1 /* 2 * PARISC Architecture-dependent parts of process handling 3 * based on the work for i386 4 * 5 * Copyright (C) 1999-2003 Matthew Wilcox <willy at parisc-linux.org> 6 * Copyright (C) 2000 Martin K Petersen <mkp at mkp.net> 7 * Copyright (C) 2000 John Marvin <jsm at parisc-linux.org> 8 * Copyright (C) 2000 David Huggins-Daines <dhd with pobox.org> 9 * Copyright (C) 2000-2003 Paul Bame <bame at parisc-linux.org> 10 * Copyright (C) 2000 Philipp Rumpf <prumpf with tux.org> 11 * Copyright (C) 2000 David Kennedy <dkennedy with linuxcare.com> 12 * Copyright (C) 2000 Richard Hirst <rhirst with parisc-linux.org> 13 * Copyright (C) 2000 Grant Grundler <grundler with parisc-linux.org> 14 * Copyright (C) 2001 Alan Modra <amodra at parisc-linux.org> 15 * Copyright (C) 2001-2002 Ryan Bradetich <rbrad at parisc-linux.org> 16 * Copyright (C) 2001-2007 Helge Deller <deller at parisc-linux.org> 17 * Copyright (C) 2002 Randolph Chung <tausq with parisc-linux.org> 18 * 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 * This program is distributed in the hope that it will be useful, 26 * but WITHOUT ANY WARRANTY; without even the implied warranty of 27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 28 * GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with this program; if not, write to the Free Software 32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 33 */ 34 35 #include <stdarg.h> 36 37 #include <linux/elf.h> 38 #include <linux/errno.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/fs.h> 42 #include <linux/module.h> 43 #include <linux/personality.h> 44 #include <linux/ptrace.h> 45 #include <linux/sched.h> 46 #include <linux/stddef.h> 47 #include <linux/unistd.h> 48 #include <linux/kallsyms.h> 49 50 #include <asm/io.h> 51 #include <asm/asm-offsets.h> 52 #include <asm/pdc.h> 53 #include <asm/pdc_chassis.h> 54 #include <asm/pgalloc.h> 55 #include <asm/uaccess.h> 56 #include <asm/unwind.h> 57 58 /* 59 * The idle thread. There's no useful work to be 60 * done, so just try to conserve power and have a 61 * low exit latency (ie sit in a loop waiting for 62 * somebody to say that they'd like to reschedule) 63 */ 64 void cpu_idle(void) 65 { 66 set_thread_flag(TIF_POLLING_NRFLAG); 67 68 /* endless idle loop with no priority at all */ 69 while (1) { 70 while (!need_resched()) 71 barrier(); 72 preempt_enable_no_resched(); 73 schedule(); 74 preempt_disable(); 75 check_pgt_cache(); 76 } 77 } 78 79 80 #define COMMAND_GLOBAL F_EXTEND(0xfffe0030) 81 #define CMD_RESET 5 /* reset any module */ 82 83 /* 84 ** The Wright Brothers and Gecko systems have a H/W problem 85 ** (Lasi...'nuf said) may cause a broadcast reset to lockup 86 ** the system. An HVERSION dependent PDC call was developed 87 ** to perform a "safe", platform specific broadcast reset instead 88 ** of kludging up all the code. 89 ** 90 ** Older machines which do not implement PDC_BROADCAST_RESET will 91 ** return (with an error) and the regular broadcast reset can be 92 ** issued. Obviously, if the PDC does implement PDC_BROADCAST_RESET 93 ** the PDC call will not return (the system will be reset). 94 */ 95 void machine_restart(char *cmd) 96 { 97 #ifdef FASTBOOT_SELFTEST_SUPPORT 98 /* 99 ** If user has modified the Firmware Selftest Bitmap, 100 ** run the tests specified in the bitmap after the 101 ** system is rebooted w/PDC_DO_RESET. 102 ** 103 ** ftc_bitmap = 0x1AUL "Skip destructive memory tests" 104 ** 105 ** Using "directed resets" at each processor with the MEM_TOC 106 ** vector cleared will also avoid running destructive 107 ** memory self tests. (Not implemented yet) 108 */ 109 if (ftc_bitmap) { 110 pdc_do_firm_test_reset(ftc_bitmap); 111 } 112 #endif 113 /* set up a new led state on systems shipped with a LED State panel */ 114 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN); 115 116 /* "Normal" system reset */ 117 pdc_do_reset(); 118 119 /* Nope...box should reset with just CMD_RESET now */ 120 gsc_writel(CMD_RESET, COMMAND_GLOBAL); 121 122 /* Wait for RESET to lay us to rest. */ 123 while (1) ; 124 125 } 126 127 void machine_halt(void) 128 { 129 /* 130 ** The LED/ChassisCodes are updated by the led_halt() 131 ** function, called by the reboot notifier chain. 132 */ 133 } 134 135 void (*chassis_power_off)(void); 136 137 /* 138 * This routine is called from sys_reboot to actually turn off the 139 * machine 140 */ 141 void machine_power_off(void) 142 { 143 /* If there is a registered power off handler, call it. */ 144 if (chassis_power_off) 145 chassis_power_off(); 146 147 /* Put the soft power button back under hardware control. 148 * If the user had already pressed the power button, the 149 * following call will immediately power off. */ 150 pdc_soft_power_button(0); 151 152 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_SHUTDOWN); 153 154 /* It seems we have no way to power the system off via 155 * software. The user has to press the button himself. */ 156 157 printk(KERN_EMERG "System shut down completed.\n" 158 KERN_EMERG "Please power this system off now."); 159 } 160 161 void (*pm_power_off)(void) = machine_power_off; 162 EXPORT_SYMBOL(pm_power_off); 163 164 /* 165 * Create a kernel thread 166 */ 167 168 extern pid_t __kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 169 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 170 { 171 172 /* 173 * FIXME: Once we are sure we don't need any debug here, 174 * kernel_thread can become a #define. 175 */ 176 177 return __kernel_thread(fn, arg, flags); 178 } 179 EXPORT_SYMBOL(kernel_thread); 180 181 /* 182 * Free current thread data structures etc.. 183 */ 184 void exit_thread(void) 185 { 186 } 187 188 void flush_thread(void) 189 { 190 /* Only needs to handle fpu stuff or perf monitors. 191 ** REVISIT: several arches implement a "lazy fpu state". 192 */ 193 set_fs(USER_DS); 194 } 195 196 void release_thread(struct task_struct *dead_task) 197 { 198 } 199 200 /* 201 * Fill in the FPU structure for a core dump. 202 */ 203 204 int dump_fpu (struct pt_regs * regs, elf_fpregset_t *r) 205 { 206 if (regs == NULL) 207 return 0; 208 209 memcpy(r, regs->fr, sizeof *r); 210 return 1; 211 } 212 213 int dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *r) 214 { 215 memcpy(r, tsk->thread.regs.fr, sizeof(*r)); 216 return 1; 217 } 218 219 /* Note that "fork()" is implemented in terms of clone, with 220 parameters (SIGCHLD, regs->gr[30], regs). */ 221 int 222 sys_clone(unsigned long clone_flags, unsigned long usp, 223 struct pt_regs *regs) 224 { 225 /* Arugments from userspace are: 226 r26 = Clone flags. 227 r25 = Child stack. 228 r24 = parent_tidptr. 229 r23 = Is the TLS storage descriptor 230 r22 = child_tidptr 231 232 However, these last 3 args are only examined 233 if the proper flags are set. */ 234 int __user *child_tidptr; 235 int __user *parent_tidptr; 236 237 /* usp must be word aligned. This also prevents users from 238 * passing in the value 1 (which is the signal for a special 239 * return for a kernel thread) */ 240 usp = ALIGN(usp, 4); 241 242 /* A zero value for usp means use the current stack */ 243 if (usp == 0) 244 usp = regs->gr[30]; 245 246 if (clone_flags & CLONE_PARENT_SETTID) 247 parent_tidptr = (int __user *)regs->gr[24]; 248 else 249 parent_tidptr = NULL; 250 251 if (clone_flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) 252 child_tidptr = (int __user *)regs->gr[22]; 253 else 254 child_tidptr = NULL; 255 256 return do_fork(clone_flags, usp, regs, 0, parent_tidptr, child_tidptr); 257 } 258 259 int 260 sys_vfork(struct pt_regs *regs) 261 { 262 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gr[30], regs, 0, NULL, NULL); 263 } 264 265 int 266 copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 267 unsigned long unused, /* in ia64 this is "user_stack_size" */ 268 struct task_struct * p, struct pt_regs * pregs) 269 { 270 struct pt_regs * cregs = &(p->thread.regs); 271 void *stack = task_stack_page(p); 272 273 /* We have to use void * instead of a function pointer, because 274 * function pointers aren't a pointer to the function on 64-bit. 275 * Make them const so the compiler knows they live in .text */ 276 extern void * const ret_from_kernel_thread; 277 extern void * const child_return; 278 #ifdef CONFIG_HPUX 279 extern void * const hpux_child_return; 280 #endif 281 282 *cregs = *pregs; 283 284 /* Set the return value for the child. Note that this is not 285 actually restored by the syscall exit path, but we put it 286 here for consistency in case of signals. */ 287 cregs->gr[28] = 0; /* child */ 288 289 /* 290 * We need to differentiate between a user fork and a 291 * kernel fork. We can't use user_mode, because the 292 * the syscall path doesn't save iaoq. Right now 293 * We rely on the fact that kernel_thread passes 294 * in zero for usp. 295 */ 296 if (usp == 1) { 297 /* kernel thread */ 298 cregs->ksp = (unsigned long)stack + THREAD_SZ_ALGN; 299 /* Must exit via ret_from_kernel_thread in order 300 * to call schedule_tail() 301 */ 302 cregs->kpc = (unsigned long) &ret_from_kernel_thread; 303 /* 304 * Copy function and argument to be called from 305 * ret_from_kernel_thread. 306 */ 307 #ifdef CONFIG_64BIT 308 cregs->gr[27] = pregs->gr[27]; 309 #endif 310 cregs->gr[26] = pregs->gr[26]; 311 cregs->gr[25] = pregs->gr[25]; 312 } else { 313 /* user thread */ 314 /* 315 * Note that the fork wrappers are responsible 316 * for setting gr[21]. 317 */ 318 319 /* Use same stack depth as parent */ 320 cregs->ksp = (unsigned long)stack 321 + (pregs->gr[21] & (THREAD_SIZE - 1)); 322 cregs->gr[30] = usp; 323 if (p->personality == PER_HPUX) { 324 #ifdef CONFIG_HPUX 325 cregs->kpc = (unsigned long) &hpux_child_return; 326 #else 327 BUG(); 328 #endif 329 } else { 330 cregs->kpc = (unsigned long) &child_return; 331 } 332 /* Setup thread TLS area from the 4th parameter in clone */ 333 if (clone_flags & CLONE_SETTLS) 334 cregs->cr27 = pregs->gr[23]; 335 336 } 337 338 return 0; 339 } 340 341 unsigned long thread_saved_pc(struct task_struct *t) 342 { 343 return t->thread.regs.kpc; 344 } 345 346 /* 347 * sys_execve() executes a new program. 348 */ 349 350 asmlinkage int sys_execve(struct pt_regs *regs) 351 { 352 int error; 353 char *filename; 354 355 filename = getname((const char __user *) regs->gr[26]); 356 error = PTR_ERR(filename); 357 if (IS_ERR(filename)) 358 goto out; 359 error = do_execve(filename, (char __user * __user *) regs->gr[25], 360 (char __user * __user *) regs->gr[24], regs); 361 if (error == 0) { 362 task_lock(current); 363 current->ptrace &= ~PT_DTRACE; 364 task_unlock(current); 365 } 366 putname(filename); 367 out: 368 369 return error; 370 } 371 372 extern int __execve(const char *filename, char *const argv[], 373 char *const envp[], struct task_struct *task); 374 int kernel_execve(const char *filename, char *const argv[], char *const envp[]) 375 { 376 return __execve(filename, argv, envp, current); 377 } 378 379 unsigned long 380 get_wchan(struct task_struct *p) 381 { 382 struct unwind_frame_info info; 383 unsigned long ip; 384 int count = 0; 385 386 if (!p || p == current || p->state == TASK_RUNNING) 387 return 0; 388 389 /* 390 * These bracket the sleeping functions.. 391 */ 392 393 unwind_frame_init_from_blocked_task(&info, p); 394 do { 395 if (unwind_once(&info) < 0) 396 return 0; 397 ip = info.ip; 398 if (!in_sched_functions(ip)) 399 return ip; 400 } while (count++ < 16); 401 return 0; 402 } 403