1 /* 2 * linux/arch/parisc/traps.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org> 6 */ 7 8 /* 9 * 'Traps.c' handles hardware traps and faults after we have saved some 10 * state in 'asm.s'. 11 */ 12 13 #include <linux/sched.h> 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/ptrace.h> 18 #include <linux/timer.h> 19 #include <linux/delay.h> 20 #include <linux/mm.h> 21 #include <linux/module.h> 22 #include <linux/smp.h> 23 #include <linux/spinlock.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/console.h> 27 #include <linux/bug.h> 28 #include <linux/ratelimit.h> 29 #include <linux/uaccess.h> 30 31 #include <asm/assembly.h> 32 #include <asm/io.h> 33 #include <asm/irq.h> 34 #include <asm/traps.h> 35 #include <asm/unaligned.h> 36 #include <linux/atomic.h> 37 #include <asm/smp.h> 38 #include <asm/pdc.h> 39 #include <asm/pdc_chassis.h> 40 #include <asm/unwind.h> 41 #include <asm/tlbflush.h> 42 #include <asm/cacheflush.h> 43 44 #include "../math-emu/math-emu.h" /* for handle_fpe() */ 45 46 static void parisc_show_stack(struct task_struct *task, unsigned long *sp, 47 struct pt_regs *regs); 48 49 static int printbinary(char *buf, unsigned long x, int nbits) 50 { 51 unsigned long mask = 1UL << (nbits - 1); 52 while (mask != 0) { 53 *buf++ = (mask & x ? '1' : '0'); 54 mask >>= 1; 55 } 56 *buf = '\0'; 57 58 return nbits; 59 } 60 61 #ifdef CONFIG_64BIT 62 #define RFMT "%016lx" 63 #else 64 #define RFMT "%08lx" 65 #endif 66 #define FFMT "%016llx" /* fpregs are 64-bit always */ 67 68 #define PRINTREGS(lvl,r,f,fmt,x) \ 69 printk("%s%s%02d-%02d " fmt " " fmt " " fmt " " fmt "\n", \ 70 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1], \ 71 (r)[(x)+2], (r)[(x)+3]) 72 73 static void print_gr(char *level, struct pt_regs *regs) 74 { 75 int i; 76 char buf[64]; 77 78 printk("%s\n", level); 79 printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level); 80 printbinary(buf, regs->gr[0], 32); 81 printk("%sPSW: %s %s\n", level, buf, print_tainted()); 82 83 for (i = 0; i < 32; i += 4) 84 PRINTREGS(level, regs->gr, "r", RFMT, i); 85 } 86 87 static void print_fr(char *level, struct pt_regs *regs) 88 { 89 int i; 90 char buf[64]; 91 struct { u32 sw[2]; } s; 92 93 /* FR are 64bit everywhere. Need to use asm to get the content 94 * of fpsr/fper1, and we assume that we won't have a FP Identify 95 * in our way, otherwise we're screwed. 96 * The fldd is used to restore the T-bit if there was one, as the 97 * store clears it anyway. 98 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */ 99 asm volatile ("fstd %%fr0,0(%1) \n\t" 100 "fldd 0(%1),%%fr0 \n\t" 101 : "=m" (s) : "r" (&s) : "r0"); 102 103 printk("%s\n", level); 104 printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level); 105 printbinary(buf, s.sw[0], 32); 106 printk("%sFPSR: %s\n", level, buf); 107 printk("%sFPER1: %08x\n", level, s.sw[1]); 108 109 /* here we'll print fr0 again, tho it'll be meaningless */ 110 for (i = 0; i < 32; i += 4) 111 PRINTREGS(level, regs->fr, "fr", FFMT, i); 112 } 113 114 void show_regs(struct pt_regs *regs) 115 { 116 int i, user; 117 char *level; 118 unsigned long cr30, cr31; 119 120 user = user_mode(regs); 121 level = user ? KERN_DEBUG : KERN_CRIT; 122 123 show_regs_print_info(level); 124 125 print_gr(level, regs); 126 127 for (i = 0; i < 8; i += 4) 128 PRINTREGS(level, regs->sr, "sr", RFMT, i); 129 130 if (user) 131 print_fr(level, regs); 132 133 cr30 = mfctl(30); 134 cr31 = mfctl(31); 135 printk("%s\n", level); 136 printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n", 137 level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]); 138 printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n", 139 level, regs->iir, regs->isr, regs->ior); 140 printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n", 141 level, current_thread_info()->cpu, cr30, cr31); 142 printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28); 143 144 if (user) { 145 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]); 146 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]); 147 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]); 148 } else { 149 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]); 150 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]); 151 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]); 152 153 parisc_show_stack(current, NULL, regs); 154 } 155 } 156 157 static DEFINE_RATELIMIT_STATE(_hppa_rs, 158 DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); 159 160 #define parisc_printk_ratelimited(critical, regs, fmt, ...) { \ 161 if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \ 162 printk(fmt, ##__VA_ARGS__); \ 163 show_regs(regs); \ 164 } \ 165 } 166 167 168 static void do_show_stack(struct unwind_frame_info *info) 169 { 170 int i = 1; 171 172 printk(KERN_CRIT "Backtrace:\n"); 173 while (i <= 16) { 174 if (unwind_once(info) < 0 || info->ip == 0) 175 break; 176 177 if (__kernel_text_address(info->ip)) { 178 printk(KERN_CRIT " [<" RFMT ">] %pS\n", 179 info->ip, (void *) info->ip); 180 i++; 181 } 182 } 183 printk(KERN_CRIT "\n"); 184 } 185 186 static void parisc_show_stack(struct task_struct *task, unsigned long *sp, 187 struct pt_regs *regs) 188 { 189 struct unwind_frame_info info; 190 struct task_struct *t; 191 192 t = task ? task : current; 193 if (regs) { 194 unwind_frame_init(&info, t, regs); 195 goto show_stack; 196 } 197 198 if (t == current) { 199 unsigned long sp; 200 201 HERE: 202 asm volatile ("copy %%r30, %0" : "=r"(sp)); 203 { 204 struct pt_regs r; 205 206 memset(&r, 0, sizeof(struct pt_regs)); 207 r.iaoq[0] = (unsigned long)&&HERE; 208 r.gr[2] = (unsigned long)__builtin_return_address(0); 209 r.gr[30] = sp; 210 211 unwind_frame_init(&info, current, &r); 212 } 213 } else { 214 unwind_frame_init_from_blocked_task(&info, t); 215 } 216 217 show_stack: 218 do_show_stack(&info); 219 } 220 221 void show_stack(struct task_struct *t, unsigned long *sp) 222 { 223 return parisc_show_stack(t, sp, NULL); 224 } 225 226 int is_valid_bugaddr(unsigned long iaoq) 227 { 228 return 1; 229 } 230 231 void die_if_kernel(char *str, struct pt_regs *regs, long err) 232 { 233 if (user_mode(regs)) { 234 if (err == 0) 235 return; /* STFU */ 236 237 parisc_printk_ratelimited(1, regs, 238 KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n", 239 current->comm, task_pid_nr(current), str, err, regs->iaoq[0]); 240 241 return; 242 } 243 244 oops_in_progress = 1; 245 246 oops_enter(); 247 248 /* Amuse the user in a SPARC fashion */ 249 if (err) printk(KERN_CRIT 250 " _______________________________ \n" 251 " < Your System ate a SPARC! Gah! >\n" 252 " ------------------------------- \n" 253 " \\ ^__^\n" 254 " (__)\\ )\\/\\\n" 255 " U ||----w |\n" 256 " || ||\n"); 257 258 /* unlock the pdc lock if necessary */ 259 pdc_emergency_unlock(); 260 261 /* maybe the kernel hasn't booted very far yet and hasn't been able 262 * to initialize the serial or STI console. In that case we should 263 * re-enable the pdc console, so that the user will be able to 264 * identify the problem. */ 265 if (!console_drivers) 266 pdc_console_restart(); 267 268 if (err) 269 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n", 270 current->comm, task_pid_nr(current), str, err); 271 272 /* Wot's wrong wif bein' racy? */ 273 if (current->thread.flags & PARISC_KERNEL_DEATH) { 274 printk(KERN_CRIT "%s() recursion detected.\n", __func__); 275 local_irq_enable(); 276 while (1); 277 } 278 current->thread.flags |= PARISC_KERNEL_DEATH; 279 280 show_regs(regs); 281 dump_stack(); 282 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 283 284 if (in_interrupt()) 285 panic("Fatal exception in interrupt"); 286 287 if (panic_on_oops) 288 panic("Fatal exception"); 289 290 oops_exit(); 291 do_exit(SIGSEGV); 292 } 293 294 /* gdb uses break 4,8 */ 295 #define GDB_BREAK_INSN 0x10004 296 static void handle_gdb_break(struct pt_regs *regs, int wot) 297 { 298 struct siginfo si; 299 300 si.si_signo = SIGTRAP; 301 si.si_errno = 0; 302 si.si_code = wot; 303 si.si_addr = (void __user *) (regs->iaoq[0] & ~3); 304 force_sig_info(SIGTRAP, &si, current); 305 } 306 307 static void handle_break(struct pt_regs *regs) 308 { 309 unsigned iir = regs->iir; 310 311 if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) { 312 /* check if a BUG() or WARN() trapped here. */ 313 enum bug_trap_type tt; 314 tt = report_bug(regs->iaoq[0] & ~3, regs); 315 if (tt == BUG_TRAP_TYPE_WARN) { 316 regs->iaoq[0] += 4; 317 regs->iaoq[1] += 4; 318 return; /* return to next instruction when WARN_ON(). */ 319 } 320 die_if_kernel("Unknown kernel breakpoint", regs, 321 (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0); 322 } 323 324 if (unlikely(iir != GDB_BREAK_INSN)) 325 parisc_printk_ratelimited(0, regs, 326 KERN_DEBUG "break %d,%d: pid=%d command='%s'\n", 327 iir & 31, (iir>>13) & ((1<<13)-1), 328 task_pid_nr(current), current->comm); 329 330 /* send standard GDB signal */ 331 handle_gdb_break(regs, TRAP_BRKPT); 332 } 333 334 static void default_trap(int code, struct pt_regs *regs) 335 { 336 printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id()); 337 show_regs(regs); 338 } 339 340 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap; 341 342 343 void transfer_pim_to_trap_frame(struct pt_regs *regs) 344 { 345 register int i; 346 extern unsigned int hpmc_pim_data[]; 347 struct pdc_hpmc_pim_11 *pim_narrow; 348 struct pdc_hpmc_pim_20 *pim_wide; 349 350 if (boot_cpu_data.cpu_type >= pcxu) { 351 352 pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data; 353 354 /* 355 * Note: The following code will probably generate a 356 * bunch of truncation error warnings from the compiler. 357 * Could be handled with an ifdef, but perhaps there 358 * is a better way. 359 */ 360 361 regs->gr[0] = pim_wide->cr[22]; 362 363 for (i = 1; i < 32; i++) 364 regs->gr[i] = pim_wide->gr[i]; 365 366 for (i = 0; i < 32; i++) 367 regs->fr[i] = pim_wide->fr[i]; 368 369 for (i = 0; i < 8; i++) 370 regs->sr[i] = pim_wide->sr[i]; 371 372 regs->iasq[0] = pim_wide->cr[17]; 373 regs->iasq[1] = pim_wide->iasq_back; 374 regs->iaoq[0] = pim_wide->cr[18]; 375 regs->iaoq[1] = pim_wide->iaoq_back; 376 377 regs->sar = pim_wide->cr[11]; 378 regs->iir = pim_wide->cr[19]; 379 regs->isr = pim_wide->cr[20]; 380 regs->ior = pim_wide->cr[21]; 381 } 382 else { 383 pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data; 384 385 regs->gr[0] = pim_narrow->cr[22]; 386 387 for (i = 1; i < 32; i++) 388 regs->gr[i] = pim_narrow->gr[i]; 389 390 for (i = 0; i < 32; i++) 391 regs->fr[i] = pim_narrow->fr[i]; 392 393 for (i = 0; i < 8; i++) 394 regs->sr[i] = pim_narrow->sr[i]; 395 396 regs->iasq[0] = pim_narrow->cr[17]; 397 regs->iasq[1] = pim_narrow->iasq_back; 398 regs->iaoq[0] = pim_narrow->cr[18]; 399 regs->iaoq[1] = pim_narrow->iaoq_back; 400 401 regs->sar = pim_narrow->cr[11]; 402 regs->iir = pim_narrow->cr[19]; 403 regs->isr = pim_narrow->cr[20]; 404 regs->ior = pim_narrow->cr[21]; 405 } 406 407 /* 408 * The following fields only have meaning if we came through 409 * another path. So just zero them here. 410 */ 411 412 regs->ksp = 0; 413 regs->kpc = 0; 414 regs->orig_r28 = 0; 415 } 416 417 418 /* 419 * This routine is called as a last resort when everything else 420 * has gone clearly wrong. We get called for faults in kernel space, 421 * and HPMC's. 422 */ 423 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset) 424 { 425 static DEFINE_SPINLOCK(terminate_lock); 426 427 oops_in_progress = 1; 428 429 set_eiem(0); 430 local_irq_disable(); 431 spin_lock(&terminate_lock); 432 433 /* unlock the pdc lock if necessary */ 434 pdc_emergency_unlock(); 435 436 /* restart pdc console if necessary */ 437 if (!console_drivers) 438 pdc_console_restart(); 439 440 /* Not all paths will gutter the processor... */ 441 switch(code){ 442 443 case 1: 444 transfer_pim_to_trap_frame(regs); 445 break; 446 447 default: 448 /* Fall through */ 449 break; 450 451 } 452 453 { 454 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */ 455 struct unwind_frame_info info; 456 unwind_frame_init(&info, current, regs); 457 do_show_stack(&info); 458 } 459 460 printk("\n"); 461 printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n", 462 msg, code, regs, offset); 463 show_regs(regs); 464 465 spin_unlock(&terminate_lock); 466 467 /* put soft power button back under hardware control; 468 * if the user had pressed it once at any time, the 469 * system will shut down immediately right here. */ 470 pdc_soft_power_button(0); 471 472 /* Call kernel panic() so reboot timeouts work properly 473 * FIXME: This function should be on the list of 474 * panic notifiers, and we should call panic 475 * directly from the location that we wish. 476 * e.g. We should not call panic from 477 * parisc_terminate, but rather the oter way around. 478 * This hack works, prints the panic message twice, 479 * and it enables reboot timers! 480 */ 481 panic(msg); 482 } 483 484 void notrace handle_interruption(int code, struct pt_regs *regs) 485 { 486 unsigned long fault_address = 0; 487 unsigned long fault_space = 0; 488 struct siginfo si; 489 490 if (code == 1) 491 pdc_console_restart(); /* switch back to pdc if HPMC */ 492 else 493 local_irq_enable(); 494 495 /* Security check: 496 * If the priority level is still user, and the 497 * faulting space is not equal to the active space 498 * then the user is attempting something in a space 499 * that does not belong to them. Kill the process. 500 * 501 * This is normally the situation when the user 502 * attempts to jump into the kernel space at the 503 * wrong offset, be it at the gateway page or a 504 * random location. 505 * 506 * We cannot normally signal the process because it 507 * could *be* on the gateway page, and processes 508 * executing on the gateway page can't have signals 509 * delivered. 510 * 511 * We merely readjust the address into the users 512 * space, at a destination address of zero, and 513 * allow processing to continue. 514 */ 515 if (((unsigned long)regs->iaoq[0] & 3) && 516 ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 517 /* Kill the user process later */ 518 regs->iaoq[0] = 0 | 3; 519 regs->iaoq[1] = regs->iaoq[0] + 4; 520 regs->iasq[0] = regs->iasq[1] = regs->sr[7]; 521 regs->gr[0] &= ~PSW_B; 522 return; 523 } 524 525 #if 0 526 printk(KERN_CRIT "Interruption # %d\n", code); 527 #endif 528 529 switch(code) { 530 531 case 1: 532 /* High-priority machine check (HPMC) */ 533 534 /* set up a new led state on systems shipped with a LED State panel */ 535 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC); 536 537 parisc_terminate("High Priority Machine Check (HPMC)", 538 regs, code, 0); 539 /* NOT REACHED */ 540 541 case 2: 542 /* Power failure interrupt */ 543 printk(KERN_CRIT "Power failure interrupt !\n"); 544 return; 545 546 case 3: 547 /* Recovery counter trap */ 548 regs->gr[0] &= ~PSW_R; 549 if (user_space(regs)) 550 handle_gdb_break(regs, TRAP_TRACE); 551 /* else this must be the start of a syscall - just let it run */ 552 return; 553 554 case 5: 555 /* Low-priority machine check */ 556 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC); 557 558 flush_cache_all(); 559 flush_tlb_all(); 560 cpu_lpmc(5, regs); 561 return; 562 563 case 6: 564 /* Instruction TLB miss fault/Instruction page fault */ 565 fault_address = regs->iaoq[0]; 566 fault_space = regs->iasq[0]; 567 break; 568 569 case 8: 570 /* Illegal instruction trap */ 571 die_if_kernel("Illegal instruction", regs, code); 572 si.si_code = ILL_ILLOPC; 573 goto give_sigill; 574 575 case 9: 576 /* Break instruction trap */ 577 handle_break(regs); 578 return; 579 580 case 10: 581 /* Privileged operation trap */ 582 die_if_kernel("Privileged operation", regs, code); 583 si.si_code = ILL_PRVOPC; 584 goto give_sigill; 585 586 case 11: 587 /* Privileged register trap */ 588 if ((regs->iir & 0xffdfffe0) == 0x034008a0) { 589 590 /* This is a MFCTL cr26/cr27 to gr instruction. 591 * PCXS traps on this, so we need to emulate it. 592 */ 593 594 if (regs->iir & 0x00200000) 595 regs->gr[regs->iir & 0x1f] = mfctl(27); 596 else 597 regs->gr[regs->iir & 0x1f] = mfctl(26); 598 599 regs->iaoq[0] = regs->iaoq[1]; 600 regs->iaoq[1] += 4; 601 regs->iasq[0] = regs->iasq[1]; 602 return; 603 } 604 605 die_if_kernel("Privileged register usage", regs, code); 606 si.si_code = ILL_PRVREG; 607 give_sigill: 608 si.si_signo = SIGILL; 609 si.si_errno = 0; 610 si.si_addr = (void __user *) regs->iaoq[0]; 611 force_sig_info(SIGILL, &si, current); 612 return; 613 614 case 12: 615 /* Overflow Trap, let the userland signal handler do the cleanup */ 616 si.si_signo = SIGFPE; 617 si.si_code = FPE_INTOVF; 618 si.si_addr = (void __user *) regs->iaoq[0]; 619 force_sig_info(SIGFPE, &si, current); 620 return; 621 622 case 13: 623 /* Conditional Trap 624 The condition succeeds in an instruction which traps 625 on condition */ 626 if(user_mode(regs)){ 627 si.si_signo = SIGFPE; 628 /* Set to zero, and let the userspace app figure it out from 629 the insn pointed to by si_addr */ 630 si.si_code = 0; 631 si.si_addr = (void __user *) regs->iaoq[0]; 632 force_sig_info(SIGFPE, &si, current); 633 return; 634 } 635 /* The kernel doesn't want to handle condition codes */ 636 break; 637 638 case 14: 639 /* Assist Exception Trap, i.e. floating point exception. */ 640 die_if_kernel("Floating point exception", regs, 0); /* quiet */ 641 __inc_irq_stat(irq_fpassist_count); 642 handle_fpe(regs); 643 return; 644 645 case 15: 646 /* Data TLB miss fault/Data page fault */ 647 /* Fall through */ 648 case 16: 649 /* Non-access instruction TLB miss fault */ 650 /* The instruction TLB entry needed for the target address of the FIC 651 is absent, and hardware can't find it, so we get to cleanup */ 652 /* Fall through */ 653 case 17: 654 /* Non-access data TLB miss fault/Non-access data page fault */ 655 /* FIXME: 656 Still need to add slow path emulation code here! 657 If the insn used a non-shadow register, then the tlb 658 handlers could not have their side-effect (e.g. probe 659 writing to a target register) emulated since rfir would 660 erase the changes to said register. Instead we have to 661 setup everything, call this function we are in, and emulate 662 by hand. Technically we need to emulate: 663 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw 664 */ 665 fault_address = regs->ior; 666 fault_space = regs->isr; 667 break; 668 669 case 18: 670 /* PCXS only -- later cpu's split this into types 26,27 & 28 */ 671 /* Check for unaligned access */ 672 if (check_unaligned(regs)) { 673 handle_unaligned(regs); 674 return; 675 } 676 /* Fall Through */ 677 case 26: 678 /* PCXL: Data memory access rights trap */ 679 fault_address = regs->ior; 680 fault_space = regs->isr; 681 break; 682 683 case 19: 684 /* Data memory break trap */ 685 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */ 686 /* fall thru */ 687 case 21: 688 /* Page reference trap */ 689 handle_gdb_break(regs, TRAP_HWBKPT); 690 return; 691 692 case 25: 693 /* Taken branch trap */ 694 regs->gr[0] &= ~PSW_T; 695 if (user_space(regs)) 696 handle_gdb_break(regs, TRAP_BRANCH); 697 /* else this must be the start of a syscall - just let it 698 * run. 699 */ 700 return; 701 702 case 7: 703 /* Instruction access rights */ 704 /* PCXL: Instruction memory protection trap */ 705 706 /* 707 * This could be caused by either: 1) a process attempting 708 * to execute within a vma that does not have execute 709 * permission, or 2) an access rights violation caused by a 710 * flush only translation set up by ptep_get_and_clear(). 711 * So we check the vma permissions to differentiate the two. 712 * If the vma indicates we have execute permission, then 713 * the cause is the latter one. In this case, we need to 714 * call do_page_fault() to fix the problem. 715 */ 716 717 if (user_mode(regs)) { 718 struct vm_area_struct *vma; 719 720 down_read(¤t->mm->mmap_sem); 721 vma = find_vma(current->mm,regs->iaoq[0]); 722 if (vma && (regs->iaoq[0] >= vma->vm_start) 723 && (vma->vm_flags & VM_EXEC)) { 724 725 fault_address = regs->iaoq[0]; 726 fault_space = regs->iasq[0]; 727 728 up_read(¤t->mm->mmap_sem); 729 break; /* call do_page_fault() */ 730 } 731 up_read(¤t->mm->mmap_sem); 732 } 733 /* Fall Through */ 734 case 27: 735 /* Data memory protection ID trap */ 736 if (code == 27 && !user_mode(regs) && 737 fixup_exception(regs)) 738 return; 739 740 die_if_kernel("Protection id trap", regs, code); 741 si.si_code = SEGV_MAPERR; 742 si.si_signo = SIGSEGV; 743 si.si_errno = 0; 744 if (code == 7) 745 si.si_addr = (void __user *) regs->iaoq[0]; 746 else 747 si.si_addr = (void __user *) regs->ior; 748 force_sig_info(SIGSEGV, &si, current); 749 return; 750 751 case 28: 752 /* Unaligned data reference trap */ 753 handle_unaligned(regs); 754 return; 755 756 default: 757 if (user_mode(regs)) { 758 parisc_printk_ratelimited(0, regs, KERN_DEBUG 759 "handle_interruption() pid=%d command='%s'\n", 760 task_pid_nr(current), current->comm); 761 /* SIGBUS, for lack of a better one. */ 762 si.si_signo = SIGBUS; 763 si.si_code = BUS_OBJERR; 764 si.si_errno = 0; 765 si.si_addr = (void __user *) regs->ior; 766 force_sig_info(SIGBUS, &si, current); 767 return; 768 } 769 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 770 771 parisc_terminate("Unexpected interruption", regs, code, 0); 772 /* NOT REACHED */ 773 } 774 775 if (user_mode(regs)) { 776 if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) { 777 parisc_printk_ratelimited(0, regs, KERN_DEBUG 778 "User fault %d on space 0x%08lx, pid=%d command='%s'\n", 779 code, fault_space, 780 task_pid_nr(current), current->comm); 781 si.si_signo = SIGSEGV; 782 si.si_errno = 0; 783 si.si_code = SEGV_MAPERR; 784 si.si_addr = (void __user *) regs->ior; 785 force_sig_info(SIGSEGV, &si, current); 786 return; 787 } 788 } 789 else { 790 791 /* 792 * The kernel should never fault on its own address space, 793 * unless pagefault_disable() was called before. 794 */ 795 796 if (fault_space == 0 && !faulthandler_disabled()) 797 { 798 /* Clean up and return if in exception table. */ 799 if (fixup_exception(regs)) 800 return; 801 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); 802 parisc_terminate("Kernel Fault", regs, code, fault_address); 803 } 804 } 805 806 do_page_fault(regs, code, fault_address); 807 } 808 809 810 void __init initialize_ivt(const void *iva) 811 { 812 extern u32 os_hpmc_size; 813 extern const u32 os_hpmc[]; 814 815 int i; 816 u32 check = 0; 817 u32 *ivap; 818 u32 *hpmcp; 819 u32 length; 820 821 if (strcmp((const char *)iva, "cows can fly")) 822 panic("IVT invalid"); 823 824 ivap = (u32 *)iva; 825 826 for (i = 0; i < 8; i++) 827 *ivap++ = 0; 828 829 /* Compute Checksum for HPMC handler */ 830 length = os_hpmc_size; 831 ivap[7] = length; 832 833 hpmcp = (u32 *)os_hpmc; 834 835 for (i=0; i<length/4; i++) 836 check += *hpmcp++; 837 838 for (i=0; i<8; i++) 839 check += ivap[i]; 840 841 ivap[5] = -check; 842 } 843 844 845 /* early_trap_init() is called before we set up kernel mappings and 846 * write-protect the kernel */ 847 void __init early_trap_init(void) 848 { 849 extern const void fault_vector_20; 850 851 #ifndef CONFIG_64BIT 852 extern const void fault_vector_11; 853 initialize_ivt(&fault_vector_11); 854 #endif 855 856 initialize_ivt(&fault_vector_20); 857 } 858 859 void __init trap_init(void) 860 { 861 } 862