1 /* 2 * linux/arch/parisc/kernel/time.c 3 * 4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds 5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King 6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org) 7 * 8 * 1994-07-02 Alan Modra 9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime 10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 11 * "A Kernel Model for Precision Timekeeping" by Dave Mills 12 */ 13 #include <linux/errno.h> 14 #include <linux/module.h> 15 #include <linux/rtc.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/sched_clock.h> 19 #include <linux/kernel.h> 20 #include <linux/param.h> 21 #include <linux/string.h> 22 #include <linux/mm.h> 23 #include <linux/interrupt.h> 24 #include <linux/time.h> 25 #include <linux/init.h> 26 #include <linux/smp.h> 27 #include <linux/profile.h> 28 #include <linux/clocksource.h> 29 #include <linux/platform_device.h> 30 #include <linux/ftrace.h> 31 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/irq.h> 35 #include <asm/page.h> 36 #include <asm/param.h> 37 #include <asm/pdc.h> 38 #include <asm/led.h> 39 40 #include <linux/timex.h> 41 42 static unsigned long clocktick __read_mostly; /* timer cycles per tick */ 43 44 /* 45 * We keep time on PA-RISC Linux by using the Interval Timer which is 46 * a pair of registers; one is read-only and one is write-only; both 47 * accessed through CR16. The read-only register is 32 or 64 bits wide, 48 * and increments by 1 every CPU clock tick. The architecture only 49 * guarantees us a rate between 0.5 and 2, but all implementations use a 50 * rate of 1. The write-only register is 32-bits wide. When the lowest 51 * 32 bits of the read-only register compare equal to the write-only 52 * register, it raises a maskable external interrupt. Each processor has 53 * an Interval Timer of its own and they are not synchronised. 54 * 55 * We want to generate an interrupt every 1/HZ seconds. So we program 56 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data 57 * is programmed with the intended time of the next tick. We can be 58 * held off for an arbitrarily long period of time by interrupts being 59 * disabled, so we may miss one or more ticks. 60 */ 61 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id) 62 { 63 unsigned long now; 64 unsigned long next_tick; 65 unsigned long ticks_elapsed = 0; 66 unsigned int cpu = smp_processor_id(); 67 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu); 68 69 /* gcc can optimize for "read-only" case with a local clocktick */ 70 unsigned long cpt = clocktick; 71 72 profile_tick(CPU_PROFILING); 73 74 /* Initialize next_tick to the old expected tick time. */ 75 next_tick = cpuinfo->it_value; 76 77 /* Calculate how many ticks have elapsed. */ 78 do { 79 ++ticks_elapsed; 80 next_tick += cpt; 81 now = mfctl(16); 82 } while (next_tick - now > cpt); 83 84 /* Store (in CR16 cycles) up to when we are accounting right now. */ 85 cpuinfo->it_value = next_tick; 86 87 /* Go do system house keeping. */ 88 if (cpu == 0) 89 xtime_update(ticks_elapsed); 90 91 update_process_times(user_mode(get_irq_regs())); 92 93 /* Skip clockticks on purpose if we know we would miss those. 94 * The new CR16 must be "later" than current CR16 otherwise 95 * itimer would not fire until CR16 wrapped - e.g 4 seconds 96 * later on a 1Ghz processor. We'll account for the missed 97 * ticks on the next timer interrupt. 98 * We want IT to fire modulo clocktick even if we miss/skip some. 99 * But those interrupts don't in fact get delivered that regularly. 100 * 101 * "next_tick - now" will always give the difference regardless 102 * if one or the other wrapped. If "now" is "bigger" we'll end up 103 * with a very large unsigned number. 104 */ 105 while (next_tick - mfctl(16) > cpt) 106 next_tick += cpt; 107 108 /* Program the IT when to deliver the next interrupt. 109 * Only bottom 32-bits of next_tick are writable in CR16! 110 * Timer interrupt will be delivered at least a few hundred cycles 111 * after the IT fires, so if we are too close (<= 500 cycles) to the 112 * next cycle, simply skip it. 113 */ 114 if (next_tick - mfctl(16) <= 500) 115 next_tick += cpt; 116 mtctl(next_tick, 16); 117 118 return IRQ_HANDLED; 119 } 120 121 122 unsigned long profile_pc(struct pt_regs *regs) 123 { 124 unsigned long pc = instruction_pointer(regs); 125 126 if (regs->gr[0] & PSW_N) 127 pc -= 4; 128 129 #ifdef CONFIG_SMP 130 if (in_lock_functions(pc)) 131 pc = regs->gr[2]; 132 #endif 133 134 return pc; 135 } 136 EXPORT_SYMBOL(profile_pc); 137 138 139 /* clock source code */ 140 141 static u64 notrace read_cr16(struct clocksource *cs) 142 { 143 return get_cycles(); 144 } 145 146 static struct clocksource clocksource_cr16 = { 147 .name = "cr16", 148 .rating = 300, 149 .read = read_cr16, 150 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), 151 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 152 }; 153 154 void __init start_cpu_itimer(void) 155 { 156 unsigned int cpu = smp_processor_id(); 157 unsigned long next_tick = mfctl(16) + clocktick; 158 159 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */ 160 161 per_cpu(cpu_data, cpu).it_value = next_tick; 162 } 163 164 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC) 165 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm) 166 { 167 struct pdc_tod tod_data; 168 169 memset(tm, 0, sizeof(*tm)); 170 if (pdc_tod_read(&tod_data) < 0) 171 return -EOPNOTSUPP; 172 173 /* we treat tod_sec as unsigned, so this can work until year 2106 */ 174 rtc_time64_to_tm(tod_data.tod_sec, tm); 175 return rtc_valid_tm(tm); 176 } 177 178 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm) 179 { 180 time64_t secs = rtc_tm_to_time64(tm); 181 182 if (pdc_tod_set(secs, 0) < 0) 183 return -EOPNOTSUPP; 184 185 return 0; 186 } 187 188 static const struct rtc_class_ops rtc_generic_ops = { 189 .read_time = rtc_generic_get_time, 190 .set_time = rtc_generic_set_time, 191 }; 192 193 static int __init rtc_init(void) 194 { 195 struct platform_device *pdev; 196 197 pdev = platform_device_register_data(NULL, "rtc-generic", -1, 198 &rtc_generic_ops, 199 sizeof(rtc_generic_ops)); 200 201 return PTR_ERR_OR_ZERO(pdev); 202 } 203 device_initcall(rtc_init); 204 #endif 205 206 void read_persistent_clock(struct timespec *ts) 207 { 208 static struct pdc_tod tod_data; 209 if (pdc_tod_read(&tod_data) == 0) { 210 ts->tv_sec = tod_data.tod_sec; 211 ts->tv_nsec = tod_data.tod_usec * 1000; 212 } else { 213 printk(KERN_ERR "Error reading tod clock\n"); 214 ts->tv_sec = 0; 215 ts->tv_nsec = 0; 216 } 217 } 218 219 220 static u64 notrace read_cr16_sched_clock(void) 221 { 222 return get_cycles(); 223 } 224 225 226 /* 227 * timer interrupt and sched_clock() initialization 228 */ 229 230 void __init time_init(void) 231 { 232 unsigned long cr16_hz; 233 234 clocktick = (100 * PAGE0->mem_10msec) / HZ; 235 start_cpu_itimer(); /* get CPU 0 started */ 236 237 cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */ 238 239 /* register as sched_clock source */ 240 sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz); 241 } 242 243 static int __init init_cr16_clocksource(void) 244 { 245 /* 246 * The cr16 interval timers are not syncronized across CPUs, so mark 247 * them unstable and lower rating on SMP systems. 248 */ 249 if (num_online_cpus() > 1) { 250 clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE; 251 clocksource_cr16.rating = 0; 252 } 253 254 /* register at clocksource framework */ 255 clocksource_register_hz(&clocksource_cr16, 256 100 * PAGE0->mem_10msec); 257 258 return 0; 259 } 260 261 device_initcall(init_cr16_clocksource); 262