xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 8730046c)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/sched.h>
17 #include <linux/sched_clock.h>
18 #include <linux/kernel.h>
19 #include <linux/param.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/interrupt.h>
23 #include <linux/time.h>
24 #include <linux/init.h>
25 #include <linux/smp.h>
26 #include <linux/profile.h>
27 #include <linux/clocksource.h>
28 #include <linux/platform_device.h>
29 #include <linux/ftrace.h>
30 
31 #include <linux/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/param.h>
36 #include <asm/pdc.h>
37 #include <asm/led.h>
38 
39 #include <linux/timex.h>
40 
41 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
42 
43 /*
44  * We keep time on PA-RISC Linux by using the Interval Timer which is
45  * a pair of registers; one is read-only and one is write-only; both
46  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
47  * and increments by 1 every CPU clock tick.  The architecture only
48  * guarantees us a rate between 0.5 and 2, but all implementations use a
49  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
50  * 32 bits of the read-only register compare equal to the write-only
51  * register, it raises a maskable external interrupt.  Each processor has
52  * an Interval Timer of its own and they are not synchronised.
53  *
54  * We want to generate an interrupt every 1/HZ seconds.  So we program
55  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
56  * is programmed with the intended time of the next tick.  We can be
57  * held off for an arbitrarily long period of time by interrupts being
58  * disabled, so we may miss one or more ticks.
59  */
60 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
61 {
62 	unsigned long now;
63 	unsigned long next_tick;
64 	unsigned long ticks_elapsed = 0;
65 	unsigned int cpu = smp_processor_id();
66 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
67 
68 	/* gcc can optimize for "read-only" case with a local clocktick */
69 	unsigned long cpt = clocktick;
70 
71 	profile_tick(CPU_PROFILING);
72 
73 	/* Initialize next_tick to the old expected tick time. */
74 	next_tick = cpuinfo->it_value;
75 
76 	/* Calculate how many ticks have elapsed. */
77 	do {
78 		++ticks_elapsed;
79 		next_tick += cpt;
80 		now = mfctl(16);
81 	} while (next_tick - now > cpt);
82 
83 	/* Store (in CR16 cycles) up to when we are accounting right now. */
84 	cpuinfo->it_value = next_tick;
85 
86 	/* Go do system house keeping. */
87 	if (cpu == 0)
88 		xtime_update(ticks_elapsed);
89 
90 	update_process_times(user_mode(get_irq_regs()));
91 
92 	/* Skip clockticks on purpose if we know we would miss those.
93 	 * The new CR16 must be "later" than current CR16 otherwise
94 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
95 	 * later on a 1Ghz processor. We'll account for the missed
96 	 * ticks on the next timer interrupt.
97 	 * We want IT to fire modulo clocktick even if we miss/skip some.
98 	 * But those interrupts don't in fact get delivered that regularly.
99 	 *
100 	 * "next_tick - now" will always give the difference regardless
101 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
102 	 * with a very large unsigned number.
103 	 */
104 	while (next_tick - mfctl(16) > cpt)
105 		next_tick += cpt;
106 
107 	/* Program the IT when to deliver the next interrupt.
108 	 * Only bottom 32-bits of next_tick are writable in CR16!
109 	 * Timer interrupt will be delivered at least a few hundred cycles
110 	 * after the IT fires, so if we are too close (<= 500 cycles) to the
111 	 * next cycle, simply skip it.
112 	 */
113 	if (next_tick - mfctl(16) <= 500)
114 		next_tick += cpt;
115 	mtctl(next_tick, 16);
116 
117 	return IRQ_HANDLED;
118 }
119 
120 
121 unsigned long profile_pc(struct pt_regs *regs)
122 {
123 	unsigned long pc = instruction_pointer(regs);
124 
125 	if (regs->gr[0] & PSW_N)
126 		pc -= 4;
127 
128 #ifdef CONFIG_SMP
129 	if (in_lock_functions(pc))
130 		pc = regs->gr[2];
131 #endif
132 
133 	return pc;
134 }
135 EXPORT_SYMBOL(profile_pc);
136 
137 
138 /* clock source code */
139 
140 static u64 notrace read_cr16(struct clocksource *cs)
141 {
142 	return get_cycles();
143 }
144 
145 static struct clocksource clocksource_cr16 = {
146 	.name			= "cr16",
147 	.rating			= 300,
148 	.read			= read_cr16,
149 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
150 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
151 };
152 
153 void __init start_cpu_itimer(void)
154 {
155 	unsigned int cpu = smp_processor_id();
156 	unsigned long next_tick = mfctl(16) + clocktick;
157 
158 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
159 
160 	per_cpu(cpu_data, cpu).it_value = next_tick;
161 }
162 
163 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
164 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
165 {
166 	struct pdc_tod tod_data;
167 
168 	memset(tm, 0, sizeof(*tm));
169 	if (pdc_tod_read(&tod_data) < 0)
170 		return -EOPNOTSUPP;
171 
172 	/* we treat tod_sec as unsigned, so this can work until year 2106 */
173 	rtc_time64_to_tm(tod_data.tod_sec, tm);
174 	return rtc_valid_tm(tm);
175 }
176 
177 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
178 {
179 	time64_t secs = rtc_tm_to_time64(tm);
180 
181 	if (pdc_tod_set(secs, 0) < 0)
182 		return -EOPNOTSUPP;
183 
184 	return 0;
185 }
186 
187 static const struct rtc_class_ops rtc_generic_ops = {
188 	.read_time = rtc_generic_get_time,
189 	.set_time = rtc_generic_set_time,
190 };
191 
192 static int __init rtc_init(void)
193 {
194 	struct platform_device *pdev;
195 
196 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
197 					     &rtc_generic_ops,
198 					     sizeof(rtc_generic_ops));
199 
200 	return PTR_ERR_OR_ZERO(pdev);
201 }
202 device_initcall(rtc_init);
203 #endif
204 
205 void read_persistent_clock(struct timespec *ts)
206 {
207 	static struct pdc_tod tod_data;
208 	if (pdc_tod_read(&tod_data) == 0) {
209 		ts->tv_sec = tod_data.tod_sec;
210 		ts->tv_nsec = tod_data.tod_usec * 1000;
211 	} else {
212 		printk(KERN_ERR "Error reading tod clock\n");
213 	        ts->tv_sec = 0;
214 		ts->tv_nsec = 0;
215 	}
216 }
217 
218 
219 static u64 notrace read_cr16_sched_clock(void)
220 {
221 	return get_cycles();
222 }
223 
224 
225 /*
226  * timer interrupt and sched_clock() initialization
227  */
228 
229 void __init time_init(void)
230 {
231 	unsigned long cr16_hz;
232 
233 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
234 	start_cpu_itimer();	/* get CPU 0 started */
235 
236 	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
237 
238 	/* register as sched_clock source */
239 	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
240 }
241 
242 static int __init init_cr16_clocksource(void)
243 {
244 	/*
245 	 * The cr16 interval timers are not syncronized across CPUs, so mark
246 	 * them unstable and lower rating on SMP systems.
247 	 */
248 	if (num_online_cpus() > 1) {
249 		clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
250 		clocksource_cr16.rating = 0;
251 	}
252 
253 	/* register at clocksource framework */
254 	clocksource_register_hz(&clocksource_cr16,
255 		100 * PAGE0->mem_10msec);
256 
257 	return 0;
258 }
259 
260 device_initcall(init_cr16_clocksource);
261