xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 87c2ce3b)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/profile.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <asm/param.h>
31 #include <asm/pdc.h>
32 #include <asm/led.h>
33 
34 #include <linux/timex.h>
35 
36 /* xtime and wall_jiffies keep wall-clock time */
37 extern unsigned long wall_jiffies;
38 
39 static long clocktick;	/* timer cycles per tick */
40 static long halftick;
41 
42 #ifdef CONFIG_SMP
43 extern void smp_do_timer(struct pt_regs *regs);
44 #endif
45 
46 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
47 {
48 	long now;
49 	long next_tick;
50 	int nticks;
51 	int cpu = smp_processor_id();
52 
53 	profile_tick(CPU_PROFILING, regs);
54 
55 	now = mfctl(16);
56 	/* initialize next_tick to time at last clocktick */
57 	next_tick = cpu_data[cpu].it_value;
58 
59 	/* since time passes between the interrupt and the mfctl()
60 	 * above, it is never true that last_tick + clocktick == now.  If we
61 	 * never miss a clocktick, we could set next_tick = last_tick + clocktick
62 	 * but maybe we'll miss ticks, hence the loop.
63 	 *
64 	 * Variables are *signed*.
65 	 */
66 
67 	nticks = 0;
68 	while((next_tick - now) < halftick) {
69 		next_tick += clocktick;
70 		nticks++;
71 	}
72 	mtctl(next_tick, 16);
73 	cpu_data[cpu].it_value = next_tick;
74 
75 	while (nticks--) {
76 #ifdef CONFIG_SMP
77 		smp_do_timer(regs);
78 #else
79 		update_process_times(user_mode(regs));
80 #endif
81 		if (cpu == 0) {
82 			write_seqlock(&xtime_lock);
83 			do_timer(regs);
84 			write_sequnlock(&xtime_lock);
85 		}
86 	}
87 
88 	/* check soft power switch status */
89 	if (cpu == 0 && !atomic_read(&power_tasklet.count))
90 		tasklet_schedule(&power_tasklet);
91 
92 	return IRQ_HANDLED;
93 }
94 
95 
96 unsigned long profile_pc(struct pt_regs *regs)
97 {
98 	unsigned long pc = instruction_pointer(regs);
99 
100 	if (regs->gr[0] & PSW_N)
101 		pc -= 4;
102 
103 #ifdef CONFIG_SMP
104 	if (in_lock_functions(pc))
105 		pc = regs->gr[2];
106 #endif
107 
108 	return pc;
109 }
110 EXPORT_SYMBOL(profile_pc);
111 
112 
113 /*** converted from ia64 ***/
114 /*
115  * Return the number of micro-seconds that elapsed since the last
116  * update to wall time (aka xtime aka wall_jiffies).  The xtime_lock
117  * must be at least read-locked when calling this routine.
118  */
119 static inline unsigned long
120 gettimeoffset (void)
121 {
122 #ifndef CONFIG_SMP
123 	/*
124 	 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
125 	 *    Once parisc-linux learns the cr16 difference between processors,
126 	 *    this could be made to work.
127 	 */
128 	long last_tick;
129 	long elapsed_cycles;
130 
131 	/* it_value is the intended time of the next tick */
132 	last_tick = cpu_data[smp_processor_id()].it_value;
133 
134 	/* Subtract one tick and account for possible difference between
135 	 * when we expected the tick and when it actually arrived.
136 	 * (aka wall vs real)
137 	 */
138 	last_tick -= clocktick * (jiffies - wall_jiffies + 1);
139 	elapsed_cycles = mfctl(16) - last_tick;
140 
141 	/* the precision of this math could be improved */
142 	return elapsed_cycles / (PAGE0->mem_10msec / 10000);
143 #else
144 	return 0;
145 #endif
146 }
147 
148 void
149 do_gettimeofday (struct timeval *tv)
150 {
151 	unsigned long flags, seq, usec, sec;
152 
153 	do {
154 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
155 		usec = gettimeoffset();
156 		sec = xtime.tv_sec;
157 		usec += (xtime.tv_nsec / 1000);
158 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
159 
160 	while (usec >= 1000000) {
161 		usec -= 1000000;
162 		++sec;
163 	}
164 
165 	tv->tv_sec = sec;
166 	tv->tv_usec = usec;
167 }
168 
169 EXPORT_SYMBOL(do_gettimeofday);
170 
171 int
172 do_settimeofday (struct timespec *tv)
173 {
174 	time_t wtm_sec, sec = tv->tv_sec;
175 	long wtm_nsec, nsec = tv->tv_nsec;
176 
177 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
178 		return -EINVAL;
179 
180 	write_seqlock_irq(&xtime_lock);
181 	{
182 		/*
183 		 * This is revolting. We need to set "xtime"
184 		 * correctly. However, the value in this location is
185 		 * the value at the most recent update of wall time.
186 		 * Discover what correction gettimeofday would have
187 		 * done, and then undo it!
188 		 */
189 		nsec -= gettimeoffset() * 1000;
190 
191 		wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
192 		wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
193 
194 		set_normalized_timespec(&xtime, sec, nsec);
195 		set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
196 
197 		ntp_clear();
198 	}
199 	write_sequnlock_irq(&xtime_lock);
200 	clock_was_set();
201 	return 0;
202 }
203 EXPORT_SYMBOL(do_settimeofday);
204 
205 /*
206  * XXX: We can do better than this.
207  * Returns nanoseconds
208  */
209 
210 unsigned long long sched_clock(void)
211 {
212 	return (unsigned long long)jiffies * (1000000000 / HZ);
213 }
214 
215 
216 void __init time_init(void)
217 {
218 	unsigned long next_tick;
219 	static struct pdc_tod tod_data;
220 
221 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
222 	halftick = clocktick / 2;
223 
224 	/* Setup clock interrupt timing */
225 
226 	next_tick = mfctl(16);
227 	next_tick += clocktick;
228 	cpu_data[smp_processor_id()].it_value = next_tick;
229 
230 	/* kick off Itimer (CR16) */
231 	mtctl(next_tick, 16);
232 
233 	if(pdc_tod_read(&tod_data) == 0) {
234 		write_seqlock_irq(&xtime_lock);
235 		xtime.tv_sec = tod_data.tod_sec;
236 		xtime.tv_nsec = tod_data.tod_usec * 1000;
237 		set_normalized_timespec(&wall_to_monotonic,
238 		                        -xtime.tv_sec, -xtime.tv_nsec);
239 		write_sequnlock_irq(&xtime_lock);
240 	} else {
241 		printk(KERN_ERR "Error reading tod clock\n");
242 	        xtime.tv_sec = 0;
243 		xtime.tv_nsec = 0;
244 	}
245 }
246 
247