1 /* 2 * linux/arch/parisc/traps.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org> 6 */ 7 8 /* 9 * 'Traps.c' handles hardware traps and faults after we have saved some 10 * state in 'asm.s'. 11 */ 12 13 #include <linux/sched.h> 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/ptrace.h> 18 #include <linux/timer.h> 19 #include <linux/delay.h> 20 #include <linux/mm.h> 21 #include <linux/module.h> 22 #include <linux/smp.h> 23 #include <linux/spinlock.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/console.h> 27 #include <linux/bug.h> 28 #include <linux/ratelimit.h> 29 #include <linux/uaccess.h> 30 31 #include <asm/assembly.h> 32 #include <asm/io.h> 33 #include <asm/irq.h> 34 #include <asm/traps.h> 35 #include <asm/unaligned.h> 36 #include <linux/atomic.h> 37 #include <asm/smp.h> 38 #include <asm/pdc.h> 39 #include <asm/pdc_chassis.h> 40 #include <asm/unwind.h> 41 #include <asm/tlbflush.h> 42 #include <asm/cacheflush.h> 43 44 #include "../math-emu/math-emu.h" /* for handle_fpe() */ 45 46 static void parisc_show_stack(struct task_struct *task, unsigned long *sp, 47 struct pt_regs *regs); 48 49 static int printbinary(char *buf, unsigned long x, int nbits) 50 { 51 unsigned long mask = 1UL << (nbits - 1); 52 while (mask != 0) { 53 *buf++ = (mask & x ? '1' : '0'); 54 mask >>= 1; 55 } 56 *buf = '\0'; 57 58 return nbits; 59 } 60 61 #ifdef CONFIG_64BIT 62 #define RFMT "%016lx" 63 #else 64 #define RFMT "%08lx" 65 #endif 66 #define FFMT "%016llx" /* fpregs are 64-bit always */ 67 68 #define PRINTREGS(lvl,r,f,fmt,x) \ 69 printk("%s%s%02d-%02d " fmt " " fmt " " fmt " " fmt "\n", \ 70 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1], \ 71 (r)[(x)+2], (r)[(x)+3]) 72 73 static void print_gr(char *level, struct pt_regs *regs) 74 { 75 int i; 76 char buf[64]; 77 78 printk("%s\n", level); 79 printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level); 80 printbinary(buf, regs->gr[0], 32); 81 printk("%sPSW: %s %s\n", level, buf, print_tainted()); 82 83 for (i = 0; i < 32; i += 4) 84 PRINTREGS(level, regs->gr, "r", RFMT, i); 85 } 86 87 static void print_fr(char *level, struct pt_regs *regs) 88 { 89 int i; 90 char buf[64]; 91 struct { u32 sw[2]; } s; 92 93 /* FR are 64bit everywhere. Need to use asm to get the content 94 * of fpsr/fper1, and we assume that we won't have a FP Identify 95 * in our way, otherwise we're screwed. 96 * The fldd is used to restore the T-bit if there was one, as the 97 * store clears it anyway. 98 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */ 99 asm volatile ("fstd %%fr0,0(%1) \n\t" 100 "fldd 0(%1),%%fr0 \n\t" 101 : "=m" (s) : "r" (&s) : "r0"); 102 103 printk("%s\n", level); 104 printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level); 105 printbinary(buf, s.sw[0], 32); 106 printk("%sFPSR: %s\n", level, buf); 107 printk("%sFPER1: %08x\n", level, s.sw[1]); 108 109 /* here we'll print fr0 again, tho it'll be meaningless */ 110 for (i = 0; i < 32; i += 4) 111 PRINTREGS(level, regs->fr, "fr", FFMT, i); 112 } 113 114 void show_regs(struct pt_regs *regs) 115 { 116 int i, user; 117 char *level; 118 unsigned long cr30, cr31; 119 120 user = user_mode(regs); 121 level = user ? KERN_DEBUG : KERN_CRIT; 122 123 show_regs_print_info(level); 124 125 print_gr(level, regs); 126 127 for (i = 0; i < 8; i += 4) 128 PRINTREGS(level, regs->sr, "sr", RFMT, i); 129 130 if (user) 131 print_fr(level, regs); 132 133 cr30 = mfctl(30); 134 cr31 = mfctl(31); 135 printk("%s\n", level); 136 printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n", 137 level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]); 138 printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n", 139 level, regs->iir, regs->isr, regs->ior); 140 printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n", 141 level, current_thread_info()->cpu, cr30, cr31); 142 printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28); 143 144 if (user) { 145 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]); 146 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]); 147 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]); 148 } else { 149 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]); 150 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]); 151 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]); 152 153 parisc_show_stack(current, NULL, regs); 154 } 155 } 156 157 static DEFINE_RATELIMIT_STATE(_hppa_rs, 158 DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); 159 160 #define parisc_printk_ratelimited(critical, regs, fmt, ...) { \ 161 if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \ 162 printk(fmt, ##__VA_ARGS__); \ 163 show_regs(regs); \ 164 } \ 165 } 166 167 168 static void do_show_stack(struct unwind_frame_info *info) 169 { 170 int i = 1; 171 172 printk(KERN_CRIT "Backtrace:\n"); 173 while (i <= 16) { 174 if (unwind_once(info) < 0 || info->ip == 0) 175 break; 176 177 if (__kernel_text_address(info->ip)) { 178 printk(KERN_CRIT " [<" RFMT ">] %pS\n", 179 info->ip, (void *) info->ip); 180 i++; 181 } 182 } 183 printk(KERN_CRIT "\n"); 184 } 185 186 static void parisc_show_stack(struct task_struct *task, unsigned long *sp, 187 struct pt_regs *regs) 188 { 189 struct unwind_frame_info info; 190 struct task_struct *t; 191 192 t = task ? task : current; 193 if (regs) { 194 unwind_frame_init(&info, t, regs); 195 goto show_stack; 196 } 197 198 if (t == current) { 199 unsigned long sp; 200 201 HERE: 202 asm volatile ("copy %%r30, %0" : "=r"(sp)); 203 { 204 struct pt_regs r; 205 206 memset(&r, 0, sizeof(struct pt_regs)); 207 r.iaoq[0] = (unsigned long)&&HERE; 208 r.gr[2] = (unsigned long)__builtin_return_address(0); 209 r.gr[30] = sp; 210 211 unwind_frame_init(&info, current, &r); 212 } 213 } else { 214 unwind_frame_init_from_blocked_task(&info, t); 215 } 216 217 show_stack: 218 do_show_stack(&info); 219 } 220 221 void show_stack(struct task_struct *t, unsigned long *sp) 222 { 223 return parisc_show_stack(t, sp, NULL); 224 } 225 226 int is_valid_bugaddr(unsigned long iaoq) 227 { 228 return 1; 229 } 230 231 void die_if_kernel(char *str, struct pt_regs *regs, long err) 232 { 233 if (user_mode(regs)) { 234 if (err == 0) 235 return; /* STFU */ 236 237 parisc_printk_ratelimited(1, regs, 238 KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n", 239 current->comm, task_pid_nr(current), str, err, regs->iaoq[0]); 240 241 return; 242 } 243 244 oops_in_progress = 1; 245 246 oops_enter(); 247 248 /* Amuse the user in a SPARC fashion */ 249 if (err) printk(KERN_CRIT 250 " _______________________________ \n" 251 " < Your System ate a SPARC! Gah! >\n" 252 " ------------------------------- \n" 253 " \\ ^__^\n" 254 " (__)\\ )\\/\\\n" 255 " U ||----w |\n" 256 " || ||\n"); 257 258 /* unlock the pdc lock if necessary */ 259 pdc_emergency_unlock(); 260 261 /* maybe the kernel hasn't booted very far yet and hasn't been able 262 * to initialize the serial or STI console. In that case we should 263 * re-enable the pdc console, so that the user will be able to 264 * identify the problem. */ 265 if (!console_drivers) 266 pdc_console_restart(); 267 268 if (err) 269 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n", 270 current->comm, task_pid_nr(current), str, err); 271 272 /* Wot's wrong wif bein' racy? */ 273 if (current->thread.flags & PARISC_KERNEL_DEATH) { 274 printk(KERN_CRIT "%s() recursion detected.\n", __func__); 275 local_irq_enable(); 276 while (1); 277 } 278 current->thread.flags |= PARISC_KERNEL_DEATH; 279 280 show_regs(regs); 281 dump_stack(); 282 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 283 284 if (in_interrupt()) 285 panic("Fatal exception in interrupt"); 286 287 if (panic_on_oops) { 288 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); 289 ssleep(5); 290 panic("Fatal exception"); 291 } 292 293 oops_exit(); 294 do_exit(SIGSEGV); 295 } 296 297 /* gdb uses break 4,8 */ 298 #define GDB_BREAK_INSN 0x10004 299 static void handle_gdb_break(struct pt_regs *regs, int wot) 300 { 301 struct siginfo si; 302 303 si.si_signo = SIGTRAP; 304 si.si_errno = 0; 305 si.si_code = wot; 306 si.si_addr = (void __user *) (regs->iaoq[0] & ~3); 307 force_sig_info(SIGTRAP, &si, current); 308 } 309 310 static void handle_break(struct pt_regs *regs) 311 { 312 unsigned iir = regs->iir; 313 314 if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) { 315 /* check if a BUG() or WARN() trapped here. */ 316 enum bug_trap_type tt; 317 tt = report_bug(regs->iaoq[0] & ~3, regs); 318 if (tt == BUG_TRAP_TYPE_WARN) { 319 regs->iaoq[0] += 4; 320 regs->iaoq[1] += 4; 321 return; /* return to next instruction when WARN_ON(). */ 322 } 323 die_if_kernel("Unknown kernel breakpoint", regs, 324 (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0); 325 } 326 327 if (unlikely(iir != GDB_BREAK_INSN)) 328 parisc_printk_ratelimited(0, regs, 329 KERN_DEBUG "break %d,%d: pid=%d command='%s'\n", 330 iir & 31, (iir>>13) & ((1<<13)-1), 331 task_pid_nr(current), current->comm); 332 333 /* send standard GDB signal */ 334 handle_gdb_break(regs, TRAP_BRKPT); 335 } 336 337 static void default_trap(int code, struct pt_regs *regs) 338 { 339 printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id()); 340 show_regs(regs); 341 } 342 343 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap; 344 345 346 void transfer_pim_to_trap_frame(struct pt_regs *regs) 347 { 348 register int i; 349 extern unsigned int hpmc_pim_data[]; 350 struct pdc_hpmc_pim_11 *pim_narrow; 351 struct pdc_hpmc_pim_20 *pim_wide; 352 353 if (boot_cpu_data.cpu_type >= pcxu) { 354 355 pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data; 356 357 /* 358 * Note: The following code will probably generate a 359 * bunch of truncation error warnings from the compiler. 360 * Could be handled with an ifdef, but perhaps there 361 * is a better way. 362 */ 363 364 regs->gr[0] = pim_wide->cr[22]; 365 366 for (i = 1; i < 32; i++) 367 regs->gr[i] = pim_wide->gr[i]; 368 369 for (i = 0; i < 32; i++) 370 regs->fr[i] = pim_wide->fr[i]; 371 372 for (i = 0; i < 8; i++) 373 regs->sr[i] = pim_wide->sr[i]; 374 375 regs->iasq[0] = pim_wide->cr[17]; 376 regs->iasq[1] = pim_wide->iasq_back; 377 regs->iaoq[0] = pim_wide->cr[18]; 378 regs->iaoq[1] = pim_wide->iaoq_back; 379 380 regs->sar = pim_wide->cr[11]; 381 regs->iir = pim_wide->cr[19]; 382 regs->isr = pim_wide->cr[20]; 383 regs->ior = pim_wide->cr[21]; 384 } 385 else { 386 pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data; 387 388 regs->gr[0] = pim_narrow->cr[22]; 389 390 for (i = 1; i < 32; i++) 391 regs->gr[i] = pim_narrow->gr[i]; 392 393 for (i = 0; i < 32; i++) 394 regs->fr[i] = pim_narrow->fr[i]; 395 396 for (i = 0; i < 8; i++) 397 regs->sr[i] = pim_narrow->sr[i]; 398 399 regs->iasq[0] = pim_narrow->cr[17]; 400 regs->iasq[1] = pim_narrow->iasq_back; 401 regs->iaoq[0] = pim_narrow->cr[18]; 402 regs->iaoq[1] = pim_narrow->iaoq_back; 403 404 regs->sar = pim_narrow->cr[11]; 405 regs->iir = pim_narrow->cr[19]; 406 regs->isr = pim_narrow->cr[20]; 407 regs->ior = pim_narrow->cr[21]; 408 } 409 410 /* 411 * The following fields only have meaning if we came through 412 * another path. So just zero them here. 413 */ 414 415 regs->ksp = 0; 416 regs->kpc = 0; 417 regs->orig_r28 = 0; 418 } 419 420 421 /* 422 * This routine is called as a last resort when everything else 423 * has gone clearly wrong. We get called for faults in kernel space, 424 * and HPMC's. 425 */ 426 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset) 427 { 428 static DEFINE_SPINLOCK(terminate_lock); 429 430 oops_in_progress = 1; 431 432 set_eiem(0); 433 local_irq_disable(); 434 spin_lock(&terminate_lock); 435 436 /* unlock the pdc lock if necessary */ 437 pdc_emergency_unlock(); 438 439 /* restart pdc console if necessary */ 440 if (!console_drivers) 441 pdc_console_restart(); 442 443 /* Not all paths will gutter the processor... */ 444 switch(code){ 445 446 case 1: 447 transfer_pim_to_trap_frame(regs); 448 break; 449 450 default: 451 /* Fall through */ 452 break; 453 454 } 455 456 { 457 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */ 458 struct unwind_frame_info info; 459 unwind_frame_init(&info, current, regs); 460 do_show_stack(&info); 461 } 462 463 printk("\n"); 464 printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n", 465 msg, code, regs, offset); 466 show_regs(regs); 467 468 spin_unlock(&terminate_lock); 469 470 /* put soft power button back under hardware control; 471 * if the user had pressed it once at any time, the 472 * system will shut down immediately right here. */ 473 pdc_soft_power_button(0); 474 475 /* Call kernel panic() so reboot timeouts work properly 476 * FIXME: This function should be on the list of 477 * panic notifiers, and we should call panic 478 * directly from the location that we wish. 479 * e.g. We should not call panic from 480 * parisc_terminate, but rather the oter way around. 481 * This hack works, prints the panic message twice, 482 * and it enables reboot timers! 483 */ 484 panic(msg); 485 } 486 487 void notrace handle_interruption(int code, struct pt_regs *regs) 488 { 489 unsigned long fault_address = 0; 490 unsigned long fault_space = 0; 491 struct siginfo si; 492 493 if (code == 1) 494 pdc_console_restart(); /* switch back to pdc if HPMC */ 495 else 496 local_irq_enable(); 497 498 /* Security check: 499 * If the priority level is still user, and the 500 * faulting space is not equal to the active space 501 * then the user is attempting something in a space 502 * that does not belong to them. Kill the process. 503 * 504 * This is normally the situation when the user 505 * attempts to jump into the kernel space at the 506 * wrong offset, be it at the gateway page or a 507 * random location. 508 * 509 * We cannot normally signal the process because it 510 * could *be* on the gateway page, and processes 511 * executing on the gateway page can't have signals 512 * delivered. 513 * 514 * We merely readjust the address into the users 515 * space, at a destination address of zero, and 516 * allow processing to continue. 517 */ 518 if (((unsigned long)regs->iaoq[0] & 3) && 519 ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 520 /* Kill the user process later */ 521 regs->iaoq[0] = 0 | 3; 522 regs->iaoq[1] = regs->iaoq[0] + 4; 523 regs->iasq[0] = regs->iasq[1] = regs->sr[7]; 524 regs->gr[0] &= ~PSW_B; 525 return; 526 } 527 528 #if 0 529 printk(KERN_CRIT "Interruption # %d\n", code); 530 #endif 531 532 switch(code) { 533 534 case 1: 535 /* High-priority machine check (HPMC) */ 536 537 /* set up a new led state on systems shipped with a LED State panel */ 538 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC); 539 540 parisc_terminate("High Priority Machine Check (HPMC)", 541 regs, code, 0); 542 /* NOT REACHED */ 543 544 case 2: 545 /* Power failure interrupt */ 546 printk(KERN_CRIT "Power failure interrupt !\n"); 547 return; 548 549 case 3: 550 /* Recovery counter trap */ 551 regs->gr[0] &= ~PSW_R; 552 if (user_space(regs)) 553 handle_gdb_break(regs, TRAP_TRACE); 554 /* else this must be the start of a syscall - just let it run */ 555 return; 556 557 case 5: 558 /* Low-priority machine check */ 559 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC); 560 561 flush_cache_all(); 562 flush_tlb_all(); 563 cpu_lpmc(5, regs); 564 return; 565 566 case 6: 567 /* Instruction TLB miss fault/Instruction page fault */ 568 fault_address = regs->iaoq[0]; 569 fault_space = regs->iasq[0]; 570 break; 571 572 case 8: 573 /* Illegal instruction trap */ 574 die_if_kernel("Illegal instruction", regs, code); 575 si.si_code = ILL_ILLOPC; 576 goto give_sigill; 577 578 case 9: 579 /* Break instruction trap */ 580 handle_break(regs); 581 return; 582 583 case 10: 584 /* Privileged operation trap */ 585 die_if_kernel("Privileged operation", regs, code); 586 si.si_code = ILL_PRVOPC; 587 goto give_sigill; 588 589 case 11: 590 /* Privileged register trap */ 591 if ((regs->iir & 0xffdfffe0) == 0x034008a0) { 592 593 /* This is a MFCTL cr26/cr27 to gr instruction. 594 * PCXS traps on this, so we need to emulate it. 595 */ 596 597 if (regs->iir & 0x00200000) 598 regs->gr[regs->iir & 0x1f] = mfctl(27); 599 else 600 regs->gr[regs->iir & 0x1f] = mfctl(26); 601 602 regs->iaoq[0] = regs->iaoq[1]; 603 regs->iaoq[1] += 4; 604 regs->iasq[0] = regs->iasq[1]; 605 return; 606 } 607 608 die_if_kernel("Privileged register usage", regs, code); 609 si.si_code = ILL_PRVREG; 610 give_sigill: 611 si.si_signo = SIGILL; 612 si.si_errno = 0; 613 si.si_addr = (void __user *) regs->iaoq[0]; 614 force_sig_info(SIGILL, &si, current); 615 return; 616 617 case 12: 618 /* Overflow Trap, let the userland signal handler do the cleanup */ 619 si.si_signo = SIGFPE; 620 si.si_code = FPE_INTOVF; 621 si.si_addr = (void __user *) regs->iaoq[0]; 622 force_sig_info(SIGFPE, &si, current); 623 return; 624 625 case 13: 626 /* Conditional Trap 627 The condition succeeds in an instruction which traps 628 on condition */ 629 if(user_mode(regs)){ 630 si.si_signo = SIGFPE; 631 /* Set to zero, and let the userspace app figure it out from 632 the insn pointed to by si_addr */ 633 si.si_code = 0; 634 si.si_addr = (void __user *) regs->iaoq[0]; 635 force_sig_info(SIGFPE, &si, current); 636 return; 637 } 638 /* The kernel doesn't want to handle condition codes */ 639 break; 640 641 case 14: 642 /* Assist Exception Trap, i.e. floating point exception. */ 643 die_if_kernel("Floating point exception", regs, 0); /* quiet */ 644 __inc_irq_stat(irq_fpassist_count); 645 handle_fpe(regs); 646 return; 647 648 case 15: 649 /* Data TLB miss fault/Data page fault */ 650 /* Fall through */ 651 case 16: 652 /* Non-access instruction TLB miss fault */ 653 /* The instruction TLB entry needed for the target address of the FIC 654 is absent, and hardware can't find it, so we get to cleanup */ 655 /* Fall through */ 656 case 17: 657 /* Non-access data TLB miss fault/Non-access data page fault */ 658 /* FIXME: 659 Still need to add slow path emulation code here! 660 If the insn used a non-shadow register, then the tlb 661 handlers could not have their side-effect (e.g. probe 662 writing to a target register) emulated since rfir would 663 erase the changes to said register. Instead we have to 664 setup everything, call this function we are in, and emulate 665 by hand. Technically we need to emulate: 666 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw 667 */ 668 fault_address = regs->ior; 669 fault_space = regs->isr; 670 break; 671 672 case 18: 673 /* PCXS only -- later cpu's split this into types 26,27 & 28 */ 674 /* Check for unaligned access */ 675 if (check_unaligned(regs)) { 676 handle_unaligned(regs); 677 return; 678 } 679 /* Fall Through */ 680 case 26: 681 /* PCXL: Data memory access rights trap */ 682 fault_address = regs->ior; 683 fault_space = regs->isr; 684 break; 685 686 case 19: 687 /* Data memory break trap */ 688 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */ 689 /* fall thru */ 690 case 21: 691 /* Page reference trap */ 692 handle_gdb_break(regs, TRAP_HWBKPT); 693 return; 694 695 case 25: 696 /* Taken branch trap */ 697 regs->gr[0] &= ~PSW_T; 698 if (user_space(regs)) 699 handle_gdb_break(regs, TRAP_BRANCH); 700 /* else this must be the start of a syscall - just let it 701 * run. 702 */ 703 return; 704 705 case 7: 706 /* Instruction access rights */ 707 /* PCXL: Instruction memory protection trap */ 708 709 /* 710 * This could be caused by either: 1) a process attempting 711 * to execute within a vma that does not have execute 712 * permission, or 2) an access rights violation caused by a 713 * flush only translation set up by ptep_get_and_clear(). 714 * So we check the vma permissions to differentiate the two. 715 * If the vma indicates we have execute permission, then 716 * the cause is the latter one. In this case, we need to 717 * call do_page_fault() to fix the problem. 718 */ 719 720 if (user_mode(regs)) { 721 struct vm_area_struct *vma; 722 723 down_read(¤t->mm->mmap_sem); 724 vma = find_vma(current->mm,regs->iaoq[0]); 725 if (vma && (regs->iaoq[0] >= vma->vm_start) 726 && (vma->vm_flags & VM_EXEC)) { 727 728 fault_address = regs->iaoq[0]; 729 fault_space = regs->iasq[0]; 730 731 up_read(¤t->mm->mmap_sem); 732 break; /* call do_page_fault() */ 733 } 734 up_read(¤t->mm->mmap_sem); 735 } 736 /* Fall Through */ 737 case 27: 738 /* Data memory protection ID trap */ 739 if (code == 27 && !user_mode(regs) && 740 fixup_exception(regs)) 741 return; 742 743 die_if_kernel("Protection id trap", regs, code); 744 si.si_code = SEGV_MAPERR; 745 si.si_signo = SIGSEGV; 746 si.si_errno = 0; 747 if (code == 7) 748 si.si_addr = (void __user *) regs->iaoq[0]; 749 else 750 si.si_addr = (void __user *) regs->ior; 751 force_sig_info(SIGSEGV, &si, current); 752 return; 753 754 case 28: 755 /* Unaligned data reference trap */ 756 handle_unaligned(regs); 757 return; 758 759 default: 760 if (user_mode(regs)) { 761 parisc_printk_ratelimited(0, regs, KERN_DEBUG 762 "handle_interruption() pid=%d command='%s'\n", 763 task_pid_nr(current), current->comm); 764 /* SIGBUS, for lack of a better one. */ 765 si.si_signo = SIGBUS; 766 si.si_code = BUS_OBJERR; 767 si.si_errno = 0; 768 si.si_addr = (void __user *) regs->ior; 769 force_sig_info(SIGBUS, &si, current); 770 return; 771 } 772 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 773 774 parisc_terminate("Unexpected interruption", regs, code, 0); 775 /* NOT REACHED */ 776 } 777 778 if (user_mode(regs)) { 779 if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) { 780 parisc_printk_ratelimited(0, regs, KERN_DEBUG 781 "User fault %d on space 0x%08lx, pid=%d command='%s'\n", 782 code, fault_space, 783 task_pid_nr(current), current->comm); 784 si.si_signo = SIGSEGV; 785 si.si_errno = 0; 786 si.si_code = SEGV_MAPERR; 787 si.si_addr = (void __user *) regs->ior; 788 force_sig_info(SIGSEGV, &si, current); 789 return; 790 } 791 } 792 else { 793 794 /* 795 * The kernel should never fault on its own address space, 796 * unless pagefault_disable() was called before. 797 */ 798 799 if (fault_space == 0 && !faulthandler_disabled()) 800 { 801 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 802 parisc_terminate("Kernel Fault", regs, code, fault_address); 803 } 804 } 805 806 do_page_fault(regs, code, fault_address); 807 } 808 809 810 void __init initialize_ivt(const void *iva) 811 { 812 extern u32 os_hpmc_size; 813 extern const u32 os_hpmc[]; 814 815 int i; 816 u32 check = 0; 817 u32 *ivap; 818 u32 *hpmcp; 819 u32 length; 820 821 if (strcmp((const char *)iva, "cows can fly")) 822 panic("IVT invalid"); 823 824 ivap = (u32 *)iva; 825 826 for (i = 0; i < 8; i++) 827 *ivap++ = 0; 828 829 /* Compute Checksum for HPMC handler */ 830 length = os_hpmc_size; 831 ivap[7] = length; 832 833 hpmcp = (u32 *)os_hpmc; 834 835 for (i=0; i<length/4; i++) 836 check += *hpmcp++; 837 838 for (i=0; i<8; i++) 839 check += ivap[i]; 840 841 ivap[5] = -check; 842 } 843 844 845 /* early_trap_init() is called before we set up kernel mappings and 846 * write-protect the kernel */ 847 void __init early_trap_init(void) 848 { 849 extern const void fault_vector_20; 850 851 #ifndef CONFIG_64BIT 852 extern const void fault_vector_11; 853 initialize_ivt(&fault_vector_11); 854 #endif 855 856 initialize_ivt(&fault_vector_20); 857 } 858 859 void __init trap_init(void) 860 { 861 } 862