xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 1c2dd16a)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/sched_clock.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
22 #include <linux/mm.h>
23 #include <linux/interrupt.h>
24 #include <linux/time.h>
25 #include <linux/init.h>
26 #include <linux/smp.h>
27 #include <linux/profile.h>
28 #include <linux/clocksource.h>
29 #include <linux/platform_device.h>
30 #include <linux/ftrace.h>
31 
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/page.h>
36 #include <asm/param.h>
37 #include <asm/pdc.h>
38 #include <asm/led.h>
39 
40 #include <linux/timex.h>
41 
42 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
43 
44 /*
45  * We keep time on PA-RISC Linux by using the Interval Timer which is
46  * a pair of registers; one is read-only and one is write-only; both
47  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
48  * and increments by 1 every CPU clock tick.  The architecture only
49  * guarantees us a rate between 0.5 and 2, but all implementations use a
50  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
51  * 32 bits of the read-only register compare equal to the write-only
52  * register, it raises a maskable external interrupt.  Each processor has
53  * an Interval Timer of its own and they are not synchronised.
54  *
55  * We want to generate an interrupt every 1/HZ seconds.  So we program
56  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
57  * is programmed with the intended time of the next tick.  We can be
58  * held off for an arbitrarily long period of time by interrupts being
59  * disabled, so we may miss one or more ticks.
60  */
61 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
62 {
63 	unsigned long now;
64 	unsigned long next_tick;
65 	unsigned long ticks_elapsed = 0;
66 	unsigned int cpu = smp_processor_id();
67 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
68 
69 	/* gcc can optimize for "read-only" case with a local clocktick */
70 	unsigned long cpt = clocktick;
71 
72 	profile_tick(CPU_PROFILING);
73 
74 	/* Initialize next_tick to the old expected tick time. */
75 	next_tick = cpuinfo->it_value;
76 
77 	/* Calculate how many ticks have elapsed. */
78 	do {
79 		++ticks_elapsed;
80 		next_tick += cpt;
81 		now = mfctl(16);
82 	} while (next_tick - now > cpt);
83 
84 	/* Store (in CR16 cycles) up to when we are accounting right now. */
85 	cpuinfo->it_value = next_tick;
86 
87 	/* Go do system house keeping. */
88 	if (cpu == 0)
89 		xtime_update(ticks_elapsed);
90 
91 	update_process_times(user_mode(get_irq_regs()));
92 
93 	/* Skip clockticks on purpose if we know we would miss those.
94 	 * The new CR16 must be "later" than current CR16 otherwise
95 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
96 	 * later on a 1Ghz processor. We'll account for the missed
97 	 * ticks on the next timer interrupt.
98 	 * We want IT to fire modulo clocktick even if we miss/skip some.
99 	 * But those interrupts don't in fact get delivered that regularly.
100 	 *
101 	 * "next_tick - now" will always give the difference regardless
102 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
103 	 * with a very large unsigned number.
104 	 */
105 	while (next_tick - mfctl(16) > cpt)
106 		next_tick += cpt;
107 
108 	/* Program the IT when to deliver the next interrupt.
109 	 * Only bottom 32-bits of next_tick are writable in CR16!
110 	 * Timer interrupt will be delivered at least a few hundred cycles
111 	 * after the IT fires, so if we are too close (<= 500 cycles) to the
112 	 * next cycle, simply skip it.
113 	 */
114 	if (next_tick - mfctl(16) <= 500)
115 		next_tick += cpt;
116 	mtctl(next_tick, 16);
117 
118 	return IRQ_HANDLED;
119 }
120 
121 
122 unsigned long profile_pc(struct pt_regs *regs)
123 {
124 	unsigned long pc = instruction_pointer(regs);
125 
126 	if (regs->gr[0] & PSW_N)
127 		pc -= 4;
128 
129 #ifdef CONFIG_SMP
130 	if (in_lock_functions(pc))
131 		pc = regs->gr[2];
132 #endif
133 
134 	return pc;
135 }
136 EXPORT_SYMBOL(profile_pc);
137 
138 
139 /* clock source code */
140 
141 static u64 notrace read_cr16(struct clocksource *cs)
142 {
143 	return get_cycles();
144 }
145 
146 static struct clocksource clocksource_cr16 = {
147 	.name			= "cr16",
148 	.rating			= 300,
149 	.read			= read_cr16,
150 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
151 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
152 };
153 
154 void __init start_cpu_itimer(void)
155 {
156 	unsigned int cpu = smp_processor_id();
157 	unsigned long next_tick = mfctl(16) + clocktick;
158 
159 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
160 
161 	per_cpu(cpu_data, cpu).it_value = next_tick;
162 }
163 
164 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
165 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
166 {
167 	struct pdc_tod tod_data;
168 
169 	memset(tm, 0, sizeof(*tm));
170 	if (pdc_tod_read(&tod_data) < 0)
171 		return -EOPNOTSUPP;
172 
173 	/* we treat tod_sec as unsigned, so this can work until year 2106 */
174 	rtc_time64_to_tm(tod_data.tod_sec, tm);
175 	return rtc_valid_tm(tm);
176 }
177 
178 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
179 {
180 	time64_t secs = rtc_tm_to_time64(tm);
181 
182 	if (pdc_tod_set(secs, 0) < 0)
183 		return -EOPNOTSUPP;
184 
185 	return 0;
186 }
187 
188 static const struct rtc_class_ops rtc_generic_ops = {
189 	.read_time = rtc_generic_get_time,
190 	.set_time = rtc_generic_set_time,
191 };
192 
193 static int __init rtc_init(void)
194 {
195 	struct platform_device *pdev;
196 
197 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
198 					     &rtc_generic_ops,
199 					     sizeof(rtc_generic_ops));
200 
201 	return PTR_ERR_OR_ZERO(pdev);
202 }
203 device_initcall(rtc_init);
204 #endif
205 
206 void read_persistent_clock(struct timespec *ts)
207 {
208 	static struct pdc_tod tod_data;
209 	if (pdc_tod_read(&tod_data) == 0) {
210 		ts->tv_sec = tod_data.tod_sec;
211 		ts->tv_nsec = tod_data.tod_usec * 1000;
212 	} else {
213 		printk(KERN_ERR "Error reading tod clock\n");
214 	        ts->tv_sec = 0;
215 		ts->tv_nsec = 0;
216 	}
217 }
218 
219 
220 static u64 notrace read_cr16_sched_clock(void)
221 {
222 	return get_cycles();
223 }
224 
225 
226 /*
227  * timer interrupt and sched_clock() initialization
228  */
229 
230 void __init time_init(void)
231 {
232 	unsigned long cr16_hz;
233 
234 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
235 	start_cpu_itimer();	/* get CPU 0 started */
236 
237 	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
238 
239 	/* register as sched_clock source */
240 	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
241 }
242 
243 static int __init init_cr16_clocksource(void)
244 {
245 	/*
246 	 * The cr16 interval timers are not syncronized across CPUs, so mark
247 	 * them unstable and lower rating on SMP systems.
248 	 */
249 	if (num_online_cpus() > 1) {
250 		clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
251 		clocksource_cr16.rating = 0;
252 	}
253 
254 	/* register at clocksource framework */
255 	clocksource_register_hz(&clocksource_cr16,
256 		100 * PAGE0->mem_10msec);
257 
258 	return 0;
259 }
260 
261 device_initcall(init_cr16_clocksource);
262