xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 565d76cb)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/param.h>
33 #include <asm/pdc.h>
34 #include <asm/led.h>
35 
36 #include <linux/timex.h>
37 
38 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
39 
40 /*
41  * We keep time on PA-RISC Linux by using the Interval Timer which is
42  * a pair of registers; one is read-only and one is write-only; both
43  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
44  * and increments by 1 every CPU clock tick.  The architecture only
45  * guarantees us a rate between 0.5 and 2, but all implementations use a
46  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
47  * 32 bits of the read-only register compare equal to the write-only
48  * register, it raises a maskable external interrupt.  Each processor has
49  * an Interval Timer of its own and they are not synchronised.
50  *
51  * We want to generate an interrupt every 1/HZ seconds.  So we program
52  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
53  * is programmed with the intended time of the next tick.  We can be
54  * held off for an arbitrarily long period of time by interrupts being
55  * disabled, so we may miss one or more ticks.
56  */
57 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
58 {
59 	unsigned long now, now2;
60 	unsigned long next_tick;
61 	unsigned long cycles_elapsed, ticks_elapsed = 1;
62 	unsigned long cycles_remainder;
63 	unsigned int cpu = smp_processor_id();
64 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
65 
66 	/* gcc can optimize for "read-only" case with a local clocktick */
67 	unsigned long cpt = clocktick;
68 
69 	profile_tick(CPU_PROFILING);
70 
71 	/* Initialize next_tick to the expected tick time. */
72 	next_tick = cpuinfo->it_value;
73 
74 	/* Get current cycle counter (Control Register 16). */
75 	now = mfctl(16);
76 
77 	cycles_elapsed = now - next_tick;
78 
79 	if ((cycles_elapsed >> 6) < cpt) {
80 		/* use "cheap" math (add/subtract) instead
81 		 * of the more expensive div/mul method
82 		 */
83 		cycles_remainder = cycles_elapsed;
84 		while (cycles_remainder > cpt) {
85 			cycles_remainder -= cpt;
86 			ticks_elapsed++;
87 		}
88 	} else {
89 		/* TODO: Reduce this to one fdiv op */
90 		cycles_remainder = cycles_elapsed % cpt;
91 		ticks_elapsed += cycles_elapsed / cpt;
92 	}
93 
94 	/* convert from "division remainder" to "remainder of clock tick" */
95 	cycles_remainder = cpt - cycles_remainder;
96 
97 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
98 	 * We want IT to fire modulo clocktick even if we miss/skip some.
99 	 * But those interrupts don't in fact get delivered that regularly.
100 	 */
101 	next_tick = now + cycles_remainder;
102 
103 	cpuinfo->it_value = next_tick;
104 
105 	/* Program the IT when to deliver the next interrupt.
106 	 * Only bottom 32-bits of next_tick are writable in CR16!
107 	 */
108 	mtctl(next_tick, 16);
109 
110 	/* Skip one clocktick on purpose if we missed next_tick.
111 	 * The new CR16 must be "later" than current CR16 otherwise
112 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
113 	 * later on a 1Ghz processor. We'll account for the missed
114 	 * tick on the next timer interrupt.
115 	 *
116 	 * "next_tick - now" will always give the difference regardless
117 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
118 	 * with a very large unsigned number.
119 	 */
120 	now2 = mfctl(16);
121 	if (next_tick - now2 > cpt)
122 		mtctl(next_tick+cpt, 16);
123 
124 #if 1
125 /*
126  * GGG: DEBUG code for how many cycles programming CR16 used.
127  */
128 	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
129 		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
130 			" cyc %lX rem %lX "
131 			" next/now %lX/%lX\n",
132 			cpu, now2 - now, cycles_elapsed, cycles_remainder,
133 			next_tick, now );
134 #endif
135 
136 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
137 	 * "long delay" (aka Scenario 3)? I don't think so.
138 	 *
139 	 * Timer_interrupt will be delivered at least a few hundred cycles
140 	 * after the IT fires. But it's arbitrary how much time passes
141 	 * before we call it "late". I've picked one second.
142 	 *
143 	 * It's important NO printk's are between reading CR16 and
144 	 * setting up the next value. May introduce huge variance.
145 	 */
146 	if (unlikely(ticks_elapsed > HZ)) {
147 		/* Scenario 3: very long delay?  bad in any case */
148 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
149 			" cycles %lX rem %lX "
150 			" next/now %lX/%lX\n",
151 			cpu,
152 			cycles_elapsed, cycles_remainder,
153 			next_tick, now );
154 	}
155 
156 	/* Done mucking with unreliable delivery of interrupts.
157 	 * Go do system house keeping.
158 	 */
159 
160 	if (!--cpuinfo->prof_counter) {
161 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
162 		update_process_times(user_mode(get_irq_regs()));
163 	}
164 
165 	if (cpu == 0)
166 		xtime_update(ticks_elapsed);
167 
168 	return IRQ_HANDLED;
169 }
170 
171 
172 unsigned long profile_pc(struct pt_regs *regs)
173 {
174 	unsigned long pc = instruction_pointer(regs);
175 
176 	if (regs->gr[0] & PSW_N)
177 		pc -= 4;
178 
179 #ifdef CONFIG_SMP
180 	if (in_lock_functions(pc))
181 		pc = regs->gr[2];
182 #endif
183 
184 	return pc;
185 }
186 EXPORT_SYMBOL(profile_pc);
187 
188 
189 /* clock source code */
190 
191 static cycle_t read_cr16(struct clocksource *cs)
192 {
193 	return get_cycles();
194 }
195 
196 static struct clocksource clocksource_cr16 = {
197 	.name			= "cr16",
198 	.rating			= 300,
199 	.read			= read_cr16,
200 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
201 	.mult			= 0, /* to be set */
202 	.shift			= 22,
203 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
204 };
205 
206 #ifdef CONFIG_SMP
207 int update_cr16_clocksource(void)
208 {
209 	/* since the cr16 cycle counters are not synchronized across CPUs,
210 	   we'll check if we should switch to a safe clocksource: */
211 	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
212 		clocksource_change_rating(&clocksource_cr16, 0);
213 		return 1;
214 	}
215 
216 	return 0;
217 }
218 #else
219 int update_cr16_clocksource(void)
220 {
221 	return 0; /* no change */
222 }
223 #endif /*CONFIG_SMP*/
224 
225 void __init start_cpu_itimer(void)
226 {
227 	unsigned int cpu = smp_processor_id();
228 	unsigned long next_tick = mfctl(16) + clocktick;
229 
230 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
231 
232 	per_cpu(cpu_data, cpu).it_value = next_tick;
233 }
234 
235 static struct platform_device rtc_generic_dev = {
236 	.name = "rtc-generic",
237 	.id = -1,
238 };
239 
240 static int __init rtc_init(void)
241 {
242 	if (platform_device_register(&rtc_generic_dev) < 0)
243 		printk(KERN_ERR "unable to register rtc device...\n");
244 
245 	/* not necessarily an error */
246 	return 0;
247 }
248 module_init(rtc_init);
249 
250 void read_persistent_clock(struct timespec *ts)
251 {
252 	static struct pdc_tod tod_data;
253 	if (pdc_tod_read(&tod_data) == 0) {
254 		ts->tv_sec = tod_data.tod_sec;
255 		ts->tv_nsec = tod_data.tod_usec * 1000;
256 	} else {
257 		printk(KERN_ERR "Error reading tod clock\n");
258 	        ts->tv_sec = 0;
259 		ts->tv_nsec = 0;
260 	}
261 }
262 
263 void __init time_init(void)
264 {
265 	unsigned long current_cr16_khz;
266 
267 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
268 
269 	start_cpu_itimer();	/* get CPU 0 started */
270 
271 	/* register at clocksource framework */
272 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
273 	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
274 						clocksource_cr16.shift);
275 	clocksource_register(&clocksource_cr16);
276 }
277