fault() to fix the problem. 712 */ 713 714 if (user_mode(regs)) { 715 struct vm_area_struct *vma; 716 717 mmap_read_lock(current->mm); 718 vma = find_vma(current->mm,regs->iaoq[0]); 719 if (vma && (regs->iaoq[0] >= vma->vm_start) 720 && (vma->vm_flags & VM_EXEC)) { 721 722 fault_address = regs->iaoq[0]; 723 fault_space = regs->iasq[0]; 724 725 mmap_read_unlock(current->mm); 726 break; /* call do_page_fault() */ 727 } 728 mmap_read_unlock(current->mm); 729 } 730 /* CPU could not fetch instruction, so clear stale IIR value. */ 731 regs->iir = 0xbaadf00d; 732 fallthrough; 733 case 27: 734 /* Data memory protection ID trap */ 735 if (code == 27 && !user_mode(regs) && 736 fixup_exception(regs)) 737 return; 738 739 die_if_kernel("Protection id trap", regs, code); 740 force_sig_fault(SIGSEGV, SEGV_MAPERR, 741 (code == 7)? 742 ((void __user *) regs->iaoq[0]) : 743 ((void __user *) regs->ior)); 744 return; 745 746 case 28: 747 /* Unaligned data reference trap */ 748 handle_unaligned(regs); 749 return; 750 751 default: 752 if (user_mode(regs)) { 753 parisc_printk_ratelimited(0, regs, KERN_DEBUG 754 "handle_interruption() pid=%d command='%s'\n", 755 task_pid_nr(current), current->comm); 756 /* SIGBUS, for lack of a better one. */ 757 force_sig_fault(SIGBUS, BUS_OBJERR, 758 (void __user *)regs->ior); 759 return; 760 } 761 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 762 763 parisc_terminate("Unexpected interruption", regs, code, 0); 764 /* NOT REACHED */ 765 } 766 767 if (user_mode(regs)) { 768 if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) { 769 parisc_printk_ratelimited(0, regs, KERN_DEBUG 770 "User fault %d on space 0x%08lx, pid=%d command='%s'\n", 771 code, fault_space, 772 task_pid_nr(current), current->comm); 773 force_sig_fault(SIGSEGV, SEGV_MAPERR, 774 (void __user *)regs->ior); 775 return; 776 } 777 } 778 else { 779 780 /* 781 * The kernel should never fault on its own address space, 782 * unless pagefault_disable() was called before. 783 */ 784 785 if (faulthandler_disabled() || fault_space == 0) 786 { 787 /* Clean up and return if in exception table. */ 788 if (fixup_exception(regs)) 789 return; 790 /* Clean up and return if handled by kfence. */ 791 if (kfence_handle_page_fault(fault_address, 792 parisc_acctyp(code, regs->iir) == VM_WRITE, regs)) 793 return; 794 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 795 parisc_terminate("Kernel Fault", regs, code, fault_address); 796 } 797 } 798 799 do_page_fault(regs, code, fault_address); 800 } 801 802 803 static void __init initialize_ivt(const void *iva) 804 { 805 extern const u32 os_hpmc[]; 806 807 int i; 808 u32 check = 0; 809 u32 *ivap; 810 u32 instr; 811 812 if (strcmp((const char *)iva, "cows can fly")) 813 panic("IVT invalid"); 814 815 ivap = (u32 *)iva; 816 817 for (i = 0; i < 8; i++) 818 *ivap++ = 0; 819 820 /* 821 * Use PDC_INSTR firmware function to get instruction that invokes 822 * PDCE_CHECK in HPMC handler. See programming note at page 1-31 of 823 * the PA 1.1 Firmware Architecture document. 824 */ 825 if (pdc_instr(&instr) == PDC_OK) 826 ivap[0] = instr; 827 828 /* 829 * Rules for the checksum of the HPMC handler: 830 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed 831 * its own IVA). 832 * 2. The word at IVA + 32 is nonzero. 833 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and 834 * Address (IVA + 56) are word-aligned. 835 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of 836 * the Length/4 words starting at Address is zero. 837 */ 838 839 /* Setup IVA and compute checksum for HPMC handler */ 840 ivap[6] = (u32)__pa(os_hpmc); 841 842 for (i=0; i<8; i++) 843 check += ivap[i]; 844 845 ivap[5] = -check; 846 pr_debug("initialize_ivt: IVA[6] = 0x%08x\n", ivap[6]); 847 } 848 849 850 /* early_trap_init() is called before we set up kernel mappings and 851 * write-protect the kernel */ 852 void __init early_trap_init(void) 853 { 854 extern const void fault_vector_20; 855 856 #ifndef CONFIG_64BIT 857 extern const void fault_vector_11; 858 initialize_ivt(&fault_vector_11); 859 #endif 860 861 initialize_ivt(&fault_vector_20); 862 } 863