xref: /openbmc/linux/arch/parisc/kernel/smp.c (revision 22246614)
1 /*
2 ** SMP Support
3 **
4 ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
5 ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
6 ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
7 **
8 ** Lots of stuff stolen from arch/alpha/kernel/smp.c
9 ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
10 **
11 ** Thanks to John Curry and Ullas Ponnadi. I learned a lot from their work.
12 ** -grant (1/12/2001)
13 **
14 **	This program is free software; you can redistribute it and/or modify
15 **	it under the terms of the GNU General Public License as published by
16 **      the Free Software Foundation; either version 2 of the License, or
17 **      (at your option) any later version.
18 */
19 #include <linux/types.h>
20 #include <linux/spinlock.h>
21 #include <linux/slab.h>
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/mm.h>
31 #include <linux/err.h>
32 #include <linux/delay.h>
33 #include <linux/bitops.h>
34 
35 #include <asm/system.h>
36 #include <asm/atomic.h>
37 #include <asm/current.h>
38 #include <asm/delay.h>
39 #include <asm/tlbflush.h>
40 
41 #include <asm/io.h>
42 #include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/processor.h>
48 #include <asm/ptrace.h>
49 #include <asm/unistd.h>
50 #include <asm/cacheflush.h>
51 
52 #undef DEBUG_SMP
53 #ifdef DEBUG_SMP
54 static int smp_debug_lvl = 0;
55 #define smp_debug(lvl, printargs...)		\
56 		if (lvl >= smp_debug_lvl)	\
57 			printk(printargs);
58 #else
59 #define smp_debug(lvl, ...)
60 #endif /* DEBUG_SMP */
61 
62 DEFINE_SPINLOCK(smp_lock);
63 
64 volatile struct task_struct *smp_init_current_idle_task;
65 
66 static volatile int cpu_now_booting __read_mostly = 0;	/* track which CPU is booting */
67 
68 static int parisc_max_cpus __read_mostly = 1;
69 
70 /* online cpus are ones that we've managed to bring up completely
71  * possible cpus are all valid cpu
72  * present cpus are all detected cpu
73  *
74  * On startup we bring up the "possible" cpus. Since we discover
75  * CPUs later, we add them as hotplug, so the possible cpu mask is
76  * empty in the beginning.
77  */
78 
79 cpumask_t cpu_online_map   __read_mostly = CPU_MASK_NONE;	/* Bitmap of online CPUs */
80 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;	/* Bitmap of Present CPUs */
81 
82 EXPORT_SYMBOL(cpu_online_map);
83 EXPORT_SYMBOL(cpu_possible_map);
84 
85 DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED;
86 
87 struct smp_call_struct {
88 	void (*func) (void *info);
89 	void *info;
90 	long wait;
91 	atomic_t unstarted_count;
92 	atomic_t unfinished_count;
93 };
94 static volatile struct smp_call_struct *smp_call_function_data;
95 
96 enum ipi_message_type {
97 	IPI_NOP=0,
98 	IPI_RESCHEDULE=1,
99 	IPI_CALL_FUNC,
100 	IPI_CPU_START,
101 	IPI_CPU_STOP,
102 	IPI_CPU_TEST
103 };
104 
105 
106 /********** SMP inter processor interrupt and communication routines */
107 
108 #undef PER_CPU_IRQ_REGION
109 #ifdef PER_CPU_IRQ_REGION
110 /* XXX REVISIT Ignore for now.
111 **    *May* need this "hook" to register IPI handler
112 **    once we have perCPU ExtIntr switch tables.
113 */
114 static void
115 ipi_init(int cpuid)
116 {
117 #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
118 
119 	if(cpu_online(cpuid) )
120 	{
121 		switch_to_idle_task(current);
122 	}
123 
124 	return;
125 }
126 #endif
127 
128 
129 /*
130 ** Yoink this CPU from the runnable list...
131 **
132 */
133 static void
134 halt_processor(void)
135 {
136 	/* REVISIT : redirect I/O Interrupts to another CPU? */
137 	/* REVISIT : does PM *know* this CPU isn't available? */
138 	cpu_clear(smp_processor_id(), cpu_online_map);
139 	local_irq_disable();
140 	for (;;)
141 		;
142 }
143 
144 
145 irqreturn_t
146 ipi_interrupt(int irq, void *dev_id)
147 {
148 	int this_cpu = smp_processor_id();
149 	struct cpuinfo_parisc *p = &cpu_data[this_cpu];
150 	unsigned long ops;
151 	unsigned long flags;
152 
153 	/* Count this now; we may make a call that never returns. */
154 	p->ipi_count++;
155 
156 	mb();	/* Order interrupt and bit testing. */
157 
158 	for (;;) {
159 		spinlock_t *lock = &per_cpu(ipi_lock, this_cpu);
160 		spin_lock_irqsave(lock, flags);
161 		ops = p->pending_ipi;
162 		p->pending_ipi = 0;
163 		spin_unlock_irqrestore(lock, flags);
164 
165 		mb(); /* Order bit clearing and data access. */
166 
167 		if (!ops)
168 		    break;
169 
170 		while (ops) {
171 			unsigned long which = ffz(~ops);
172 
173 			ops &= ~(1 << which);
174 
175 			switch (which) {
176 			case IPI_NOP:
177 				smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu);
178 				break;
179 
180 			case IPI_RESCHEDULE:
181 				smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu);
182 				/*
183 				 * Reschedule callback.  Everything to be
184 				 * done is done by the interrupt return path.
185 				 */
186 				break;
187 
188 			case IPI_CALL_FUNC:
189 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu);
190 				{
191 					volatile struct smp_call_struct *data;
192 					void (*func)(void *info);
193 					void *info;
194 					int wait;
195 
196 					data = smp_call_function_data;
197 					func = data->func;
198 					info = data->info;
199 					wait = data->wait;
200 
201 					mb();
202 					atomic_dec ((atomic_t *)&data->unstarted_count);
203 
204 					/* At this point, *data can't
205 					 * be relied upon.
206 					 */
207 
208 					(*func)(info);
209 
210 					/* Notify the sending CPU that the
211 					 * task is done.
212 					 */
213 					mb();
214 					if (wait)
215 						atomic_dec ((atomic_t *)&data->unfinished_count);
216 				}
217 				break;
218 
219 			case IPI_CPU_START:
220 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu);
221 				break;
222 
223 			case IPI_CPU_STOP:
224 				smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu);
225 				halt_processor();
226 				break;
227 
228 			case IPI_CPU_TEST:
229 				smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu);
230 				break;
231 
232 			default:
233 				printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
234 					this_cpu, which);
235 				return IRQ_NONE;
236 			} /* Switch */
237 		/* let in any pending interrupts */
238 		local_irq_enable();
239 		local_irq_disable();
240 		} /* while (ops) */
241 	}
242 	return IRQ_HANDLED;
243 }
244 
245 
246 static inline void
247 ipi_send(int cpu, enum ipi_message_type op)
248 {
249 	struct cpuinfo_parisc *p = &cpu_data[cpu];
250 	spinlock_t *lock = &per_cpu(ipi_lock, cpu);
251 	unsigned long flags;
252 
253 	spin_lock_irqsave(lock, flags);
254 	p->pending_ipi |= 1 << op;
255 	gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
256 	spin_unlock_irqrestore(lock, flags);
257 }
258 
259 
260 static inline void
261 send_IPI_single(int dest_cpu, enum ipi_message_type op)
262 {
263 	if (dest_cpu == NO_PROC_ID) {
264 		BUG();
265 		return;
266 	}
267 
268 	ipi_send(dest_cpu, op);
269 }
270 
271 static inline void
272 send_IPI_allbutself(enum ipi_message_type op)
273 {
274 	int i;
275 
276 	for_each_online_cpu(i) {
277 		if (i != smp_processor_id())
278 			send_IPI_single(i, op);
279 	}
280 }
281 
282 
283 inline void
284 smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); }
285 
286 static inline void
287 smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); }
288 
289 void
290 smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
291 
292 void
293 smp_send_all_nop(void)
294 {
295 	send_IPI_allbutself(IPI_NOP);
296 }
297 
298 
299 /**
300  * Run a function on all other CPUs.
301  *  <func>	The function to run. This must be fast and non-blocking.
302  *  <info>	An arbitrary pointer to pass to the function.
303  *  <retry>	If true, keep retrying until ready.
304  *  <wait>	If true, wait until function has completed on other CPUs.
305  *  [RETURNS]   0 on success, else a negative status code.
306  *
307  * Does not return until remote CPUs are nearly ready to execute <func>
308  * or have executed.
309  */
310 
311 int
312 smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
313 {
314 	struct smp_call_struct data;
315 	unsigned long timeout;
316 	static DEFINE_SPINLOCK(lock);
317 	int retries = 0;
318 
319 	if (num_online_cpus() < 2)
320 		return 0;
321 
322 	/* Can deadlock when called with interrupts disabled */
323 	WARN_ON(irqs_disabled());
324 
325 	/* can also deadlock if IPIs are disabled */
326 	WARN_ON((get_eiem() & (1UL<<(CPU_IRQ_MAX - IPI_IRQ))) == 0);
327 
328 
329 	data.func = func;
330 	data.info = info;
331 	data.wait = wait;
332 	atomic_set(&data.unstarted_count, num_online_cpus() - 1);
333 	atomic_set(&data.unfinished_count, num_online_cpus() - 1);
334 
335 	if (retry) {
336 		spin_lock (&lock);
337 		while (smp_call_function_data != 0)
338 			barrier();
339 	}
340 	else {
341 		spin_lock (&lock);
342 		if (smp_call_function_data) {
343 			spin_unlock (&lock);
344 			return -EBUSY;
345 		}
346 	}
347 
348 	smp_call_function_data = &data;
349 	spin_unlock (&lock);
350 
351 	/*  Send a message to all other CPUs and wait for them to respond  */
352 	send_IPI_allbutself(IPI_CALL_FUNC);
353 
354  retry:
355 	/*  Wait for response  */
356 	timeout = jiffies + HZ;
357 	while ( (atomic_read (&data.unstarted_count) > 0) &&
358 		time_before (jiffies, timeout) )
359 		barrier ();
360 
361 	if (atomic_read (&data.unstarted_count) > 0) {
362 		printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
363 		      smp_processor_id(), ++retries);
364 		goto retry;
365 	}
366 	/* We either got one or timed out. Release the lock */
367 
368 	mb();
369 	smp_call_function_data = NULL;
370 
371 	while (wait && atomic_read (&data.unfinished_count) > 0)
372 			barrier ();
373 
374 	return 0;
375 }
376 
377 EXPORT_SYMBOL(smp_call_function);
378 
379 /*
380  * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu()
381  * as we want to ensure all TLB's flushed before proceeding.
382  */
383 
384 void
385 smp_flush_tlb_all(void)
386 {
387 	on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
388 }
389 
390 /*
391  * Called by secondaries to update state and initialize CPU registers.
392  */
393 static void __init
394 smp_cpu_init(int cpunum)
395 {
396 	extern int init_per_cpu(int);  /* arch/parisc/kernel/processor.c */
397 	extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */
398 	extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */
399 
400 	/* Set modes and Enable floating point coprocessor */
401 	(void) init_per_cpu(cpunum);
402 
403 	disable_sr_hashing();
404 
405 	mb();
406 
407 	/* Well, support 2.4 linux scheme as well. */
408 	if (cpu_test_and_set(cpunum, cpu_online_map))
409 	{
410 		extern void machine_halt(void); /* arch/parisc.../process.c */
411 
412 		printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
413 		machine_halt();
414 	}
415 
416 	/* Initialise the idle task for this CPU */
417 	atomic_inc(&init_mm.mm_count);
418 	current->active_mm = &init_mm;
419 	if(current->mm)
420 		BUG();
421 	enter_lazy_tlb(&init_mm, current);
422 
423 	init_IRQ();   /* make sure no IRQs are enabled or pending */
424 	start_cpu_itimer();
425 }
426 
427 
428 /*
429  * Slaves start using C here. Indirectly called from smp_slave_stext.
430  * Do what start_kernel() and main() do for boot strap processor (aka monarch)
431  */
432 void __init smp_callin(void)
433 {
434 	int slave_id = cpu_now_booting;
435 
436 	smp_cpu_init(slave_id);
437 	preempt_disable();
438 
439 	flush_cache_all_local(); /* start with known state */
440 	flush_tlb_all_local(NULL);
441 
442 	local_irq_enable();  /* Interrupts have been off until now */
443 
444 	cpu_idle();      /* Wait for timer to schedule some work */
445 
446 	/* NOTREACHED */
447 	panic("smp_callin() AAAAaaaaahhhh....\n");
448 }
449 
450 /*
451  * Bring one cpu online.
452  */
453 int __cpuinit smp_boot_one_cpu(int cpuid)
454 {
455 	struct task_struct *idle;
456 	long timeout;
457 
458 	/*
459 	 * Create an idle task for this CPU.  Note the address wed* give
460 	 * to kernel_thread is irrelevant -- it's going to start
461 	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But
462 	 * this gets all the other task-y sort of data structures set
463 	 * up like we wish.   We need to pull the just created idle task
464 	 * off the run queue and stuff it into the init_tasks[] array.
465 	 * Sheesh . . .
466 	 */
467 
468 	idle = fork_idle(cpuid);
469 	if (IS_ERR(idle))
470 		panic("SMP: fork failed for CPU:%d", cpuid);
471 
472 	task_thread_info(idle)->cpu = cpuid;
473 
474 	/* Let _start know what logical CPU we're booting
475 	** (offset into init_tasks[],cpu_data[])
476 	*/
477 	cpu_now_booting = cpuid;
478 
479 	/*
480 	** boot strap code needs to know the task address since
481 	** it also contains the process stack.
482 	*/
483 	smp_init_current_idle_task = idle ;
484 	mb();
485 
486 	printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
487 
488 	/*
489 	** This gets PDC to release the CPU from a very tight loop.
490 	**
491 	** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
492 	** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
493 	** is executed after receiving the rendezvous signal (an interrupt to
494 	** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
495 	** contents of memory are valid."
496 	*/
497 	gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
498 	mb();
499 
500 	/*
501 	 * OK, wait a bit for that CPU to finish staggering about.
502 	 * Slave will set a bit when it reaches smp_cpu_init().
503 	 * Once the "monarch CPU" sees the bit change, it can move on.
504 	 */
505 	for (timeout = 0; timeout < 10000; timeout++) {
506 		if(cpu_online(cpuid)) {
507 			/* Which implies Slave has started up */
508 			cpu_now_booting = 0;
509 			smp_init_current_idle_task = NULL;
510 			goto alive ;
511 		}
512 		udelay(100);
513 		barrier();
514 	}
515 
516 	put_task_struct(idle);
517 	idle = NULL;
518 
519 	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
520 	return -1;
521 
522 alive:
523 	/* Remember the Slave data */
524 	smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
525 		cpuid, timeout * 100);
526 	return 0;
527 }
528 
529 void __devinit smp_prepare_boot_cpu(void)
530 {
531 	int bootstrap_processor=cpu_data[0].cpuid;	/* CPU ID of BSP */
532 
533 	/* Setup BSP mappings */
534 	printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
535 
536 	cpu_set(bootstrap_processor, cpu_online_map);
537 	cpu_set(bootstrap_processor, cpu_present_map);
538 }
539 
540 
541 
542 /*
543 ** inventory.c:do_inventory() hasn't yet been run and thus we
544 ** don't 'discover' the additional CPUs until later.
545 */
546 void __init smp_prepare_cpus(unsigned int max_cpus)
547 {
548 	cpus_clear(cpu_present_map);
549 	cpu_set(0, cpu_present_map);
550 
551 	parisc_max_cpus = max_cpus;
552 	if (!max_cpus)
553 		printk(KERN_INFO "SMP mode deactivated.\n");
554 }
555 
556 
557 void smp_cpus_done(unsigned int cpu_max)
558 {
559 	return;
560 }
561 
562 
563 int __cpuinit __cpu_up(unsigned int cpu)
564 {
565 	if (cpu != 0 && cpu < parisc_max_cpus)
566 		smp_boot_one_cpu(cpu);
567 
568 	return cpu_online(cpu) ? 0 : -ENOSYS;
569 }
570 
571 #ifdef CONFIG_PROC_FS
572 int __init
573 setup_profiling_timer(unsigned int multiplier)
574 {
575 	return -EINVAL;
576 }
577 #endif
578