xref: /openbmc/linux/arch/parisc/kernel/time.c (revision b6dcefde)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/param.h>
33 #include <asm/pdc.h>
34 #include <asm/led.h>
35 
36 #include <linux/timex.h>
37 
38 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
39 
40 /*
41  * We keep time on PA-RISC Linux by using the Interval Timer which is
42  * a pair of registers; one is read-only and one is write-only; both
43  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
44  * and increments by 1 every CPU clock tick.  The architecture only
45  * guarantees us a rate between 0.5 and 2, but all implementations use a
46  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
47  * 32 bits of the read-only register compare equal to the write-only
48  * register, it raises a maskable external interrupt.  Each processor has
49  * an Interval Timer of its own and they are not synchronised.
50  *
51  * We want to generate an interrupt every 1/HZ seconds.  So we program
52  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
53  * is programmed with the intended time of the next tick.  We can be
54  * held off for an arbitrarily long period of time by interrupts being
55  * disabled, so we may miss one or more ticks.
56  */
57 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
58 {
59 	unsigned long now, now2;
60 	unsigned long next_tick;
61 	unsigned long cycles_elapsed, ticks_elapsed = 1;
62 	unsigned long cycles_remainder;
63 	unsigned int cpu = smp_processor_id();
64 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
65 
66 	/* gcc can optimize for "read-only" case with a local clocktick */
67 	unsigned long cpt = clocktick;
68 
69 	profile_tick(CPU_PROFILING);
70 
71 	/* Initialize next_tick to the expected tick time. */
72 	next_tick = cpuinfo->it_value;
73 
74 	/* Get current cycle counter (Control Register 16). */
75 	now = mfctl(16);
76 
77 	cycles_elapsed = now - next_tick;
78 
79 	if ((cycles_elapsed >> 6) < cpt) {
80 		/* use "cheap" math (add/subtract) instead
81 		 * of the more expensive div/mul method
82 		 */
83 		cycles_remainder = cycles_elapsed;
84 		while (cycles_remainder > cpt) {
85 			cycles_remainder -= cpt;
86 			ticks_elapsed++;
87 		}
88 	} else {
89 		/* TODO: Reduce this to one fdiv op */
90 		cycles_remainder = cycles_elapsed % cpt;
91 		ticks_elapsed += cycles_elapsed / cpt;
92 	}
93 
94 	/* convert from "division remainder" to "remainder of clock tick" */
95 	cycles_remainder = cpt - cycles_remainder;
96 
97 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
98 	 * We want IT to fire modulo clocktick even if we miss/skip some.
99 	 * But those interrupts don't in fact get delivered that regularly.
100 	 */
101 	next_tick = now + cycles_remainder;
102 
103 	cpuinfo->it_value = next_tick;
104 
105 	/* Program the IT when to deliver the next interrupt.
106 	 * Only bottom 32-bits of next_tick are writable in CR16!
107 	 */
108 	mtctl(next_tick, 16);
109 
110 	/* Skip one clocktick on purpose if we missed next_tick.
111 	 * The new CR16 must be "later" than current CR16 otherwise
112 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
113 	 * later on a 1Ghz processor. We'll account for the missed
114 	 * tick on the next timer interrupt.
115 	 *
116 	 * "next_tick - now" will always give the difference regardless
117 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
118 	 * with a very large unsigned number.
119 	 */
120 	now2 = mfctl(16);
121 	if (next_tick - now2 > cpt)
122 		mtctl(next_tick+cpt, 16);
123 
124 #if 1
125 /*
126  * GGG: DEBUG code for how many cycles programming CR16 used.
127  */
128 	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
129 		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
130 			" cyc %lX rem %lX "
131 			" next/now %lX/%lX\n",
132 			cpu, now2 - now, cycles_elapsed, cycles_remainder,
133 			next_tick, now );
134 #endif
135 
136 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
137 	 * "long delay" (aka Scenario 3)? I don't think so.
138 	 *
139 	 * Timer_interrupt will be delivered at least a few hundred cycles
140 	 * after the IT fires. But it's arbitrary how much time passes
141 	 * before we call it "late". I've picked one second.
142 	 *
143 	 * It's important NO printk's are between reading CR16 and
144 	 * setting up the next value. May introduce huge variance.
145 	 */
146 	if (unlikely(ticks_elapsed > HZ)) {
147 		/* Scenario 3: very long delay?  bad in any case */
148 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
149 			" cycles %lX rem %lX "
150 			" next/now %lX/%lX\n",
151 			cpu,
152 			cycles_elapsed, cycles_remainder,
153 			next_tick, now );
154 	}
155 
156 	/* Done mucking with unreliable delivery of interrupts.
157 	 * Go do system house keeping.
158 	 */
159 
160 	if (!--cpuinfo->prof_counter) {
161 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
162 		update_process_times(user_mode(get_irq_regs()));
163 	}
164 
165 	if (cpu == 0) {
166 		write_seqlock(&xtime_lock);
167 		do_timer(ticks_elapsed);
168 		write_sequnlock(&xtime_lock);
169 	}
170 
171 	return IRQ_HANDLED;
172 }
173 
174 
175 unsigned long profile_pc(struct pt_regs *regs)
176 {
177 	unsigned long pc = instruction_pointer(regs);
178 
179 	if (regs->gr[0] & PSW_N)
180 		pc -= 4;
181 
182 #ifdef CONFIG_SMP
183 	if (in_lock_functions(pc))
184 		pc = regs->gr[2];
185 #endif
186 
187 	return pc;
188 }
189 EXPORT_SYMBOL(profile_pc);
190 
191 
192 /* clock source code */
193 
194 static cycle_t read_cr16(struct clocksource *cs)
195 {
196 	return get_cycles();
197 }
198 
199 static struct clocksource clocksource_cr16 = {
200 	.name			= "cr16",
201 	.rating			= 300,
202 	.read			= read_cr16,
203 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
204 	.mult			= 0, /* to be set */
205 	.shift			= 22,
206 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
207 };
208 
209 #ifdef CONFIG_SMP
210 int update_cr16_clocksource(void)
211 {
212 	/* since the cr16 cycle counters are not synchronized across CPUs,
213 	   we'll check if we should switch to a safe clocksource: */
214 	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
215 		clocksource_change_rating(&clocksource_cr16, 0);
216 		return 1;
217 	}
218 
219 	return 0;
220 }
221 #else
222 int update_cr16_clocksource(void)
223 {
224 	return 0; /* no change */
225 }
226 #endif /*CONFIG_SMP*/
227 
228 void __init start_cpu_itimer(void)
229 {
230 	unsigned int cpu = smp_processor_id();
231 	unsigned long next_tick = mfctl(16) + clocktick;
232 
233 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
234 
235 	per_cpu(cpu_data, cpu).it_value = next_tick;
236 }
237 
238 static struct platform_device rtc_generic_dev = {
239 	.name = "rtc-generic",
240 	.id = -1,
241 };
242 
243 static int __init rtc_init(void)
244 {
245 	if (platform_device_register(&rtc_generic_dev) < 0)
246 		printk(KERN_ERR "unable to register rtc device...\n");
247 
248 	/* not necessarily an error */
249 	return 0;
250 }
251 module_init(rtc_init);
252 
253 void __init time_init(void)
254 {
255 	static struct pdc_tod tod_data;
256 	unsigned long current_cr16_khz;
257 
258 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
259 
260 	start_cpu_itimer();	/* get CPU 0 started */
261 
262 	/* register at clocksource framework */
263 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
264 	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
265 						clocksource_cr16.shift);
266 	clocksource_register(&clocksource_cr16);
267 
268 	if (pdc_tod_read(&tod_data) == 0) {
269 		unsigned long flags;
270 
271 		write_seqlock_irqsave(&xtime_lock, flags);
272 		xtime.tv_sec = tod_data.tod_sec;
273 		xtime.tv_nsec = tod_data.tod_usec * 1000;
274 		set_normalized_timespec(&wall_to_monotonic,
275 		                        -xtime.tv_sec, -xtime.tv_nsec);
276 		write_sequnlock_irqrestore(&xtime_lock, flags);
277 	} else {
278 		printk(KERN_ERR "Error reading tod clock\n");
279 	        xtime.tv_sec = 0;
280 		xtime.tv_nsec = 0;
281 	}
282 }
283