xref: /openbmc/linux/arch/parisc/kernel/time.c (revision f5b06569)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/profile.h>
26 #include <linux/clocksource.h>
27 #include <linux/platform_device.h>
28 #include <linux/ftrace.h>
29 
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32 #include <asm/irq.h>
33 #include <asm/page.h>
34 #include <asm/param.h>
35 #include <asm/pdc.h>
36 #include <asm/led.h>
37 
38 #include <linux/timex.h>
39 
40 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
41 
42 #ifndef CONFIG_64BIT
43 /*
44  * The processor-internal cycle counter (Control Register 16) is used as time
45  * source for the sched_clock() function.  This register is 64bit wide on a
46  * 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always
47  * requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits
48  * with a per-cpu variable which we increase every time the counter
49  * wraps-around (which happens every ~4 secounds).
50  */
51 static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits);
52 #endif
53 
54 /*
55  * We keep time on PA-RISC Linux by using the Interval Timer which is
56  * a pair of registers; one is read-only and one is write-only; both
57  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
58  * and increments by 1 every CPU clock tick.  The architecture only
59  * guarantees us a rate between 0.5 and 2, but all implementations use a
60  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
61  * 32 bits of the read-only register compare equal to the write-only
62  * register, it raises a maskable external interrupt.  Each processor has
63  * an Interval Timer of its own and they are not synchronised.
64  *
65  * We want to generate an interrupt every 1/HZ seconds.  So we program
66  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
67  * is programmed with the intended time of the next tick.  We can be
68  * held off for an arbitrarily long period of time by interrupts being
69  * disabled, so we may miss one or more ticks.
70  */
71 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
72 {
73 	unsigned long now, now2;
74 	unsigned long next_tick;
75 	unsigned long cycles_elapsed, ticks_elapsed = 1;
76 	unsigned long cycles_remainder;
77 	unsigned int cpu = smp_processor_id();
78 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
79 
80 	/* gcc can optimize for "read-only" case with a local clocktick */
81 	unsigned long cpt = clocktick;
82 
83 	profile_tick(CPU_PROFILING);
84 
85 	/* Initialize next_tick to the expected tick time. */
86 	next_tick = cpuinfo->it_value;
87 
88 	/* Get current cycle counter (Control Register 16). */
89 	now = mfctl(16);
90 
91 	cycles_elapsed = now - next_tick;
92 
93 	if ((cycles_elapsed >> 6) < cpt) {
94 		/* use "cheap" math (add/subtract) instead
95 		 * of the more expensive div/mul method
96 		 */
97 		cycles_remainder = cycles_elapsed;
98 		while (cycles_remainder > cpt) {
99 			cycles_remainder -= cpt;
100 			ticks_elapsed++;
101 		}
102 	} else {
103 		/* TODO: Reduce this to one fdiv op */
104 		cycles_remainder = cycles_elapsed % cpt;
105 		ticks_elapsed += cycles_elapsed / cpt;
106 	}
107 
108 	/* convert from "division remainder" to "remainder of clock tick" */
109 	cycles_remainder = cpt - cycles_remainder;
110 
111 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
112 	 * We want IT to fire modulo clocktick even if we miss/skip some.
113 	 * But those interrupts don't in fact get delivered that regularly.
114 	 */
115 	next_tick = now + cycles_remainder;
116 
117 	cpuinfo->it_value = next_tick;
118 
119 	/* Program the IT when to deliver the next interrupt.
120 	 * Only bottom 32-bits of next_tick are writable in CR16!
121 	 */
122 	mtctl(next_tick, 16);
123 
124 #if !defined(CONFIG_64BIT)
125 	/* check for overflow on a 32bit kernel (every ~4 seconds). */
126 	if (unlikely(next_tick < now))
127 		this_cpu_inc(cr16_high_32_bits);
128 #endif
129 
130 	/* Skip one clocktick on purpose if we missed next_tick.
131 	 * The new CR16 must be "later" than current CR16 otherwise
132 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
133 	 * later on a 1Ghz processor. We'll account for the missed
134 	 * tick on the next timer interrupt.
135 	 *
136 	 * "next_tick - now" will always give the difference regardless
137 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
138 	 * with a very large unsigned number.
139 	 */
140 	now2 = mfctl(16);
141 	if (next_tick - now2 > cpt)
142 		mtctl(next_tick+cpt, 16);
143 
144 #if 1
145 /*
146  * GGG: DEBUG code for how many cycles programming CR16 used.
147  */
148 	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
149 		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
150 			" cyc %lX rem %lX "
151 			" next/now %lX/%lX\n",
152 			cpu, now2 - now, cycles_elapsed, cycles_remainder,
153 			next_tick, now );
154 #endif
155 
156 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
157 	 * "long delay" (aka Scenario 3)? I don't think so.
158 	 *
159 	 * Timer_interrupt will be delivered at least a few hundred cycles
160 	 * after the IT fires. But it's arbitrary how much time passes
161 	 * before we call it "late". I've picked one second.
162 	 *
163 	 * It's important NO printk's are between reading CR16 and
164 	 * setting up the next value. May introduce huge variance.
165 	 */
166 	if (unlikely(ticks_elapsed > HZ)) {
167 		/* Scenario 3: very long delay?  bad in any case */
168 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
169 			" cycles %lX rem %lX "
170 			" next/now %lX/%lX\n",
171 			cpu,
172 			cycles_elapsed, cycles_remainder,
173 			next_tick, now );
174 	}
175 
176 	/* Done mucking with unreliable delivery of interrupts.
177 	 * Go do system house keeping.
178 	 */
179 
180 	if (!--cpuinfo->prof_counter) {
181 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
182 		update_process_times(user_mode(get_irq_regs()));
183 	}
184 
185 	if (cpu == 0)
186 		xtime_update(ticks_elapsed);
187 
188 	return IRQ_HANDLED;
189 }
190 
191 
192 unsigned long profile_pc(struct pt_regs *regs)
193 {
194 	unsigned long pc = instruction_pointer(regs);
195 
196 	if (regs->gr[0] & PSW_N)
197 		pc -= 4;
198 
199 #ifdef CONFIG_SMP
200 	if (in_lock_functions(pc))
201 		pc = regs->gr[2];
202 #endif
203 
204 	return pc;
205 }
206 EXPORT_SYMBOL(profile_pc);
207 
208 
209 /* clock source code */
210 
211 static cycle_t read_cr16(struct clocksource *cs)
212 {
213 	return get_cycles();
214 }
215 
216 static struct clocksource clocksource_cr16 = {
217 	.name			= "cr16",
218 	.rating			= 300,
219 	.read			= read_cr16,
220 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
221 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
222 };
223 
224 void __init start_cpu_itimer(void)
225 {
226 	unsigned int cpu = smp_processor_id();
227 	unsigned long next_tick = mfctl(16) + clocktick;
228 
229 #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
230 	/* With multiple 64bit CPUs online, the cr16's are not syncronized. */
231 	if (cpu != 0)
232 		clear_sched_clock_stable();
233 #endif
234 
235 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
236 
237 	per_cpu(cpu_data, cpu).it_value = next_tick;
238 }
239 
240 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
241 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
242 {
243 	struct pdc_tod tod_data;
244 
245 	memset(tm, 0, sizeof(*tm));
246 	if (pdc_tod_read(&tod_data) < 0)
247 		return -EOPNOTSUPP;
248 
249 	/* we treat tod_sec as unsigned, so this can work until year 2106 */
250 	rtc_time64_to_tm(tod_data.tod_sec, tm);
251 	return rtc_valid_tm(tm);
252 }
253 
254 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
255 {
256 	time64_t secs = rtc_tm_to_time64(tm);
257 
258 	if (pdc_tod_set(secs, 0) < 0)
259 		return -EOPNOTSUPP;
260 
261 	return 0;
262 }
263 
264 static const struct rtc_class_ops rtc_generic_ops = {
265 	.read_time = rtc_generic_get_time,
266 	.set_time = rtc_generic_set_time,
267 };
268 
269 static int __init rtc_init(void)
270 {
271 	struct platform_device *pdev;
272 
273 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
274 					     &rtc_generic_ops,
275 					     sizeof(rtc_generic_ops));
276 
277 	return PTR_ERR_OR_ZERO(pdev);
278 }
279 device_initcall(rtc_init);
280 #endif
281 
282 void read_persistent_clock(struct timespec *ts)
283 {
284 	static struct pdc_tod tod_data;
285 	if (pdc_tod_read(&tod_data) == 0) {
286 		ts->tv_sec = tod_data.tod_sec;
287 		ts->tv_nsec = tod_data.tod_usec * 1000;
288 	} else {
289 		printk(KERN_ERR "Error reading tod clock\n");
290 	        ts->tv_sec = 0;
291 		ts->tv_nsec = 0;
292 	}
293 }
294 
295 
296 /*
297  * sched_clock() framework
298  */
299 
300 static u32 cyc2ns_mul __read_mostly;
301 static u32 cyc2ns_shift __read_mostly;
302 
303 u64 sched_clock(void)
304 {
305 	u64 now;
306 
307 	/* Get current cycle counter (Control Register 16). */
308 #ifdef CONFIG_64BIT
309 	now = mfctl(16);
310 #else
311 	now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32);
312 #endif
313 
314 	/* return the value in ns (cycles_2_ns) */
315 	return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift);
316 }
317 
318 
319 /*
320  * timer interrupt and sched_clock() initialization
321  */
322 
323 void __init time_init(void)
324 {
325 	unsigned long current_cr16_khz;
326 
327 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
328 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
329 
330 	/* calculate mult/shift values for cr16 */
331 	clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz,
332 				NSEC_PER_MSEC, 0);
333 
334 	start_cpu_itimer();	/* get CPU 0 started */
335 
336 	/* register at clocksource framework */
337 	clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
338 }
339