xref: /openbmc/linux/arch/parisc/kernel/time.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 #include <asm/irq.h>
31 #include <asm/param.h>
32 #include <asm/pdc.h>
33 #include <asm/led.h>
34 
35 #include <linux/timex.h>
36 
37 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
38 
39 /*
40  * We keep time on PA-RISC Linux by using the Interval Timer which is
41  * a pair of registers; one is read-only and one is write-only; both
42  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
43  * and increments by 1 every CPU clock tick.  The architecture only
44  * guarantees us a rate between 0.5 and 2, but all implementations use a
45  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
46  * 32 bits of the read-only register compare equal to the write-only
47  * register, it raises a maskable external interrupt.  Each processor has
48  * an Interval Timer of its own and they are not synchronised.
49  *
50  * We want to generate an interrupt every 1/HZ seconds.  So we program
51  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
52  * is programmed with the intended time of the next tick.  We can be
53  * held off for an arbitrarily long period of time by interrupts being
54  * disabled, so we may miss one or more ticks.
55  */
56 irqreturn_t timer_interrupt(int irq, void *dev_id)
57 {
58 	unsigned long now;
59 	unsigned long next_tick;
60 	unsigned long cycles_elapsed, ticks_elapsed;
61 	unsigned long cycles_remainder;
62 	unsigned int cpu = smp_processor_id();
63 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
64 
65 	/* gcc can optimize for "read-only" case with a local clocktick */
66 	unsigned long cpt = clocktick;
67 
68 	profile_tick(CPU_PROFILING);
69 
70 	/* Initialize next_tick to the expected tick time. */
71 	next_tick = cpuinfo->it_value;
72 
73 	/* Get current interval timer.
74 	 * CR16 reads as 64 bits in CPU wide mode.
75 	 * CR16 reads as 32 bits in CPU narrow mode.
76 	 */
77 	now = mfctl(16);
78 
79 	cycles_elapsed = now - next_tick;
80 
81 	if ((cycles_elapsed >> 5) < cpt) {
82 		/* use "cheap" math (add/subtract) instead
83 		 * of the more expensive div/mul method
84 		 */
85 		cycles_remainder = cycles_elapsed;
86 		ticks_elapsed = 1;
87 		while (cycles_remainder > cpt) {
88 			cycles_remainder -= cpt;
89 			ticks_elapsed++;
90 		}
91 	} else {
92 		cycles_remainder = cycles_elapsed % cpt;
93 		ticks_elapsed = 1 + cycles_elapsed / cpt;
94 	}
95 
96 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
97 	 * "long delay" (aka Scenario 3)? I don't think so.
98 	 *
99 	 * We expected timer_interrupt to be delivered at least a few hundred
100 	 * cycles after the IT fires. But it's arbitrary how much time passes
101 	 * before we call it "late". I've picked one second.
102 	 */
103 	if (unlikely(ticks_elapsed > HZ)) {
104 		/* Scenario 3: very long delay?  bad in any case */
105 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
106 			" cycles %lX rem %lX "
107 			" next/now %lX/%lX\n",
108 			cpu,
109 			cycles_elapsed, cycles_remainder,
110 			next_tick, now );
111 	}
112 
113 	/* convert from "division remainder" to "remainder of clock tick" */
114 	cycles_remainder = cpt - cycles_remainder;
115 
116 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
117 	 * We want IT to fire modulo clocktick even if we miss/skip some.
118 	 * But those interrupts don't in fact get delivered that regularly.
119 	 */
120 	next_tick = now + cycles_remainder;
121 
122 	cpuinfo->it_value = next_tick;
123 
124 	/* Skip one clocktick on purpose if we are likely to miss next_tick.
125 	 * We want to avoid the new next_tick being less than CR16.
126 	 * If that happened, itimer wouldn't fire until CR16 wrapped.
127 	 * We'll catch the tick we missed on the tick after that.
128 	 */
129 	if (!(cycles_remainder >> 13))
130 		next_tick += cpt;
131 
132 	/* Program the IT when to deliver the next interrupt. */
133 	/* Only bottom 32-bits of next_tick are written to cr16.  */
134 	mtctl(next_tick, 16);
135 
136 
137 	/* Done mucking with unreliable delivery of interrupts.
138 	 * Go do system house keeping.
139 	 */
140 
141 	if (!--cpuinfo->prof_counter) {
142 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
143 		update_process_times(user_mode(get_irq_regs()));
144 	}
145 
146 	if (cpu == 0) {
147 		write_seqlock(&xtime_lock);
148 		do_timer(ticks_elapsed);
149 		write_sequnlock(&xtime_lock);
150 	}
151 
152 	return IRQ_HANDLED;
153 }
154 
155 
156 unsigned long profile_pc(struct pt_regs *regs)
157 {
158 	unsigned long pc = instruction_pointer(regs);
159 
160 	if (regs->gr[0] & PSW_N)
161 		pc -= 4;
162 
163 #ifdef CONFIG_SMP
164 	if (in_lock_functions(pc))
165 		pc = regs->gr[2];
166 #endif
167 
168 	return pc;
169 }
170 EXPORT_SYMBOL(profile_pc);
171 
172 
173 /* clock source code */
174 
175 static cycle_t read_cr16(void)
176 {
177 	return get_cycles();
178 }
179 
180 static struct clocksource clocksource_cr16 = {
181 	.name			= "cr16",
182 	.rating			= 300,
183 	.read			= read_cr16,
184 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
185 	.mult			= 0, /* to be set */
186 	.shift			= 22,
187 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
188 };
189 
190 #ifdef CONFIG_SMP
191 int update_cr16_clocksource(void)
192 {
193 	/* since the cr16 cycle counters are not synchronized across CPUs,
194 	   we'll check if we should switch to a safe clocksource: */
195 	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
196 		clocksource_change_rating(&clocksource_cr16, 0);
197 		return 1;
198 	}
199 
200 	return 0;
201 }
202 #else
203 int update_cr16_clocksource(void)
204 {
205 	return 0; /* no change */
206 }
207 #endif /*CONFIG_SMP*/
208 
209 void __init start_cpu_itimer(void)
210 {
211 	unsigned int cpu = smp_processor_id();
212 	unsigned long next_tick = mfctl(16) + clocktick;
213 
214 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
215 
216 	per_cpu(cpu_data, cpu).it_value = next_tick;
217 }
218 
219 static struct platform_device rtc_parisc_dev = {
220 	.name = "rtc-parisc",
221 	.id = -1,
222 };
223 
224 static int __init rtc_init(void)
225 {
226 	if (platform_device_register(&rtc_parisc_dev) < 0)
227 		printk(KERN_ERR "unable to register rtc device...\n");
228 
229 	/* not necessarily an error */
230 	return 0;
231 }
232 module_init(rtc_init);
233 
234 void __init time_init(void)
235 {
236 	static struct pdc_tod tod_data;
237 	unsigned long current_cr16_khz;
238 
239 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
240 
241 	start_cpu_itimer();	/* get CPU 0 started */
242 
243 	/* register at clocksource framework */
244 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
245 	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
246 						clocksource_cr16.shift);
247 	clocksource_register(&clocksource_cr16);
248 
249 	if (pdc_tod_read(&tod_data) == 0) {
250 		unsigned long flags;
251 
252 		write_seqlock_irqsave(&xtime_lock, flags);
253 		xtime.tv_sec = tod_data.tod_sec;
254 		xtime.tv_nsec = tod_data.tod_usec * 1000;
255 		set_normalized_timespec(&wall_to_monotonic,
256 		                        -xtime.tv_sec, -xtime.tv_nsec);
257 		write_sequnlock_irqrestore(&xtime_lock, flags);
258 	} else {
259 		printk(KERN_ERR "Error reading tod clock\n");
260 	        xtime.tv_sec = 0;
261 		xtime.tv_nsec = 0;
262 	}
263 }
264