xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 82ced6fd)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/param.h>
33 #include <asm/pdc.h>
34 #include <asm/led.h>
35 
36 #include <linux/timex.h>
37 
38 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
39 
40 /*
41  * We keep time on PA-RISC Linux by using the Interval Timer which is
42  * a pair of registers; one is read-only and one is write-only; both
43  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
44  * and increments by 1 every CPU clock tick.  The architecture only
45  * guarantees us a rate between 0.5 and 2, but all implementations use a
46  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
47  * 32 bits of the read-only register compare equal to the write-only
48  * register, it raises a maskable external interrupt.  Each processor has
49  * an Interval Timer of its own and they are not synchronised.
50  *
51  * We want to generate an interrupt every 1/HZ seconds.  So we program
52  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
53  * is programmed with the intended time of the next tick.  We can be
54  * held off for an arbitrarily long period of time by interrupts being
55  * disabled, so we may miss one or more ticks.
56  */
57 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
58 {
59 	unsigned long now;
60 	unsigned long next_tick;
61 	unsigned long cycles_elapsed, ticks_elapsed;
62 	unsigned long cycles_remainder;
63 	unsigned int cpu = smp_processor_id();
64 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
65 
66 	/* gcc can optimize for "read-only" case with a local clocktick */
67 	unsigned long cpt = clocktick;
68 
69 	profile_tick(CPU_PROFILING);
70 
71 	/* Initialize next_tick to the expected tick time. */
72 	next_tick = cpuinfo->it_value;
73 
74 	/* Get current interval timer.
75 	 * CR16 reads as 64 bits in CPU wide mode.
76 	 * CR16 reads as 32 bits in CPU narrow mode.
77 	 */
78 	now = mfctl(16);
79 
80 	cycles_elapsed = now - next_tick;
81 
82 	if ((cycles_elapsed >> 5) < cpt) {
83 		/* use "cheap" math (add/subtract) instead
84 		 * of the more expensive div/mul method
85 		 */
86 		cycles_remainder = cycles_elapsed;
87 		ticks_elapsed = 1;
88 		while (cycles_remainder > cpt) {
89 			cycles_remainder -= cpt;
90 			ticks_elapsed++;
91 		}
92 	} else {
93 		cycles_remainder = cycles_elapsed % cpt;
94 		ticks_elapsed = 1 + cycles_elapsed / cpt;
95 	}
96 
97 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
98 	 * "long delay" (aka Scenario 3)? I don't think so.
99 	 *
100 	 * We expected timer_interrupt to be delivered at least a few hundred
101 	 * cycles after the IT fires. But it's arbitrary how much time passes
102 	 * before we call it "late". I've picked one second.
103 	 */
104 	if (unlikely(ticks_elapsed > HZ)) {
105 		/* Scenario 3: very long delay?  bad in any case */
106 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
107 			" cycles %lX rem %lX "
108 			" next/now %lX/%lX\n",
109 			cpu,
110 			cycles_elapsed, cycles_remainder,
111 			next_tick, now );
112 	}
113 
114 	/* convert from "division remainder" to "remainder of clock tick" */
115 	cycles_remainder = cpt - cycles_remainder;
116 
117 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
118 	 * We want IT to fire modulo clocktick even if we miss/skip some.
119 	 * But those interrupts don't in fact get delivered that regularly.
120 	 */
121 	next_tick = now + cycles_remainder;
122 
123 	cpuinfo->it_value = next_tick;
124 
125 	/* Skip one clocktick on purpose if we are likely to miss next_tick.
126 	 * We want to avoid the new next_tick being less than CR16.
127 	 * If that happened, itimer wouldn't fire until CR16 wrapped.
128 	 * We'll catch the tick we missed on the tick after that.
129 	 */
130 	if (!(cycles_remainder >> 13))
131 		next_tick += cpt;
132 
133 	/* Program the IT when to deliver the next interrupt. */
134 	/* Only bottom 32-bits of next_tick are written to cr16.  */
135 	mtctl(next_tick, 16);
136 
137 
138 	/* Done mucking with unreliable delivery of interrupts.
139 	 * Go do system house keeping.
140 	 */
141 
142 	if (!--cpuinfo->prof_counter) {
143 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
144 		update_process_times(user_mode(get_irq_regs()));
145 	}
146 
147 	if (cpu == 0) {
148 		write_seqlock(&xtime_lock);
149 		do_timer(ticks_elapsed);
150 		write_sequnlock(&xtime_lock);
151 	}
152 
153 	return IRQ_HANDLED;
154 }
155 
156 
157 unsigned long profile_pc(struct pt_regs *regs)
158 {
159 	unsigned long pc = instruction_pointer(regs);
160 
161 	if (regs->gr[0] & PSW_N)
162 		pc -= 4;
163 
164 #ifdef CONFIG_SMP
165 	if (in_lock_functions(pc))
166 		pc = regs->gr[2];
167 #endif
168 
169 	return pc;
170 }
171 EXPORT_SYMBOL(profile_pc);
172 
173 
174 /* clock source code */
175 
176 static cycle_t read_cr16(void)
177 {
178 	return get_cycles();
179 }
180 
181 static struct clocksource clocksource_cr16 = {
182 	.name			= "cr16",
183 	.rating			= 300,
184 	.read			= read_cr16,
185 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
186 	.mult			= 0, /* to be set */
187 	.shift			= 22,
188 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
189 };
190 
191 #ifdef CONFIG_SMP
192 int update_cr16_clocksource(void)
193 {
194 	/* since the cr16 cycle counters are not synchronized across CPUs,
195 	   we'll check if we should switch to a safe clocksource: */
196 	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
197 		clocksource_change_rating(&clocksource_cr16, 0);
198 		return 1;
199 	}
200 
201 	return 0;
202 }
203 #else
204 int update_cr16_clocksource(void)
205 {
206 	return 0; /* no change */
207 }
208 #endif /*CONFIG_SMP*/
209 
210 void __init start_cpu_itimer(void)
211 {
212 	unsigned int cpu = smp_processor_id();
213 	unsigned long next_tick = mfctl(16) + clocktick;
214 
215 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
216 
217 	per_cpu(cpu_data, cpu).it_value = next_tick;
218 }
219 
220 static struct platform_device rtc_generic_dev = {
221 	.name = "rtc-generic",
222 	.id = -1,
223 };
224 
225 static int __init rtc_init(void)
226 {
227 	if (platform_device_register(&rtc_generic_dev) < 0)
228 		printk(KERN_ERR "unable to register rtc device...\n");
229 
230 	/* not necessarily an error */
231 	return 0;
232 }
233 module_init(rtc_init);
234 
235 void __init time_init(void)
236 {
237 	static struct pdc_tod tod_data;
238 	unsigned long current_cr16_khz;
239 
240 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
241 
242 	start_cpu_itimer();	/* get CPU 0 started */
243 
244 	/* register at clocksource framework */
245 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
246 	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
247 						clocksource_cr16.shift);
248 	clocksource_register(&clocksource_cr16);
249 
250 	if (pdc_tod_read(&tod_data) == 0) {
251 		unsigned long flags;
252 
253 		write_seqlock_irqsave(&xtime_lock, flags);
254 		xtime.tv_sec = tod_data.tod_sec;
255 		xtime.tv_nsec = tod_data.tod_usec * 1000;
256 		set_normalized_timespec(&wall_to_monotonic,
257 		                        -xtime.tv_sec, -xtime.tv_nsec);
258 		write_sequnlock_irqrestore(&xtime_lock, flags);
259 	} else {
260 		printk(KERN_ERR "Error reading tod clock\n");
261 	        xtime.tv_sec = 0;
262 		xtime.tv_nsec = 0;
263 	}
264 }
265