1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/parisc/traps.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org> 7 */ 8 9 /* 10 * 'Traps.c' handles hardware traps and faults after we have saved some 11 * state in 'asm.s'. 12 */ 13 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/kernel.h> 17 #include <linux/string.h> 18 #include <linux/errno.h> 19 #include <linux/ptrace.h> 20 #include <linux/timer.h> 21 #include <linux/delay.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/smp.h> 25 #include <linux/spinlock.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/console.h> 29 #include <linux/bug.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uaccess.h> 32 #include <linux/kdebug.h> 33 #include <linux/kfence.h> 34 35 #include <asm/assembly.h> 36 #include <asm/io.h> 37 #include <asm/irq.h> 38 #include <asm/traps.h> 39 #include <asm/unaligned.h> 40 #include <linux/atomic.h> 41 #include <asm/smp.h> 42 #include <asm/pdc.h> 43 #include <asm/pdc_chassis.h> 44 #include <asm/unwind.h> 45 #include <asm/tlbflush.h> 46 #include <asm/cacheflush.h> 47 #include <linux/kgdb.h> 48 #include <linux/kprobes.h> 49 50 #include "../math-emu/math-emu.h" /* for handle_fpe() */ 51 52 static void parisc_show_stack(struct task_struct *task, 53 struct pt_regs *regs, const char *loglvl); 54 55 static int printbinary(char *buf, unsigned long x, int nbits) 56 { 57 unsigned long mask = 1UL << (nbits - 1); 58 while (mask != 0) { 59 *buf++ = (mask & x ? '1' : '0'); 60 mask >>= 1; 61 } 62 *buf = '\0'; 63 64 return nbits; 65 } 66 67 #ifdef CONFIG_64BIT 68 #define RFMT "%016lx" 69 #else 70 #define RFMT "%08lx" 71 #endif 72 #define FFMT "%016llx" /* fpregs are 64-bit always */ 73 74 #define PRINTREGS(lvl,r,f,fmt,x) \ 75 printk("%s%s%02d-%02d " fmt " " fmt " " fmt " " fmt "\n", \ 76 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1], \ 77 (r)[(x)+2], (r)[(x)+3]) 78 79 static void print_gr(const char *level, struct pt_regs *regs) 80 { 81 int i; 82 char buf[64]; 83 84 printk("%s\n", level); 85 printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level); 86 printbinary(buf, regs->gr[0], 32); 87 printk("%sPSW: %s %s\n", level, buf, print_tainted()); 88 89 for (i = 0; i < 32; i += 4) 90 PRINTREGS(level, regs->gr, "r", RFMT, i); 91 } 92 93 static void print_fr(const char *level, struct pt_regs *regs) 94 { 95 int i; 96 char buf[64]; 97 struct { u32 sw[2]; } s; 98 99 /* FR are 64bit everywhere. Need to use asm to get the content 100 * of fpsr/fper1, and we assume that we won't have a FP Identify 101 * in our way, otherwise we're screwed. 102 * The fldd is used to restore the T-bit if there was one, as the 103 * store clears it anyway. 104 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */ 105 asm volatile ("fstd %%fr0,0(%1) \n\t" 106 "fldd 0(%1),%%fr0 \n\t" 107 : "=m" (s) : "r" (&s) : "r0"); 108 109 printk("%s\n", level); 110 printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level); 111 printbinary(buf, s.sw[0], 32); 112 printk("%sFPSR: %s\n", level, buf); 113 printk("%sFPER1: %08x\n", level, s.sw[1]); 114 115 /* here we'll print fr0 again, tho it'll be meaningless */ 116 for (i = 0; i < 32; i += 4) 117 PRINTREGS(level, regs->fr, "fr", FFMT, i); 118 } 119 120 void show_regs(struct pt_regs *regs) 121 { 122 int i, user; 123 const char *level; 124 unsigned long cr30, cr31; 125 126 user = user_mode(regs); 127 level = user ? KERN_DEBUG : KERN_CRIT; 128 129 show_regs_print_info(level); 130 131 print_gr(level, regs); 132 133 for (i = 0; i < 8; i += 4) 134 PRINTREGS(level, regs->sr, "sr", RFMT, i); 135 136 if (user) 137 print_fr(level, regs); 138 139 cr30 = mfctl(30); 140 cr31 = mfctl(31); 141 printk("%s\n", level); 142 printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n", 143 level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]); 144 printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n", 145 level, regs->iir, regs->isr, regs->ior); 146 printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n", 147 level, task_cpu(current), cr30, cr31); 148 printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28); 149 150 if (user) { 151 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]); 152 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]); 153 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]); 154 } else { 155 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]); 156 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]); 157 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]); 158 159 parisc_show_stack(current, regs, KERN_DEFAULT); 160 } 161 } 162 163 static DEFINE_RATELIMIT_STATE(_hppa_rs, 164 DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); 165 166 #define parisc_printk_ratelimited(critical, regs, fmt, ...) { \ 167 if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \ 168 printk(fmt, ##__VA_ARGS__); \ 169 show_regs(regs); \ 170 } \ 171 } 172 173 174 static void do_show_stack(struct unwind_frame_info *info, const char *loglvl) 175 { 176 int i = 1; 177 178 printk("%sBacktrace:\n", loglvl); 179 while (i <= MAX_UNWIND_ENTRIES) { 180 if (unwind_once(info) < 0 || info->ip == 0) 181 break; 182 183 if (__kernel_text_address(info->ip)) { 184 printk("%s [<" RFMT ">] %pS\n", 185 loglvl, info->ip, (void *) info->ip); 186 i++; 187 } 188 } 189 printk("%s\n", loglvl); 190 } 191 192 static void parisc_show_stack(struct task_struct *task, 193 struct pt_regs *regs, const char *loglvl) 194 { 195 struct unwind_frame_info info; 196 197 unwind_frame_init_task(&info, task, regs); 198 199 do_show_stack(&info, loglvl); 200 } 201 202 void show_stack(struct task_struct *t, unsigned long *sp, const char *loglvl) 203 { 204 parisc_show_stack(t, NULL, loglvl); 205 } 206 207 int is_valid_bugaddr(unsigned long iaoq) 208 { 209 return 1; 210 } 211 212 void die_if_kernel(char *str, struct pt_regs *regs, long err) 213 { 214 if (user_mode(regs)) { 215 if (err == 0) 216 return; /* STFU */ 217 218 parisc_printk_ratelimited(1, regs, 219 KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n", 220 current->comm, task_pid_nr(current), str, err, regs->iaoq[0]); 221 222 return; 223 } 224 225 bust_spinlocks(1); 226 227 oops_enter(); 228 229 /* Amuse the user in a SPARC fashion */ 230 if (err) printk(KERN_CRIT 231 " _______________________________ \n" 232 " < Your System ate a SPARC! Gah! >\n" 233 " ------------------------------- \n" 234 " \\ ^__^\n" 235 " (__)\\ )\\/\\\n" 236 " U ||----w |\n" 237 " || ||\n"); 238 239 /* unlock the pdc lock if necessary */ 240 pdc_emergency_unlock(); 241 242 /* maybe the kernel hasn't booted very far yet and hasn't been able 243 * to initialize the serial or STI console. In that case we should 244 * re-enable the pdc console, so that the user will be able to 245 * identify the problem. */ 246 if (!console_drivers) 247 pdc_console_restart(); 248 249 if (err) 250 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n", 251 current->comm, task_pid_nr(current), str, err); 252 253 /* Wot's wrong wif bein' racy? */ 254 if (current->thread.flags & PARISC_KERNEL_DEATH) { 255 printk(KERN_CRIT "%s() recursion detected.\n", __func__); 256 local_irq_enable(); 257 while (1); 258 } 259 current->thread.flags |= PARISC_KERNEL_DEATH; 260 261 show_regs(regs); 262 dump_stack(); 263 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 264 265 if (in_interrupt()) 266 panic("Fatal exception in interrupt"); 267 268 if (panic_on_oops) 269 panic("Fatal exception"); 270 271 oops_exit(); 272 make_task_dead(SIGSEGV); 273 } 274 275 /* gdb uses break 4,8 */ 276 #define GDB_BREAK_INSN 0x10004 277 static void handle_gdb_break(struct pt_regs *regs, int wot) 278 { 279 force_sig_fault(SIGTRAP, wot, 280 (void __user *) (regs->iaoq[0] & ~3)); 281 } 282 283 static void handle_break(struct pt_regs *regs) 284 { 285 unsigned iir = regs->iir; 286 287 if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) { 288 /* check if a BUG() or WARN() trapped here. */ 289 enum bug_trap_type tt; 290 tt = report_bug(regs->iaoq[0] & ~3, regs); 291 if (tt == BUG_TRAP_TYPE_WARN) { 292 regs->iaoq[0] += 4; 293 regs->iaoq[1] += 4; 294 return; /* return to next instruction when WARN_ON(). */ 295 } 296 die_if_kernel("Unknown kernel breakpoint", regs, 297 (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0); 298 } 299 300 #ifdef CONFIG_KPROBES 301 if (unlikely(iir == PARISC_KPROBES_BREAK_INSN)) { 302 parisc_kprobe_break_handler(regs); 303 return; 304 } 305 if (unlikely(iir == PARISC_KPROBES_BREAK_INSN2)) { 306 parisc_kprobe_ss_handler(regs); 307 return; 308 } 309 #endif 310 311 #ifdef CONFIG_KGDB 312 if (unlikely(iir == PARISC_KGDB_COMPILED_BREAK_INSN || 313 iir == PARISC_KGDB_BREAK_INSN)) { 314 kgdb_handle_exception(9, SIGTRAP, 0, regs); 315 return; 316 } 317 #endif 318 319 if (unlikely(iir != GDB_BREAK_INSN)) 320 parisc_printk_ratelimited(0, regs, 321 KERN_DEBUG "break %d,%d: pid=%d command='%s'\n", 322 iir & 31, (iir>>13) & ((1<<13)-1), 323 task_pid_nr(current), current->comm); 324 325 /* send standard GDB signal */ 326 handle_gdb_break(regs, TRAP_BRKPT); 327 } 328 329 static void default_trap(int code, struct pt_regs *regs) 330 { 331 printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id()); 332 show_regs(regs); 333 } 334 335 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap; 336 337 338 void transfer_pim_to_trap_frame(struct pt_regs *regs) 339 { 340 register int i; 341 extern unsigned int hpmc_pim_data[]; 342 struct pdc_hpmc_pim_11 *pim_narrow; 343 struct pdc_hpmc_pim_20 *pim_wide; 344 345 if (boot_cpu_data.cpu_type >= pcxu) { 346 347 pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data; 348 349 /* 350 * Note: The following code will probably generate a 351 * bunch of truncation error warnings from the compiler. 352 * Could be handled with an ifdef, but perhaps there 353 * is a better way. 354 */ 355 356 regs->gr[0] = pim_wide->cr[22]; 357 358 for (i = 1; i < 32; i++) 359 regs->gr[i] = pim_wide->gr[i]; 360 361 for (i = 0; i < 32; i++) 362 regs->fr[i] = pim_wide->fr[i]; 363 364 for (i = 0; i < 8; i++) 365 regs->sr[i] = pim_wide->sr[i]; 366 367 regs->iasq[0] = pim_wide->cr[17]; 368 regs->iasq[1] = pim_wide->iasq_back; 369 regs->iaoq[0] = pim_wide->cr[18]; 370 regs->iaoq[1] = pim_wide->iaoq_back; 371 372 regs->sar = pim_wide->cr[11]; 373 regs->iir = pim_wide->cr[19]; 374 regs->isr = pim_wide->cr[20]; 375 regs->ior = pim_wide->cr[21]; 376 } 377 else { 378 pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data; 379 380 regs->gr[0] = pim_narrow->cr[22]; 381 382 for (i = 1; i < 32; i++) 383 regs->gr[i] = pim_narrow->gr[i]; 384 385 for (i = 0; i < 32; i++) 386 regs->fr[i] = pim_narrow->fr[i]; 387 388 for (i = 0; i < 8; i++) 389 regs->sr[i] = pim_narrow->sr[i]; 390 391 regs->iasq[0] = pim_narrow->cr[17]; 392 regs->iasq[1] = pim_narrow->iasq_back; 393 regs->iaoq[0] = pim_narrow->cr[18]; 394 regs->iaoq[1] = pim_narrow->iaoq_back; 395 396 regs->sar = pim_narrow->cr[11]; 397 regs->iir = pim_narrow->cr[19]; 398 regs->isr = pim_narrow->cr[20]; 399 regs->ior = pim_narrow->cr[21]; 400 } 401 402 /* 403 * The following fields only have meaning if we came through 404 * another path. So just zero them here. 405 */ 406 407 regs->ksp = 0; 408 regs->kpc = 0; 409 regs->orig_r28 = 0; 410 } 411 412 413 /* 414 * This routine is called as a last resort when everything else 415 * has gone clearly wrong. We get called for faults in kernel space, 416 * and HPMC's. 417 */ 418 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset) 419 { 420 static DEFINE_SPINLOCK(terminate_lock); 421 422 (void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP); 423 bust_spinlocks(1); 424 425 set_eiem(0); 426 local_irq_disable(); 427 spin_lock(&terminate_lock); 428 429 /* unlock the pdc lock if necessary */ 430 pdc_emergency_unlock(); 431 432 /* restart pdc console if necessary */ 433 if (!console_drivers) 434 pdc_console_restart(); 435 436 /* Not all paths will gutter the processor... */ 437 switch(code){ 438 439 case 1: 440 transfer_pim_to_trap_frame(regs); 441 break; 442 443 default: 444 break; 445 446 } 447 448 { 449 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */ 450 struct unwind_frame_info info; 451 unwind_frame_init(&info, current, regs); 452 do_show_stack(&info, KERN_CRIT); 453 } 454 455 printk("\n"); 456 pr_crit("%s: Code=%d (%s) at addr " RFMT "\n", 457 msg, code, trap_name(code), offset); 458 show_regs(regs); 459 460 spin_unlock(&terminate_lock); 461 462 /* put soft power button back under hardware control; 463 * if the user had pressed it once at any time, the 464 * system will shut down immediately right here. */ 465 pdc_soft_power_button(0); 466 467 /* Call kernel panic() so reboot timeouts work properly 468 * FIXME: This function should be on the list of 469 * panic notifiers, and we should call panic 470 * directly from the location that we wish. 471 * e.g. We should not call panic from 472 * parisc_terminate, but rather the other way around. 473 * This hack works, prints the panic message twice, 474 * and it enables reboot timers! 475 */ 476 panic(msg); 477 } 478 479 void notrace handle_interruption(int code, struct pt_regs *regs) 480 { 481 unsigned long fault_address = 0; 482 unsigned long fault_space = 0; 483 int si_code; 484 485 if (code == 1) 486 pdc_console_restart(); /* switch back to pdc if HPMC */ 487 else if (!irqs_disabled_flags(regs->gr[0])) 488 local_irq_enable(); 489 490 /* Security check: 491 * If the priority level is still user, and the 492 * faulting space is not equal to the active space 493 * then the user is attempting something in a space 494 * that does not belong to them. Kill the process. 495 * 496 * This is normally the situation when the user 497 * attempts to jump into the kernel space at the 498 * wrong offset, be it at the gateway page or a 499 * random location. 500 * 501 * We cannot normally signal the process because it 502 * could *be* on the gateway page, and processes 503 * executing on the gateway page can't have signals 504 * delivered. 505 * 506 * We merely readjust the address into the users 507 * space, at a destination address of zero, and 508 * allow processing to continue. 509 */ 510 if (((unsigned long)regs->iaoq[0] & 3) && 511 ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 512 /* Kill the user process later */ 513 regs->iaoq[0] = 0 | 3; 514 regs->iaoq[1] = regs->iaoq[0] + 4; 515 regs->iasq[0] = regs->iasq[1] = regs->sr[7]; 516 regs->gr[0] &= ~PSW_B; 517 return; 518 } 519 520 #if 0 521 printk(KERN_CRIT "Interruption # %d\n", code); 522 #endif 523 524 switch(code) { 525 526 case 1: 527 /* High-priority machine check (HPMC) */ 528 529 /* set up a new led state on systems shipped with a LED State panel */ 530 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC); 531 532 parisc_terminate("High Priority Machine Check (HPMC)", 533 regs, code, 0); 534 /* NOT REACHED */ 535 536 case 2: 537 /* Power failure interrupt */ 538 printk(KERN_CRIT "Power failure interrupt !\n"); 539 return; 540 541 case 3: 542 /* Recovery counter trap */ 543 regs->gr[0] &= ~PSW_R; 544 545 #ifdef CONFIG_KGDB 546 if (kgdb_single_step) { 547 kgdb_handle_exception(0, SIGTRAP, 0, regs); 548 return; 549 } 550 #endif 551 552 if (user_space(regs)) 553 handle_gdb_break(regs, TRAP_TRACE); 554 /* else this must be the start of a syscall - just let it run */ 555 return; 556 557 case 5: 558 /* Low-priority machine check */ 559 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC); 560 561 flush_cache_all(); 562 flush_tlb_all(); 563 cpu_lpmc(5, regs); 564 return; 565 566 case PARISC_ITLB_TRAP: 567 /* Instruction TLB miss fault/Instruction page fault */ 568 fault_address = regs->iaoq[0]; 569 fault_space = regs->iasq[0]; 570 break; 571 572 case 8: 573 /* Illegal instruction trap */ 574 die_if_kernel("Illegal instruction", regs, code); 575 si_code = ILL_ILLOPC; 576 goto give_sigill; 577 578 case 9: 579 /* Break instruction trap */ 580 handle_break(regs); 581 return; 582 583 case 10: 584 /* Privileged operation trap */ 585 die_if_kernel("Privileged operation", regs, code); 586 si_code = ILL_PRVOPC; 587 goto give_sigill; 588 589 case 11: 590 /* Privileged register trap */ 591 if ((regs->iir & 0xffdfffe0) == 0x034008a0) { 592 593 /* This is a MFCTL cr26/cr27 to gr instruction. 594 * PCXS traps on this, so we need to emulate it. 595 */ 596 597 if (regs->iir & 0x00200000) 598 regs->gr[regs->iir & 0x1f] = mfctl(27); 599 else 600 regs->gr[regs->iir & 0x1f] = mfctl(26); 601 602 regs->iaoq[0] = regs->iaoq[1]; 603 regs->iaoq[1] += 4; 604 regs->iasq[0] = regs->iasq[1]; 605 return; 606 } 607 608 die_if_kernel("Privileged register usage", regs, code); 609 si_code = ILL_PRVREG; 610 give_sigill: 611 force_sig_fault(SIGILL, si_code, 612 (void __user *) regs->iaoq[0]); 613 return; 614 615 case 12: 616 /* Overflow Trap, let the userland signal handler do the cleanup */ 617 force_sig_fault(SIGFPE, FPE_INTOVF, 618 (void __user *) regs->iaoq[0]); 619 return; 620 621 case 13: 622 /* Conditional Trap 623 The condition succeeds in an instruction which traps 624 on condition */ 625 if(user_mode(regs)){ 626 /* Let userspace app figure it out from the insn pointed 627 * to by si_addr. 628 */ 629 force_sig_fault(SIGFPE, FPE_CONDTRAP, 630 (void __user *) regs->iaoq[0]); 631 return; 632 } 633 /* The kernel doesn't want to handle condition codes */ 634 break; 635 636 case 14: 637 /* Assist Exception Trap, i.e. floating point exception. */ 638 die_if_kernel("Floating point exception", regs, 0); /* quiet */ 639 __inc_irq_stat(irq_fpassist_count); 640 handle_fpe(regs); 641 return; 642 643 case 15: 644 /* Data TLB miss fault/Data page fault */ 645 fallthrough; 646 case 16: 647 /* Non-access instruction TLB miss fault */ 648 /* The instruction TLB entry needed for the target address of the FIC 649 is absent, and hardware can't find it, so we get to cleanup */ 650 fallthrough; 651 case 17: 652 /* Non-access data TLB miss fault/Non-access data page fault */ 653 /* FIXME: 654 Still need to add slow path emulation code here! 655 If the insn used a non-shadow register, then the tlb 656 handlers could not have their side-effect (e.g. probe 657 writing to a target register) emulated since rfir would 658 erase the changes to said register. Instead we have to 659 setup everything, call this function we are in, and emulate 660 by hand. Technically we need to emulate: 661 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw 662 */ 663 if (code == 17 && handle_nadtlb_fault(regs)) 664 return; 665 fault_address = regs->ior; 666 fault_space = regs->isr; 667 break; 668 669 case 18: 670 /* PCXS only -- later cpu's split this into types 26,27 & 28 */ 671 /* Check for unaligned access */ 672 if (check_unaligned(regs)) { 673 handle_unaligned(regs); 674 return; 675 } 676 fallthrough; 677 case 26: 678 /* PCXL: Data memory access rights trap */ 679 fault_address = regs->ior; 680 fault_space = regs->isr; 681 break; 682 683 case 19: 684 /* Data memory break trap */ 685 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */ 686 fallthrough; 687 case 21: 688 /* Page reference trap */ 689 handle_gdb_break(regs, TRAP_HWBKPT); 690 return; 691 692 case 25: 693 /* Taken branch trap */ 694 regs->gr[0] &= ~PSW_T; 695 if (user_space(regs)) 696 handle_gdb_break(regs, TRAP_BRANCH); 697 /* else this must be the start of a syscall - just let it 698 * run. 699 */ 700 return; 701 702 case 7: 703 /* Instruction access rights */ 704 /* PCXL: Instruction memory protection trap */ 705 706 /* 707 * This could be caused by either: 1) a process attempting 708 * to execute within a vma that does not have execute 709 * permission, or 2) an access rights violation caused by a 710 * flush only translation set up by ptep_get_and_clear(). 711 * So we check the vma permissions to differentiate the two. 712 * If the vma indicates we have execute permission, then 713 * the cause is the latter one. In this case, we need to 714 * call do_page_fault() to fix the problem. 715 */ 716 717 if (user_mode(regs)) { 718 struct vm_area_struct *vma; 719 720 mmap_read_lock(current->mm); 721 vma = find_vma(current->mm,regs->iaoq[0]); 722 if (vma && (regs->iaoq[0] >= vma->vm_start) 723 && (vma->vm_flags & VM_EXEC)) { 724 725 fault_address = regs->iaoq[0]; 726 fault_space = regs->iasq[0]; 727 728 mmap_read_unlock(current->mm); 729 break; /* call do_page_fault() */ 730 } 731 mmap_read_unlock(current->mm); 732 } 733 /* CPU could not fetch instruction, so clear stale IIR value. */ 734 regs->iir = 0xbaadf00d; 735 fallthrough; 736 case 27: 737 /* Data memory protection ID trap */ 738 if (code == 27 && !user_mode(regs) && 739 fixup_exception(regs)) 740 return; 741 742 die_if_kernel("Protection id trap", regs, code); 743 force_sig_fault(SIGSEGV, SEGV_MAPERR, 744 (code == 7)? 745 ((void __user *) regs->iaoq[0]) : 746 ((void __user *) regs->ior)); 747 return; 748 749 case 28: 750 /* Unaligned data reference trap */ 751 handle_unaligned(regs); 752 return; 753 754 default: 755 if (user_mode(regs)) { 756 parisc_printk_ratelimited(0, regs, KERN_DEBUG 757 "handle_interruption() pid=%d command='%s'\n", 758 task_pid_nr(current), current->comm); 759 /* SIGBUS, for lack of a better one. */ 760 force_sig_fault(SIGBUS, BUS_OBJERR, 761 (void __user *)regs->ior); 762 return; 763 } 764 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 765 766 parisc_terminate("Unexpected interruption", regs, code, 0); 767 /* NOT REACHED */ 768 } 769 770 if (user_mode(regs)) { 771 if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) { 772 parisc_printk_ratelimited(0, regs, KERN_DEBUG 773 "User fault %d on space 0x%08lx, pid=%d command='%s'\n", 774 code, fault_space, 775 task_pid_nr(current), current->comm); 776 force_sig_fault(SIGSEGV, SEGV_MAPERR, 777 (void __user *)regs->ior); 778 return; 779 } 780 } 781 else { 782 783 /* 784 * The kernel should never fault on its own address space, 785 * unless pagefault_disable() was called before. 786 */ 787 788 if (faulthandler_disabled() || fault_space == 0) 789 { 790 /* Clean up and return if in exception table. */ 791 if (fixup_exception(regs)) 792 return; 793 /* Clean up and return if handled by kfence. */ 794 if (kfence_handle_page_fault(fault_address, 795 parisc_acctyp(code, regs->iir) == VM_WRITE, regs)) 796 return; 797 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 798 parisc_terminate("Kernel Fault", regs, code, fault_address); 799 } 800 } 801 802 do_page_fault(regs, code, fault_address); 803 } 804 805 806 void __init initialize_ivt(const void *iva) 807 { 808 extern const u32 os_hpmc[]; 809 810 int i; 811 u32 check = 0; 812 u32 *ivap; 813 u32 *hpmcp; 814 u32 instr; 815 816 if (strcmp((const char *)iva, "cows can fly")) 817 panic("IVT invalid"); 818 819 ivap = (u32 *)iva; 820 821 for (i = 0; i < 8; i++) 822 *ivap++ = 0; 823 824 /* 825 * Use PDC_INSTR firmware function to get instruction that invokes 826 * PDCE_CHECK in HPMC handler. See programming note at page 1-31 of 827 * the PA 1.1 Firmware Architecture document. 828 */ 829 if (pdc_instr(&instr) == PDC_OK) 830 ivap[0] = instr; 831 832 /* 833 * Rules for the checksum of the HPMC handler: 834 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed 835 * its own IVA). 836 * 2. The word at IVA + 32 is nonzero. 837 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and 838 * Address (IVA + 56) are word-aligned. 839 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of 840 * the Length/4 words starting at Address is zero. 841 */ 842 843 /* Setup IVA and compute checksum for HPMC handler */ 844 ivap[6] = (u32)__pa(os_hpmc); 845 846 hpmcp = (u32 *)os_hpmc; 847 848 for (i=0; i<8; i++) 849 check += ivap[i]; 850 851 ivap[5] = -check; 852 pr_debug("initialize_ivt: IVA[6] = 0x%08x\n", ivap[6]); 853 } 854 855 856 /* early_trap_init() is called before we set up kernel mappings and 857 * write-protect the kernel */ 858 void __init early_trap_init(void) 859 { 860 extern const void fault_vector_20; 861 862 #ifndef CONFIG_64BIT 863 extern const void fault_vector_11; 864 initialize_ivt(&fault_vector_11); 865 #endif 866 867 initialize_ivt(&fault_vector_20); 868 } 869