1 /* 2 * linux/arch/parisc/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King 6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) 7 * 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 */ 13 #include <linux/errno.h> 14 #include <linux/module.h> 15 #include <linux/rtc.h> 16 #include <linux/sched.h> 17 #include <linux/sched_clock.h> 18 #include <linux/kernel.h> 19 #include <linux/param.h> 20 #include <linux/string.h> 21 #include <linux/mm.h> 22 #include <linux/interrupt.h> 23 #include <linux/time.h> 24 #include <linux/init.h> 25 #include <linux/smp.h> 26 #include <linux/profile.h> 27 #include <linux/clocksource.h> 28 #include <linux/platform_device.h> 29 #include <linux/ftrace.h> 30 31 #include <linux/uaccess.h> 32 #include <asm/io.h> 33 #include <asm/irq.h> 34 #include <asm/page.h> 35 #include <asm/param.h> 36 #include <asm/pdc.h> 37 #include <asm/led.h> 38 39 #include <linux/timex.h> 40 41 static unsigned long clocktick __read_mostly; /* timer cycles per tick */ 42 43 /* 44 * We keep time on PA-RISC Linux by using the Interval Timer which is 45 * a pair of registers; one is read-only and one is write-only; both 46 * accessed through CR16. The read-only register is 32 or 64 bits wide, 47 * and increments by 1 every CPU clock tick. The architecture only 48 * guarantees us a rate between 0.5 and 2, but all implementations use a 49 * rate of 1. The write-only register is 32-bits wide. When the lowest 50 * 32 bits of the read-only register compare equal to the write-only 51 * register, it raises a maskable external interrupt. Each processor has 52 * an Interval Timer of its own and they are not synchronised. 53 * 54 * We want to generate an interrupt every 1/HZ seconds. So we program 55 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data 56 * is programmed with the intended time of the next tick. We can be 57 * held off for an arbitrarily long period of time by interrupts being 58 * disabled, so we may miss one or more ticks. 59 */ 60 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) 61 { 62 unsigned long now; 63 unsigned long next_tick; 64 unsigned long ticks_elapsed = 0; 65 unsigned int cpu = smp_processor_id(); 66 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); 67 68 /* gcc can optimize for "read-only" case with a local clocktick */ 69 unsigned long cpt = clocktick; 70 71 profile_tick(CPU_PROFILING); 72 73 /* Initialize next_tick to the old expected tick time. */ 74 next_tick = cpuinfo->it_value; 75 76 /* Calculate how many ticks have elapsed. */ 77 do { 78 ++ticks_elapsed; 79 next_tick += cpt; 80 now = mfctl(16); 81 } while (next_tick - now > cpt); 82 83 /* Store (in CR16 cycles) up to when we are accounting right now. */ 84 cpuinfo->it_value = next_tick; 85 86 /* Go do system house keeping. */ 87 if (cpu == 0) 88 xtime_update(ticks_elapsed); 89 90 update_process_times(user_mode(get_irq_regs())); 91 92 /* Skip clockticks on purpose if we know we would miss those. 93 * The new CR16 must be "later" than current CR16 otherwise 94 * itimer would not fire until CR16 wrapped - e.g 4 seconds 95 * later on a 1Ghz processor. We'll account for the missed 96 * ticks on the next timer interrupt. 97 * We want IT to fire modulo clocktick even if we miss/skip some. 98 * But those interrupts don't in fact get delivered that regularly. 99 * 100 * "next_tick - now" will always give the difference regardless 101 * if one or the other wrapped. If "now" is "bigger" we'll end up 102 * with a very large unsigned number. 103 */ 104 while (next_tick - mfctl(16) > cpt) 105 next_tick += cpt; 106 107 /* Program the IT when to deliver the next interrupt. 108 * Only bottom 32-bits of next_tick are writable in CR16! 109 * Timer interrupt will be delivered at least a few hundred cycles 110 * after the IT fires, so if we are too close (<= 500 cycles) to the 111 * next cycle, simply skip it. 112 */ 113 if (next_tick - mfctl(16) <= 500) 114 next_tick += cpt; 115 mtctl(next_tick, 16); 116 117 return IRQ_HANDLED; 118 } 119 120 121 unsigned long profile_pc(struct pt_regs *regs) 122 { 123 unsigned long pc = instruction_pointer(regs); 124 125 if (regs->gr[0] & PSW_N) 126 pc -= 4; 127 128 #ifdef CONFIG_SMP 129 if (in_lock_functions(pc)) 130 pc = regs->gr[2]; 131 #endif 132 133 return pc; 134 } 135 EXPORT_SYMBOL(profile_pc); 136 137 138 /* clock source code */ 139 140 static u64 notrace read_cr16(struct clocksource *cs) 141 { 142 return get_cycles(); 143 } 144 145 static struct clocksource clocksource_cr16 = { 146 .name = "cr16", 147 .rating = 300, 148 .read = read_cr16, 149 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), 150 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 151 }; 152 153 void __init start_cpu_itimer(void) 154 { 155 unsigned int cpu = smp_processor_id(); 156 unsigned long next_tick = mfctl(16) + clocktick; 157 158 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ 159 160 per_cpu(cpu_data, cpu).it_value = next_tick; 161 } 162 163 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 164 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 165 { 166 struct pdc_tod tod_data; 167 168 memset(tm, 0, sizeof(*tm)); 169 if (pdc_tod_read(&tod_data) < 0) 170 return -EOPNOTSUPP; 171 172 /* we treat tod_sec as unsigned, so this can work until year 2106 */ 173 rtc_time64_to_tm(tod_data.tod_sec, tm); 174 return rtc_valid_tm(tm); 175 } 176 177 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 178 { 179 time64_t secs = rtc_tm_to_time64(tm); 180 181 if (pdc_tod_set(secs, 0) < 0) 182 return -EOPNOTSUPP; 183 184 return 0; 185 } 186 187 static const struct rtc_class_ops rtc_generic_ops = { 188 .read_time = rtc_generic_get_time, 189 .set_time = rtc_generic_set_time, 190 }; 191 192 static int __init rtc_init(void) 193 { 194 struct platform_device *pdev; 195 196 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 197 &rtc_generic_ops, 198 sizeof(rtc_generic_ops)); 199 200 return PTR_ERR_OR_ZERO(pdev); 201 } 202 device_initcall(rtc_init); 203 #endif 204 205 void read_persistent_clock(struct timespec *ts) 206 { 207 static struct pdc_tod tod_data; 208 if (pdc_tod_read(&tod_data) == 0) { 209 ts->tv_sec = tod_data.tod_sec; 210 ts->tv_nsec = tod_data.tod_usec * 1000; 211 } else { 212 printk(KERN_ERR "Error reading tod clock\n"); 213 ts->tv_sec = 0; 214 ts->tv_nsec = 0; 215 } 216 } 217 218 219 static u64 notrace read_cr16_sched_clock(void) 220 { 221 return get_cycles(); 222 } 223 224 225 /* 226 * timer interrupt and sched_clock() initialization 227 */ 228 229 void __init time_init(void) 230 { 231 unsigned long cr16_hz; 232 233 clocktick = (100 * PAGE0->mem_10msec) / HZ; 234 start_cpu_itimer(); /* get CPU 0 started */ 235 236 cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */ 237 238 /* register as sched_clock source */ 239 sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz); 240 } 241 242 static int __init init_cr16_clocksource(void) 243 { 244 /* 245 * The cr16 interval timers are not syncronized across CPUs, so mark 246 * them unstable and lower rating on SMP systems. 247 */ 248 if (num_online_cpus() > 1) { 249 clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE; 250 clocksource_cr16.rating = 0; 251 } 252 253 /* register at clocksource framework */ 254 clocksource_register_hz(&clocksource_cr16, 255 100 * PAGE0->mem_10msec); 256 257 return 0; 258 } 259 260 device_initcall(init_cr16_clocksource); 261