xref: /openbmc/linux/arch/parisc/kernel/traps.c (revision 2f0754f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/traps.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
7  */
8 
9 /*
10  * 'Traps.c' handles hardware traps and faults after we have saved some
11  * state in 'asm.s'.
12  */
13 
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/delay.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/console.h>
29 #include <linux/bug.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uaccess.h>
32 #include <linux/kdebug.h>
33 #include <linux/kfence.h>
34 
35 #include <asm/assembly.h>
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 #include <asm/traps.h>
39 #include <asm/unaligned.h>
40 #include <linux/atomic.h>
41 #include <asm/smp.h>
42 #include <asm/pdc.h>
43 #include <asm/pdc_chassis.h>
44 #include <asm/unwind.h>
45 #include <asm/tlbflush.h>
46 #include <asm/cacheflush.h>
47 #include <linux/kgdb.h>
48 #include <linux/kprobes.h>
49 
50 #include "../math-emu/math-emu.h"	/* for handle_fpe() */
51 
52 static void parisc_show_stack(struct task_struct *task,
53 	struct pt_regs *regs, const char *loglvl);
54 
55 static int printbinary(char *buf, unsigned long x, int nbits)
56 {
57 	unsigned long mask = 1UL << (nbits - 1);
58 	while (mask != 0) {
59 		*buf++ = (mask & x ? '1' : '0');
60 		mask >>= 1;
61 	}
62 	*buf = '\0';
63 
64 	return nbits;
65 }
66 
67 #ifdef CONFIG_64BIT
68 #define RFMT "%016lx"
69 #else
70 #define RFMT "%08lx"
71 #endif
72 #define FFMT "%016llx"	/* fpregs are 64-bit always */
73 
74 #define PRINTREGS(lvl,r,f,fmt,x)	\
75 	printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\
76 		lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\
77 		(r)[(x)+2], (r)[(x)+3])
78 
79 static void print_gr(const char *level, struct pt_regs *regs)
80 {
81 	int i;
82 	char buf[64];
83 
84 	printk("%s\n", level);
85 	printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
86 	printbinary(buf, regs->gr[0], 32);
87 	printk("%sPSW: %s %s\n", level, buf, print_tainted());
88 
89 	for (i = 0; i < 32; i += 4)
90 		PRINTREGS(level, regs->gr, "r", RFMT, i);
91 }
92 
93 static void print_fr(const char *level, struct pt_regs *regs)
94 {
95 	int i;
96 	char buf[64];
97 	struct { u32 sw[2]; } s;
98 
99 	/* FR are 64bit everywhere. Need to use asm to get the content
100 	 * of fpsr/fper1, and we assume that we won't have a FP Identify
101 	 * in our way, otherwise we're screwed.
102 	 * The fldd is used to restore the T-bit if there was one, as the
103 	 * store clears it anyway.
104 	 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
105 	asm volatile ("fstd %%fr0,0(%1)	\n\t"
106 		      "fldd 0(%1),%%fr0	\n\t"
107 		      : "=m" (s) : "r" (&s) : "r0");
108 
109 	printk("%s\n", level);
110 	printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
111 	printbinary(buf, s.sw[0], 32);
112 	printk("%sFPSR: %s\n", level, buf);
113 	printk("%sFPER1: %08x\n", level, s.sw[1]);
114 
115 	/* here we'll print fr0 again, tho it'll be meaningless */
116 	for (i = 0; i < 32; i += 4)
117 		PRINTREGS(level, regs->fr, "fr", FFMT, i);
118 }
119 
120 void show_regs(struct pt_regs *regs)
121 {
122 	int i, user;
123 	const char *level;
124 	unsigned long cr30, cr31;
125 
126 	user = user_mode(regs);
127 	level = user ? KERN_DEBUG : KERN_CRIT;
128 
129 	show_regs_print_info(level);
130 
131 	print_gr(level, regs);
132 
133 	for (i = 0; i < 8; i += 4)
134 		PRINTREGS(level, regs->sr, "sr", RFMT, i);
135 
136 	if (user)
137 		print_fr(level, regs);
138 
139 	cr30 = mfctl(30);
140 	cr31 = mfctl(31);
141 	printk("%s\n", level);
142 	printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
143 	       level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
144 	printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
145 	       level, regs->iir, regs->isr, regs->ior);
146 	printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
147 	       level, task_cpu(current), cr30, cr31);
148 	printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
149 
150 	if (user) {
151 		printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
152 		printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
153 		printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
154 	} else {
155 		printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
156 		printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
157 		printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
158 
159 		parisc_show_stack(current, regs, KERN_DEFAULT);
160 	}
161 }
162 
163 static DEFINE_RATELIMIT_STATE(_hppa_rs,
164 	DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
165 
166 #define parisc_printk_ratelimited(critical, regs, fmt, ...)	{	      \
167 	if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
168 		printk(fmt, ##__VA_ARGS__);				      \
169 		show_regs(regs);					      \
170 	}								      \
171 }
172 
173 
174 static void do_show_stack(struct unwind_frame_info *info, const char *loglvl)
175 {
176 	int i = 1;
177 
178 	printk("%sBacktrace:\n", loglvl);
179 	while (i <= MAX_UNWIND_ENTRIES) {
180 		if (unwind_once(info) < 0 || info->ip == 0)
181 			break;
182 
183 		if (__kernel_text_address(info->ip)) {
184 			printk("%s [<" RFMT ">] %pS\n",
185 				loglvl, info->ip, (void *) info->ip);
186 			i++;
187 		}
188 	}
189 	printk("%s\n", loglvl);
190 }
191 
192 static void parisc_show_stack(struct task_struct *task,
193 	struct pt_regs *regs, const char *loglvl)
194 {
195 	struct unwind_frame_info info;
196 
197 	unwind_frame_init_task(&info, task, regs);
198 
199 	do_show_stack(&info, loglvl);
200 }
201 
202 void show_stack(struct task_struct *t, unsigned long *sp, const char *loglvl)
203 {
204 	parisc_show_stack(t, NULL, loglvl);
205 }
206 
207 int is_valid_bugaddr(unsigned long iaoq)
208 {
209 	return 1;
210 }
211 
212 void die_if_kernel(char *str, struct pt_regs *regs, long err)
213 {
214 	if (user_mode(regs)) {
215 		if (err == 0)
216 			return; /* STFU */
217 
218 		parisc_printk_ratelimited(1, regs,
219 			KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
220 			current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
221 
222 		return;
223 	}
224 
225 	bust_spinlocks(1);
226 
227 	oops_enter();
228 
229 	/* Amuse the user in a SPARC fashion */
230 	if (err) printk(KERN_CRIT
231 			"      _______________________________ \n"
232 			"     < Your System ate a SPARC! Gah! >\n"
233 			"      ------------------------------- \n"
234 			"             \\   ^__^\n"
235 			"                 (__)\\       )\\/\\\n"
236 			"                  U  ||----w |\n"
237 			"                     ||     ||\n");
238 
239 	/* unlock the pdc lock if necessary */
240 	pdc_emergency_unlock();
241 
242 	/* maybe the kernel hasn't booted very far yet and hasn't been able
243 	 * to initialize the serial or STI console. In that case we should
244 	 * re-enable the pdc console, so that the user will be able to
245 	 * identify the problem. */
246 	if (!console_drivers)
247 		pdc_console_restart();
248 
249 	if (err)
250 		printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
251 			current->comm, task_pid_nr(current), str, err);
252 
253 	/* Wot's wrong wif bein' racy? */
254 	if (current->thread.flags & PARISC_KERNEL_DEATH) {
255 		printk(KERN_CRIT "%s() recursion detected.\n", __func__);
256 		local_irq_enable();
257 		while (1);
258 	}
259 	current->thread.flags |= PARISC_KERNEL_DEATH;
260 
261 	show_regs(regs);
262 	dump_stack();
263 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
264 
265 	if (in_interrupt())
266 		panic("Fatal exception in interrupt");
267 
268 	if (panic_on_oops)
269 		panic("Fatal exception");
270 
271 	oops_exit();
272 	make_task_dead(SIGSEGV);
273 }
274 
275 /* gdb uses break 4,8 */
276 #define GDB_BREAK_INSN 0x10004
277 static void handle_gdb_break(struct pt_regs *regs, int wot)
278 {
279 	force_sig_fault(SIGTRAP, wot,
280 			(void __user *) (regs->iaoq[0] & ~3));
281 }
282 
283 static void handle_break(struct pt_regs *regs)
284 {
285 	unsigned iir = regs->iir;
286 
287 	if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
288 		/* check if a BUG() or WARN() trapped here.  */
289 		enum bug_trap_type tt;
290 		tt = report_bug(regs->iaoq[0] & ~3, regs);
291 		if (tt == BUG_TRAP_TYPE_WARN) {
292 			regs->iaoq[0] += 4;
293 			regs->iaoq[1] += 4;
294 			return; /* return to next instruction when WARN_ON().  */
295 		}
296 		die_if_kernel("Unknown kernel breakpoint", regs,
297 			(tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
298 	}
299 
300 #ifdef CONFIG_KPROBES
301 	if (unlikely(iir == PARISC_KPROBES_BREAK_INSN)) {
302 		parisc_kprobe_break_handler(regs);
303 		return;
304 	}
305 
306 #endif
307 
308 #ifdef CONFIG_KGDB
309 	if (unlikely(iir == PARISC_KGDB_COMPILED_BREAK_INSN ||
310 		iir == PARISC_KGDB_BREAK_INSN)) {
311 		kgdb_handle_exception(9, SIGTRAP, 0, regs);
312 		return;
313 	}
314 #endif
315 
316 	if (unlikely(iir != GDB_BREAK_INSN))
317 		parisc_printk_ratelimited(0, regs,
318 			KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
319 			iir & 31, (iir>>13) & ((1<<13)-1),
320 			task_pid_nr(current), current->comm);
321 
322 	/* send standard GDB signal */
323 	handle_gdb_break(regs, TRAP_BRKPT);
324 }
325 
326 static void default_trap(int code, struct pt_regs *regs)
327 {
328 	printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
329 	show_regs(regs);
330 }
331 
332 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
333 
334 
335 void transfer_pim_to_trap_frame(struct pt_regs *regs)
336 {
337     register int i;
338     extern unsigned int hpmc_pim_data[];
339     struct pdc_hpmc_pim_11 *pim_narrow;
340     struct pdc_hpmc_pim_20 *pim_wide;
341 
342     if (boot_cpu_data.cpu_type >= pcxu) {
343 
344 	pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
345 
346 	/*
347 	 * Note: The following code will probably generate a
348 	 * bunch of truncation error warnings from the compiler.
349 	 * Could be handled with an ifdef, but perhaps there
350 	 * is a better way.
351 	 */
352 
353 	regs->gr[0] = pim_wide->cr[22];
354 
355 	for (i = 1; i < 32; i++)
356 	    regs->gr[i] = pim_wide->gr[i];
357 
358 	for (i = 0; i < 32; i++)
359 	    regs->fr[i] = pim_wide->fr[i];
360 
361 	for (i = 0; i < 8; i++)
362 	    regs->sr[i] = pim_wide->sr[i];
363 
364 	regs->iasq[0] = pim_wide->cr[17];
365 	regs->iasq[1] = pim_wide->iasq_back;
366 	regs->iaoq[0] = pim_wide->cr[18];
367 	regs->iaoq[1] = pim_wide->iaoq_back;
368 
369 	regs->sar  = pim_wide->cr[11];
370 	regs->iir  = pim_wide->cr[19];
371 	regs->isr  = pim_wide->cr[20];
372 	regs->ior  = pim_wide->cr[21];
373     }
374     else {
375 	pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
376 
377 	regs->gr[0] = pim_narrow->cr[22];
378 
379 	for (i = 1; i < 32; i++)
380 	    regs->gr[i] = pim_narrow->gr[i];
381 
382 	for (i = 0; i < 32; i++)
383 	    regs->fr[i] = pim_narrow->fr[i];
384 
385 	for (i = 0; i < 8; i++)
386 	    regs->sr[i] = pim_narrow->sr[i];
387 
388 	regs->iasq[0] = pim_narrow->cr[17];
389 	regs->iasq[1] = pim_narrow->iasq_back;
390 	regs->iaoq[0] = pim_narrow->cr[18];
391 	regs->iaoq[1] = pim_narrow->iaoq_back;
392 
393 	regs->sar  = pim_narrow->cr[11];
394 	regs->iir  = pim_narrow->cr[19];
395 	regs->isr  = pim_narrow->cr[20];
396 	regs->ior  = pim_narrow->cr[21];
397     }
398 
399     /*
400      * The following fields only have meaning if we came through
401      * another path. So just zero them here.
402      */
403 
404     regs->ksp = 0;
405     regs->kpc = 0;
406     regs->orig_r28 = 0;
407 }
408 
409 
410 /*
411  * This routine is called as a last resort when everything else
412  * has gone clearly wrong. We get called for faults in kernel space,
413  * and HPMC's.
414  */
415 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
416 {
417 	static DEFINE_SPINLOCK(terminate_lock);
418 
419 	(void)notify_die(DIE_OOPS, msg, regs, 0, code, SIGTRAP);
420 	bust_spinlocks(1);
421 
422 	set_eiem(0);
423 	local_irq_disable();
424 	spin_lock(&terminate_lock);
425 
426 	/* unlock the pdc lock if necessary */
427 	pdc_emergency_unlock();
428 
429 	/* restart pdc console if necessary */
430 	if (!console_drivers)
431 		pdc_console_restart();
432 
433 	/* Not all paths will gutter the processor... */
434 	switch(code){
435 
436 	case 1:
437 		transfer_pim_to_trap_frame(regs);
438 		break;
439 
440 	default:
441 		break;
442 
443 	}
444 
445 	{
446 		/* show_stack(NULL, (unsigned long *)regs->gr[30]); */
447 		struct unwind_frame_info info;
448 		unwind_frame_init(&info, current, regs);
449 		do_show_stack(&info, KERN_CRIT);
450 	}
451 
452 	printk("\n");
453 	pr_crit("%s: Code=%d (%s) at addr " RFMT "\n",
454 		msg, code, trap_name(code), offset);
455 	show_regs(regs);
456 
457 	spin_unlock(&terminate_lock);
458 
459 	/* put soft power button back under hardware control;
460 	 * if the user had pressed it once at any time, the
461 	 * system will shut down immediately right here. */
462 	pdc_soft_power_button(0);
463 
464 	/* Call kernel panic() so reboot timeouts work properly
465 	 * FIXME: This function should be on the list of
466 	 * panic notifiers, and we should call panic
467 	 * directly from the location that we wish.
468 	 * e.g. We should not call panic from
469 	 * parisc_terminate, but rather the oter way around.
470 	 * This hack works, prints the panic message twice,
471 	 * and it enables reboot timers!
472 	 */
473 	panic(msg);
474 }
475 
476 void notrace handle_interruption(int code, struct pt_regs *regs)
477 {
478 	unsigned long fault_address = 0;
479 	unsigned long fault_space = 0;
480 	int si_code;
481 
482 	if (code == 1)
483 	    pdc_console_restart();  /* switch back to pdc if HPMC */
484 	else if (!irqs_disabled_flags(regs->gr[0]))
485 	    local_irq_enable();
486 
487 	/* Security check:
488 	 * If the priority level is still user, and the
489 	 * faulting space is not equal to the active space
490 	 * then the user is attempting something in a space
491 	 * that does not belong to them. Kill the process.
492 	 *
493 	 * This is normally the situation when the user
494 	 * attempts to jump into the kernel space at the
495 	 * wrong offset, be it at the gateway page or a
496 	 * random location.
497 	 *
498 	 * We cannot normally signal the process because it
499 	 * could *be* on the gateway page, and processes
500 	 * executing on the gateway page can't have signals
501 	 * delivered.
502 	 *
503 	 * We merely readjust the address into the users
504 	 * space, at a destination address of zero, and
505 	 * allow processing to continue.
506 	 */
507 	if (((unsigned long)regs->iaoq[0] & 3) &&
508 	    ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) {
509 		/* Kill the user process later */
510 		regs->iaoq[0] = 0 | 3;
511 		regs->iaoq[1] = regs->iaoq[0] + 4;
512 		regs->iasq[0] = regs->iasq[1] = regs->sr[7];
513 		regs->gr[0] &= ~PSW_B;
514 		return;
515 	}
516 
517 #if 0
518 	printk(KERN_CRIT "Interruption # %d\n", code);
519 #endif
520 
521 	switch(code) {
522 
523 	case  1:
524 		/* High-priority machine check (HPMC) */
525 
526 		/* set up a new led state on systems shipped with a LED State panel */
527 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
528 
529 		parisc_terminate("High Priority Machine Check (HPMC)",
530 				regs, code, 0);
531 		/* NOT REACHED */
532 
533 	case  2:
534 		/* Power failure interrupt */
535 		printk(KERN_CRIT "Power failure interrupt !\n");
536 		return;
537 
538 	case  3:
539 		/* Recovery counter trap */
540 		regs->gr[0] &= ~PSW_R;
541 
542 #ifdef CONFIG_KPROBES
543 		if (parisc_kprobe_ss_handler(regs))
544 			return;
545 #endif
546 
547 #ifdef CONFIG_KGDB
548 		if (kgdb_single_step) {
549 			kgdb_handle_exception(0, SIGTRAP, 0, regs);
550 			return;
551 		}
552 #endif
553 
554 		if (user_space(regs))
555 			handle_gdb_break(regs, TRAP_TRACE);
556 		/* else this must be the start of a syscall - just let it run */
557 		return;
558 
559 	case  5:
560 		/* Low-priority machine check */
561 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
562 
563 		flush_cache_all();
564 		flush_tlb_all();
565 		cpu_lpmc(5, regs);
566 		return;
567 
568 	case  PARISC_ITLB_TRAP:
569 		/* Instruction TLB miss fault/Instruction page fault */
570 		fault_address = regs->iaoq[0];
571 		fault_space   = regs->iasq[0];
572 		break;
573 
574 	case  8:
575 		/* Illegal instruction trap */
576 		die_if_kernel("Illegal instruction", regs, code);
577 		si_code = ILL_ILLOPC;
578 		goto give_sigill;
579 
580 	case  9:
581 		/* Break instruction trap */
582 		handle_break(regs);
583 		return;
584 
585 	case 10:
586 		/* Privileged operation trap */
587 		die_if_kernel("Privileged operation", regs, code);
588 		si_code = ILL_PRVOPC;
589 		goto give_sigill;
590 
591 	case 11:
592 		/* Privileged register trap */
593 		if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
594 
595 			/* This is a MFCTL cr26/cr27 to gr instruction.
596 			 * PCXS traps on this, so we need to emulate it.
597 			 */
598 
599 			if (regs->iir & 0x00200000)
600 				regs->gr[regs->iir & 0x1f] = mfctl(27);
601 			else
602 				regs->gr[regs->iir & 0x1f] = mfctl(26);
603 
604 			regs->iaoq[0] = regs->iaoq[1];
605 			regs->iaoq[1] += 4;
606 			regs->iasq[0] = regs->iasq[1];
607 			return;
608 		}
609 
610 		die_if_kernel("Privileged register usage", regs, code);
611 		si_code = ILL_PRVREG;
612 	give_sigill:
613 		force_sig_fault(SIGILL, si_code,
614 				(void __user *) regs->iaoq[0]);
615 		return;
616 
617 	case 12:
618 		/* Overflow Trap, let the userland signal handler do the cleanup */
619 		force_sig_fault(SIGFPE, FPE_INTOVF,
620 				(void __user *) regs->iaoq[0]);
621 		return;
622 
623 	case 13:
624 		/* Conditional Trap
625 		   The condition succeeds in an instruction which traps
626 		   on condition  */
627 		if(user_mode(regs)){
628 			/* Let userspace app figure it out from the insn pointed
629 			 * to by si_addr.
630 			 */
631 			force_sig_fault(SIGFPE, FPE_CONDTRAP,
632 					(void __user *) regs->iaoq[0]);
633 			return;
634 		}
635 		/* The kernel doesn't want to handle condition codes */
636 		break;
637 
638 	case 14:
639 		/* Assist Exception Trap, i.e. floating point exception. */
640 		die_if_kernel("Floating point exception", regs, 0); /* quiet */
641 		__inc_irq_stat(irq_fpassist_count);
642 		handle_fpe(regs);
643 		return;
644 
645 	case 15:
646 		/* Data TLB miss fault/Data page fault */
647 		fallthrough;
648 	case 16:
649 		/* Non-access instruction TLB miss fault */
650 		/* The instruction TLB entry needed for the target address of the FIC
651 		   is absent, and hardware can't find it, so we get to cleanup */
652 		fallthrough;
653 	case 17:
654 		/* Non-access data TLB miss fault/Non-access data page fault */
655 		/* FIXME:
656 			 Still need to add slow path emulation code here!
657 			 If the insn used a non-shadow register, then the tlb
658 			 handlers could not have their side-effect (e.g. probe
659 			 writing to a target register) emulated since rfir would
660 			 erase the changes to said register. Instead we have to
661 			 setup everything, call this function we are in, and emulate
662 			 by hand. Technically we need to emulate:
663 			 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
664 		*/
665 		fault_address = regs->ior;
666 		fault_space = regs->isr;
667 		break;
668 
669 	case 18:
670 		/* PCXS only -- later cpu's split this into types 26,27 & 28 */
671 		/* Check for unaligned access */
672 		if (check_unaligned(regs)) {
673 			handle_unaligned(regs);
674 			return;
675 		}
676 		fallthrough;
677 	case 26:
678 		/* PCXL: Data memory access rights trap */
679 		fault_address = regs->ior;
680 		fault_space   = regs->isr;
681 		break;
682 
683 	case 19:
684 		/* Data memory break trap */
685 		regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
686 		fallthrough;
687 	case 21:
688 		/* Page reference trap */
689 		handle_gdb_break(regs, TRAP_HWBKPT);
690 		return;
691 
692 	case 25:
693 		/* Taken branch trap */
694 		regs->gr[0] &= ~PSW_T;
695 		if (user_space(regs))
696 			handle_gdb_break(regs, TRAP_BRANCH);
697 		/* else this must be the start of a syscall - just let it
698 		 * run.
699 		 */
700 		return;
701 
702 	case  7:
703 		/* Instruction access rights */
704 		/* PCXL: Instruction memory protection trap */
705 
706 		/*
707 		 * This could be caused by either: 1) a process attempting
708 		 * to execute within a vma that does not have execute
709 		 * permission, or 2) an access rights violation caused by a
710 		 * flush only translation set up by ptep_get_and_clear().
711 		 * So we check the vma permissions to differentiate the two.
712 		 * If the vma indicates we have execute permission, then
713 		 * the cause is the latter one. In this case, we need to
714 		 * call do_page_fault() to fix the problem.
715 		 */
716 
717 		if (user_mode(regs)) {
718 			struct vm_area_struct *vma;
719 
720 			mmap_read_lock(current->mm);
721 			vma = find_vma(current->mm,regs->iaoq[0]);
722 			if (vma && (regs->iaoq[0] >= vma->vm_start)
723 				&& (vma->vm_flags & VM_EXEC)) {
724 
725 				fault_address = regs->iaoq[0];
726 				fault_space = regs->iasq[0];
727 
728 				mmap_read_unlock(current->mm);
729 				break; /* call do_page_fault() */
730 			}
731 			mmap_read_unlock(current->mm);
732 		}
733 		/* CPU could not fetch instruction, so clear stale IIR value. */
734 		regs->iir = 0xbaadf00d;
735 		fallthrough;
736 	case 27:
737 		/* Data memory protection ID trap */
738 		if (code == 27 && !user_mode(regs) &&
739 			fixup_exception(regs))
740 			return;
741 
742 		die_if_kernel("Protection id trap", regs, code);
743 		force_sig_fault(SIGSEGV, SEGV_MAPERR,
744 				(code == 7)?
745 				((void __user *) regs->iaoq[0]) :
746 				((void __user *) regs->ior));
747 		return;
748 
749 	case 28:
750 		/* Unaligned data reference trap */
751 		handle_unaligned(regs);
752 		return;
753 
754 	default:
755 		if (user_mode(regs)) {
756 			parisc_printk_ratelimited(0, regs, KERN_DEBUG
757 				"handle_interruption() pid=%d command='%s'\n",
758 				task_pid_nr(current), current->comm);
759 			/* SIGBUS, for lack of a better one. */
760 			force_sig_fault(SIGBUS, BUS_OBJERR,
761 					(void __user *)regs->ior);
762 			return;
763 		}
764 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
765 
766 		parisc_terminate("Unexpected interruption", regs, code, 0);
767 		/* NOT REACHED */
768 	}
769 
770 	if (user_mode(regs)) {
771 	    if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
772 		parisc_printk_ratelimited(0, regs, KERN_DEBUG
773 				"User fault %d on space 0x%08lx, pid=%d command='%s'\n",
774 				code, fault_space,
775 				task_pid_nr(current), current->comm);
776 		force_sig_fault(SIGSEGV, SEGV_MAPERR,
777 				(void __user *)regs->ior);
778 		return;
779 	    }
780 	}
781 	else {
782 
783 	    /*
784 	     * The kernel should never fault on its own address space,
785 	     * unless pagefault_disable() was called before.
786 	     */
787 
788 	    if (faulthandler_disabled() || fault_space == 0)
789 	    {
790 		/* Clean up and return if in exception table. */
791 		if (fixup_exception(regs))
792 			return;
793 		/* Clean up and return if handled by kfence. */
794 		if (kfence_handle_page_fault(fault_address,
795 			parisc_acctyp(code, regs->iir) == VM_WRITE, regs))
796 			return;
797 		pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
798 		parisc_terminate("Kernel Fault", regs, code, fault_address);
799 	    }
800 	}
801 
802 	do_page_fault(regs, code, fault_address);
803 }
804 
805 
806 void __init initialize_ivt(const void *iva)
807 {
808 	extern const u32 os_hpmc[];
809 
810 	int i;
811 	u32 check = 0;
812 	u32 *ivap;
813 	u32 *hpmcp;
814 	u32 instr;
815 
816 	if (strcmp((const char *)iva, "cows can fly"))
817 		panic("IVT invalid");
818 
819 	ivap = (u32 *)iva;
820 
821 	for (i = 0; i < 8; i++)
822 	    *ivap++ = 0;
823 
824 	/*
825 	 * Use PDC_INSTR firmware function to get instruction that invokes
826 	 * PDCE_CHECK in HPMC handler.  See programming note at page 1-31 of
827 	 * the PA 1.1 Firmware Architecture document.
828 	 */
829 	if (pdc_instr(&instr) == PDC_OK)
830 		ivap[0] = instr;
831 
832 	/*
833 	 * Rules for the checksum of the HPMC handler:
834 	 * 1. The IVA does not point to PDC/PDH space (ie: the OS has installed
835 	 *    its own IVA).
836 	 * 2. The word at IVA + 32 is nonzero.
837 	 * 3. If Length (IVA + 60) is not zero, then Length (IVA + 60) and
838 	 *    Address (IVA + 56) are word-aligned.
839 	 * 4. The checksum of the 8 words starting at IVA + 32 plus the sum of
840 	 *    the Length/4 words starting at Address is zero.
841 	 */
842 
843 	/* Setup IVA and compute checksum for HPMC handler */
844 	ivap[6] = (u32)__pa(os_hpmc);
845 
846 	hpmcp = (u32 *)os_hpmc;
847 
848 	for (i=0; i<8; i++)
849 	    check += ivap[i];
850 
851 	ivap[5] = -check;
852 	pr_debug("initialize_ivt: IVA[6] = 0x%08x\n", ivap[6]);
853 }
854 
855 
856 /* early_trap_init() is called before we set up kernel mappings and
857  * write-protect the kernel */
858 void  __init early_trap_init(void)
859 {
860 	extern const void fault_vector_20;
861 
862 #ifndef CONFIG_64BIT
863 	extern const void fault_vector_11;
864 	initialize_ivt(&fault_vector_11);
865 #endif
866 
867 	initialize_ivt(&fault_vector_20);
868 }
869