xref: /openbmc/linux/arch/parisc/kernel/smp.c (revision 87c2ce3b)
1 /*
2 ** SMP Support
3 **
4 ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
5 ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
6 ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
7 **
8 ** Lots of stuff stolen from arch/alpha/kernel/smp.c
9 ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
10 **
11 ** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
12 ** -grant (1/12/2001)
13 **
14 **	This program is free software; you can redistribute it and/or modify
15 **	it under the terms of the GNU General Public License as published by
16 **      the Free Software Foundation; either version 2 of the License, or
17 **      (at your option) any later version.
18 */
19 #undef ENTRY_SYS_CPUS	/* syscall support for iCOD-like functionality */
20 
21 #include <linux/config.h>
22 
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/smp.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/mm.h>
35 #include <linux/delay.h>
36 #include <linux/bitops.h>
37 
38 #include <asm/system.h>
39 #include <asm/atomic.h>
40 #include <asm/current.h>
41 #include <asm/delay.h>
42 #include <asm/pgalloc.h>	/* for flush_tlb_all() proto/macro */
43 
44 #include <asm/io.h>
45 #include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */
46 #include <asm/mmu_context.h>
47 #include <asm/page.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/ptrace.h>
52 #include <asm/unistd.h>
53 #include <asm/cacheflush.h>
54 
55 #define kDEBUG 0
56 
57 DEFINE_SPINLOCK(smp_lock);
58 
59 volatile struct task_struct *smp_init_current_idle_task;
60 
61 static volatile int cpu_now_booting = 0;	/* track which CPU is booting */
62 
63 static int parisc_max_cpus = 1;
64 
65 /* online cpus are ones that we've managed to bring up completely
66  * possible cpus are all valid cpu
67  * present cpus are all detected cpu
68  *
69  * On startup we bring up the "possible" cpus. Since we discover
70  * CPUs later, we add them as hotplug, so the possible cpu mask is
71  * empty in the beginning.
72  */
73 
74 cpumask_t cpu_online_map = CPU_MASK_NONE;	/* Bitmap of online CPUs */
75 cpumask_t cpu_possible_map = CPU_MASK_ALL;	/* Bitmap of Present CPUs */
76 
77 EXPORT_SYMBOL(cpu_online_map);
78 EXPORT_SYMBOL(cpu_possible_map);
79 
80 
81 struct smp_call_struct {
82 	void (*func) (void *info);
83 	void *info;
84 	long wait;
85 	atomic_t unstarted_count;
86 	atomic_t unfinished_count;
87 };
88 static volatile struct smp_call_struct *smp_call_function_data;
89 
90 enum ipi_message_type {
91 	IPI_NOP=0,
92 	IPI_RESCHEDULE=1,
93 	IPI_CALL_FUNC,
94 	IPI_CPU_START,
95 	IPI_CPU_STOP,
96 	IPI_CPU_TEST
97 };
98 
99 
100 /********** SMP inter processor interrupt and communication routines */
101 
102 #undef PER_CPU_IRQ_REGION
103 #ifdef PER_CPU_IRQ_REGION
104 /* XXX REVISIT Ignore for now.
105 **    *May* need this "hook" to register IPI handler
106 **    once we have perCPU ExtIntr switch tables.
107 */
108 static void
109 ipi_init(int cpuid)
110 {
111 
112 	/* If CPU is present ... */
113 #ifdef ENTRY_SYS_CPUS
114 	/* *and* running (not stopped) ... */
115 #error iCOD support wants state checked here.
116 #endif
117 
118 #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
119 
120 	if(cpu_online(cpuid) )
121 	{
122 		switch_to_idle_task(current);
123 	}
124 
125 	return;
126 }
127 #endif
128 
129 
130 /*
131 ** Yoink this CPU from the runnable list...
132 **
133 */
134 static void
135 halt_processor(void)
136 {
137 #ifdef ENTRY_SYS_CPUS
138 #error halt_processor() needs rework
139 /*
140 ** o migrate I/O interrupts off this CPU.
141 ** o leave IPI enabled - __cli() will disable IPI.
142 ** o leave CPU in online map - just change the state
143 */
144 	cpu_data[this_cpu].state = STATE_STOPPED;
145 	mark_bh(IPI_BH);
146 #else
147 	/* REVISIT : redirect I/O Interrupts to another CPU? */
148 	/* REVISIT : does PM *know* this CPU isn't available? */
149 	cpu_clear(smp_processor_id(), cpu_online_map);
150 	local_irq_disable();
151 	for (;;)
152 		;
153 #endif
154 }
155 
156 
157 irqreturn_t
158 ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs)
159 {
160 	int this_cpu = smp_processor_id();
161 	struct cpuinfo_parisc *p = &cpu_data[this_cpu];
162 	unsigned long ops;
163 	unsigned long flags;
164 
165 	/* Count this now; we may make a call that never returns. */
166 	p->ipi_count++;
167 
168 	mb();	/* Order interrupt and bit testing. */
169 
170 	for (;;) {
171 		spin_lock_irqsave(&(p->lock),flags);
172 		ops = p->pending_ipi;
173 		p->pending_ipi = 0;
174 		spin_unlock_irqrestore(&(p->lock),flags);
175 
176 		mb(); /* Order bit clearing and data access. */
177 
178 		if (!ops)
179 		    break;
180 
181 		while (ops) {
182 			unsigned long which = ffz(~ops);
183 
184 			ops &= ~(1 << which);
185 
186 			switch (which) {
187 			case IPI_NOP:
188 #if (kDEBUG>=100)
189 				printk(KERN_DEBUG "CPU%d IPI_NOP\n",this_cpu);
190 #endif /* kDEBUG */
191 				break;
192 
193 			case IPI_RESCHEDULE:
194 #if (kDEBUG>=100)
195 				printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
196 #endif /* kDEBUG */
197 				/*
198 				 * Reschedule callback.  Everything to be
199 				 * done is done by the interrupt return path.
200 				 */
201 				break;
202 
203 			case IPI_CALL_FUNC:
204 #if (kDEBUG>=100)
205 				printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
206 #endif /* kDEBUG */
207 				{
208 					volatile struct smp_call_struct *data;
209 					void (*func)(void *info);
210 					void *info;
211 					int wait;
212 
213 					data = smp_call_function_data;
214 					func = data->func;
215 					info = data->info;
216 					wait = data->wait;
217 
218 					mb();
219 					atomic_dec ((atomic_t *)&data->unstarted_count);
220 
221 					/* At this point, *data can't
222 					 * be relied upon.
223 					 */
224 
225 					(*func)(info);
226 
227 					/* Notify the sending CPU that the
228 					 * task is done.
229 					 */
230 					mb();
231 					if (wait)
232 						atomic_dec ((atomic_t *)&data->unfinished_count);
233 				}
234 				break;
235 
236 			case IPI_CPU_START:
237 #if (kDEBUG>=100)
238 				printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
239 #endif /* kDEBUG */
240 #ifdef ENTRY_SYS_CPUS
241 				p->state = STATE_RUNNING;
242 #endif
243 				break;
244 
245 			case IPI_CPU_STOP:
246 #if (kDEBUG>=100)
247 				printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
248 #endif /* kDEBUG */
249 #ifdef ENTRY_SYS_CPUS
250 #else
251 				halt_processor();
252 #endif
253 				break;
254 
255 			case IPI_CPU_TEST:
256 #if (kDEBUG>=100)
257 				printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
258 #endif /* kDEBUG */
259 				break;
260 
261 			default:
262 				printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
263 					this_cpu, which);
264 				return IRQ_NONE;
265 			} /* Switch */
266 		} /* while (ops) */
267 	}
268 	return IRQ_HANDLED;
269 }
270 
271 
272 static inline void
273 ipi_send(int cpu, enum ipi_message_type op)
274 {
275 	struct cpuinfo_parisc *p = &cpu_data[cpu];
276 	unsigned long flags;
277 
278 	spin_lock_irqsave(&(p->lock),flags);
279 	p->pending_ipi |= 1 << op;
280 	gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
281 	spin_unlock_irqrestore(&(p->lock),flags);
282 }
283 
284 
285 static inline void
286 send_IPI_single(int dest_cpu, enum ipi_message_type op)
287 {
288 	if (dest_cpu == NO_PROC_ID) {
289 		BUG();
290 		return;
291 	}
292 
293 	ipi_send(dest_cpu, op);
294 }
295 
296 static inline void
297 send_IPI_allbutself(enum ipi_message_type op)
298 {
299 	int i;
300 
301 	for (i = 0; i < NR_CPUS; i++) {
302 		if (cpu_online(i) && i != smp_processor_id())
303 			send_IPI_single(i, op);
304 	}
305 }
306 
307 
308 inline void
309 smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); }
310 
311 static inline void
312 smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); }
313 
314 void
315 smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
316 
317 void
318 smp_send_all_nop(void)
319 {
320 	send_IPI_allbutself(IPI_NOP);
321 }
322 
323 
324 /**
325  * Run a function on all other CPUs.
326  *  <func>	The function to run. This must be fast and non-blocking.
327  *  <info>	An arbitrary pointer to pass to the function.
328  *  <retry>	If true, keep retrying until ready.
329  *  <wait>	If true, wait until function has completed on other CPUs.
330  *  [RETURNS]   0 on success, else a negative status code.
331  *
332  * Does not return until remote CPUs are nearly ready to execute <func>
333  * or have executed.
334  */
335 
336 int
337 smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
338 {
339 	struct smp_call_struct data;
340 	unsigned long timeout;
341 	static DEFINE_SPINLOCK(lock);
342 	int retries = 0;
343 
344 	if (num_online_cpus() < 2)
345 		return 0;
346 
347 	/* Can deadlock when called with interrupts disabled */
348 	WARN_ON(irqs_disabled());
349 
350 	/* can also deadlock if IPIs are disabled */
351 	WARN_ON((get_eiem() & (1UL<<(CPU_IRQ_MAX - IPI_IRQ))) == 0);
352 
353 
354 	data.func = func;
355 	data.info = info;
356 	data.wait = wait;
357 	atomic_set(&data.unstarted_count, num_online_cpus() - 1);
358 	atomic_set(&data.unfinished_count, num_online_cpus() - 1);
359 
360 	if (retry) {
361 		spin_lock (&lock);
362 		while (smp_call_function_data != 0)
363 			barrier();
364 	}
365 	else {
366 		spin_lock (&lock);
367 		if (smp_call_function_data) {
368 			spin_unlock (&lock);
369 			return -EBUSY;
370 		}
371 	}
372 
373 	smp_call_function_data = &data;
374 	spin_unlock (&lock);
375 
376 	/*  Send a message to all other CPUs and wait for them to respond  */
377 	send_IPI_allbutself(IPI_CALL_FUNC);
378 
379  retry:
380 	/*  Wait for response  */
381 	timeout = jiffies + HZ;
382 	while ( (atomic_read (&data.unstarted_count) > 0) &&
383 		time_before (jiffies, timeout) )
384 		barrier ();
385 
386 	if (atomic_read (&data.unstarted_count) > 0) {
387 		printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
388 		      smp_processor_id(), ++retries);
389 		goto retry;
390 	}
391 	/* We either got one or timed out. Release the lock */
392 
393 	mb();
394 	smp_call_function_data = NULL;
395 
396 	while (wait && atomic_read (&data.unfinished_count) > 0)
397 			barrier ();
398 
399 	return 0;
400 }
401 
402 EXPORT_SYMBOL(smp_call_function);
403 
404 /*
405  * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu()
406  * as we want to ensure all TLB's flushed before proceeding.
407  */
408 
409 extern void flush_tlb_all_local(void);
410 
411 void
412 smp_flush_tlb_all(void)
413 {
414 	on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
415 }
416 
417 
418 void
419 smp_do_timer(struct pt_regs *regs)
420 {
421 	int cpu = smp_processor_id();
422 	struct cpuinfo_parisc *data = &cpu_data[cpu];
423 
424         if (!--data->prof_counter) {
425 		data->prof_counter = data->prof_multiplier;
426 		update_process_times(user_mode(regs));
427 	}
428 }
429 
430 /*
431  * Called by secondaries to update state and initialize CPU registers.
432  */
433 static void __init
434 smp_cpu_init(int cpunum)
435 {
436 	extern int init_per_cpu(int);  /* arch/parisc/kernel/setup.c */
437 	extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */
438 
439 	/* Set modes and Enable floating point coprocessor */
440 	(void) init_per_cpu(cpunum);
441 
442 	disable_sr_hashing();
443 
444 	mb();
445 
446 	/* Well, support 2.4 linux scheme as well. */
447 	if (cpu_test_and_set(cpunum, cpu_online_map))
448 	{
449 		extern void machine_halt(void); /* arch/parisc.../process.c */
450 
451 		printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
452 		machine_halt();
453 	}
454 
455 	/* Initialise the idle task for this CPU */
456 	atomic_inc(&init_mm.mm_count);
457 	current->active_mm = &init_mm;
458 	if(current->mm)
459 		BUG();
460 	enter_lazy_tlb(&init_mm, current);
461 
462 	init_IRQ();   /* make sure no IRQ's are enabled or pending */
463 }
464 
465 
466 /*
467  * Slaves start using C here. Indirectly called from smp_slave_stext.
468  * Do what start_kernel() and main() do for boot strap processor (aka monarch)
469  */
470 void __init smp_callin(void)
471 {
472 	int slave_id = cpu_now_booting;
473 #if 0
474 	void *istack;
475 #endif
476 
477 	smp_cpu_init(slave_id);
478 	preempt_disable();
479 
480 #if 0	/* NOT WORKING YET - see entry.S */
481 	istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
482 	if (istack == NULL) {
483 	    printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
484 	    BUG();
485 	}
486 	mtctl(istack,31);
487 #endif
488 
489 	flush_cache_all_local(); /* start with known state */
490 	flush_tlb_all_local();
491 
492 	local_irq_enable();  /* Interrupts have been off until now */
493 
494 	cpu_idle();      /* Wait for timer to schedule some work */
495 
496 	/* NOTREACHED */
497 	panic("smp_callin() AAAAaaaaahhhh....\n");
498 }
499 
500 /*
501  * Bring one cpu online.
502  */
503 int __init smp_boot_one_cpu(int cpuid)
504 {
505 	struct task_struct *idle;
506 	long timeout;
507 
508 	/*
509 	 * Create an idle task for this CPU.  Note the address wed* give
510 	 * to kernel_thread is irrelevant -- it's going to start
511 	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But
512 	 * this gets all the other task-y sort of data structures set
513 	 * up like we wish.   We need to pull the just created idle task
514 	 * off the run queue and stuff it into the init_tasks[] array.
515 	 * Sheesh . . .
516 	 */
517 
518 	idle = fork_idle(cpuid);
519 	if (IS_ERR(idle))
520 		panic("SMP: fork failed for CPU:%d", cpuid);
521 
522 	idle->thread_info->cpu = cpuid;
523 
524 	/* Let _start know what logical CPU we're booting
525 	** (offset into init_tasks[],cpu_data[])
526 	*/
527 	cpu_now_booting = cpuid;
528 
529 	/*
530 	** boot strap code needs to know the task address since
531 	** it also contains the process stack.
532 	*/
533 	smp_init_current_idle_task = idle ;
534 	mb();
535 
536 	printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
537 
538 	/*
539 	** This gets PDC to release the CPU from a very tight loop.
540 	**
541 	** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
542 	** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
543 	** is executed after receiving the rendezvous signal (an interrupt to
544 	** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
545 	** contents of memory are valid."
546 	*/
547 	gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
548 	mb();
549 
550 	/*
551 	 * OK, wait a bit for that CPU to finish staggering about.
552 	 * Slave will set a bit when it reaches smp_cpu_init().
553 	 * Once the "monarch CPU" sees the bit change, it can move on.
554 	 */
555 	for (timeout = 0; timeout < 10000; timeout++) {
556 		if(cpu_online(cpuid)) {
557 			/* Which implies Slave has started up */
558 			cpu_now_booting = 0;
559 			smp_init_current_idle_task = NULL;
560 			goto alive ;
561 		}
562 		udelay(100);
563 		barrier();
564 	}
565 
566 	put_task_struct(idle);
567 	idle = NULL;
568 
569 	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
570 	return -1;
571 
572 alive:
573 	/* Remember the Slave data */
574 #if (kDEBUG>=100)
575 	printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
576 		cpuid, timeout * 100);
577 #endif /* kDEBUG */
578 #ifdef ENTRY_SYS_CPUS
579 	cpu_data[cpuid].state = STATE_RUNNING;
580 #endif
581 	return 0;
582 }
583 
584 void __devinit smp_prepare_boot_cpu(void)
585 {
586 	int bootstrap_processor=cpu_data[0].cpuid;	/* CPU ID of BSP */
587 
588 #ifdef ENTRY_SYS_CPUS
589 	cpu_data[0].state = STATE_RUNNING;
590 #endif
591 
592 	/* Setup BSP mappings */
593 	printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
594 
595 	cpu_set(bootstrap_processor, cpu_online_map);
596 	cpu_set(bootstrap_processor, cpu_present_map);
597 }
598 
599 
600 
601 /*
602 ** inventory.c:do_inventory() hasn't yet been run and thus we
603 ** don't 'discover' the additional CPU's until later.
604 */
605 void __init smp_prepare_cpus(unsigned int max_cpus)
606 {
607 	cpus_clear(cpu_present_map);
608 	cpu_set(0, cpu_present_map);
609 
610 	parisc_max_cpus = max_cpus;
611 	if (!max_cpus)
612 		printk(KERN_INFO "SMP mode deactivated.\n");
613 }
614 
615 
616 void smp_cpus_done(unsigned int cpu_max)
617 {
618 	return;
619 }
620 
621 
622 int __devinit __cpu_up(unsigned int cpu)
623 {
624 	if (cpu != 0 && cpu < parisc_max_cpus)
625 		smp_boot_one_cpu(cpu);
626 
627 	return cpu_online(cpu) ? 0 : -ENOSYS;
628 }
629 
630 
631 
632 #ifdef ENTRY_SYS_CPUS
633 /* Code goes along with:
634 **    entry.s:        ENTRY_NAME(sys_cpus)   / * 215, for cpu stat * /
635 */
636 int sys_cpus(int argc, char **argv)
637 {
638 	int i,j=0;
639 	extern int current_pid(int cpu);
640 
641 	if( argc > 2 ) {
642 		printk("sys_cpus:Only one argument supported\n");
643 		return (-1);
644 	}
645 	if ( argc == 1 ){
646 
647 #ifdef DUMP_MORE_STATE
648 		for(i=0; i<NR_CPUS; i++) {
649 			int cpus_per_line = 4;
650 			if(cpu_online(i)) {
651 				if (j++ % cpus_per_line)
652 					printk(" %3d",i);
653 				else
654 					printk("\n %3d",i);
655 			}
656 		}
657 		printk("\n");
658 #else
659 	    	printk("\n 0\n");
660 #endif
661 	} else if((argc==2) && !(strcmp(argv[1],"-l"))) {
662 		printk("\nCPUSTATE  TASK CPUNUM CPUID HARDCPU(HPA)\n");
663 #ifdef DUMP_MORE_STATE
664 		for(i=0;i<NR_CPUS;i++) {
665 			if (!cpu_online(i))
666 				continue;
667 			if (cpu_data[i].cpuid != NO_PROC_ID) {
668 				switch(cpu_data[i].state) {
669 					case STATE_RENDEZVOUS:
670 						printk("RENDEZVS ");
671 						break;
672 					case STATE_RUNNING:
673 						printk((current_pid(i)!=0) ? "RUNNING  " : "IDLING   ");
674 						break;
675 					case STATE_STOPPED:
676 						printk("STOPPED  ");
677 						break;
678 					case STATE_HALTED:
679 						printk("HALTED   ");
680 						break;
681 					default:
682 						printk("%08x?", cpu_data[i].state);
683 						break;
684 				}
685 				if(cpu_online(i)) {
686 					printk(" %4d",current_pid(i));
687 				}
688 				printk(" %6d",cpu_number_map(i));
689 				printk(" %5d",i);
690 				printk(" 0x%lx\n",cpu_data[i].hpa);
691 			}
692 		}
693 #else
694 		printk("\n%s  %4d      0     0 --------",
695 			(current->pid)?"RUNNING ": "IDLING  ",current->pid);
696 #endif
697 	} else if ((argc==2) && !(strcmp(argv[1],"-s"))) {
698 #ifdef DUMP_MORE_STATE
699      		printk("\nCPUSTATE   CPUID\n");
700 		for (i=0;i<NR_CPUS;i++) {
701 			if (!cpu_online(i))
702 				continue;
703 			if (cpu_data[i].cpuid != NO_PROC_ID) {
704 				switch(cpu_data[i].state) {
705 					case STATE_RENDEZVOUS:
706 						printk("RENDEZVS");break;
707 					case STATE_RUNNING:
708 						printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
709 						break;
710 					case STATE_STOPPED:
711 						printk("STOPPED ");break;
712 					case STATE_HALTED:
713 						printk("HALTED  ");break;
714 					default:
715 				}
716 				printk("  %5d\n",i);
717 			}
718 		}
719 #else
720 		printk("\n%s    CPU0",(current->pid==0)?"RUNNING ":"IDLING  ");
721 #endif
722 	} else {
723 		printk("sys_cpus:Unknown request\n");
724 		return (-1);
725 	}
726 	return 0;
727 }
728 #endif /* ENTRY_SYS_CPUS */
729 
730 #ifdef CONFIG_PROC_FS
731 int __init
732 setup_profiling_timer(unsigned int multiplier)
733 {
734 	return -EINVAL;
735 }
736 #endif
737