xref: /openbmc/linux/arch/parisc/kernel/perf.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  Parisc performance counters
3  *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
4  *
5  *  This code is derived, with permission, from HP/UX sources.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2, or (at your option)
10  *    any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 /*
23  *  Edited comment from original sources:
24  *
25  *  This driver programs the PCX-U/PCX-W performance counters
26  *  on the PA-RISC 2.0 chips.  The driver keeps all images now
27  *  internally to the kernel to hopefully eliminate the possiblity
28  *  of a bad image halting the CPU.  Also, there are different
29  *  images for the PCX-W and later chips vs the PCX-U chips.
30  *
31  *  Only 1 process is allowed to access the driver at any time,
32  *  so the only protection that is needed is at open and close.
33  *  A variable "perf_enabled" is used to hold the state of the
34  *  driver.  The spinlock "perf_lock" is used to protect the
35  *  modification of the state during open/close operations so
36  *  multiple processes don't get into the driver simultaneously.
37  *
38  *  This driver accesses the processor directly vs going through
39  *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
40  *  in various PDC revisions.  The code is much more maintainable
41  *  and reliable this way vs having to debug on every version of PDC
42  *  on every box.
43  */
44 
45 #include <linux/capability.h>
46 #include <linux/init.h>
47 #include <linux/proc_fs.h>
48 #include <linux/miscdevice.h>
49 #include <linux/smp_lock.h>
50 #include <linux/spinlock.h>
51 
52 #include <asm/uaccess.h>
53 #include <asm/perf.h>
54 #include <asm/parisc-device.h>
55 #include <asm/processor.h>
56 #include <asm/runway.h>
57 #include <asm/io.h>		/* for __raw_read() */
58 
59 #include "perf_images.h"
60 
61 #define MAX_RDR_WORDS	24
62 #define PERF_VERSION	2	/* derived from hpux's PI v2 interface */
63 
64 /* definition of RDR regs */
65 struct rdr_tbl_ent {
66 	uint16_t	width;
67 	uint8_t		num_words;
68 	uint8_t		write_control;
69 };
70 
71 static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
72 static int perf_enabled __read_mostly;
73 static spinlock_t perf_lock;
74 struct parisc_device *cpu_device __read_mostly;
75 
76 /* RDRs to write for PCX-W */
77 static const int perf_rdrs_W[] =
78 	{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
79 
80 /* RDRs to write for PCX-U */
81 static const int perf_rdrs_U[] =
82 	{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
83 
84 /* RDR register descriptions for PCX-W */
85 static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
86 	{ 19,	1,	8 },   /* RDR 0 */
87 	{ 16,	1,	16 },  /* RDR 1 */
88 	{ 72,	2,	0 },   /* RDR 2 */
89 	{ 81,	2,	0 },   /* RDR 3 */
90 	{ 328,	6,	0 },   /* RDR 4 */
91 	{ 160,	3,	0 },   /* RDR 5 */
92 	{ 336,	6,	0 },   /* RDR 6 */
93 	{ 164,	3,	0 },   /* RDR 7 */
94 	{ 0,	0,	0 },   /* RDR 8 */
95 	{ 35,	1,	0 },   /* RDR 9 */
96 	{ 6,	1,	0 },   /* RDR 10 */
97 	{ 18,	1,	0 },   /* RDR 11 */
98 	{ 13,	1,	0 },   /* RDR 12 */
99 	{ 8,	1,	0 },   /* RDR 13 */
100 	{ 8,	1,	0 },   /* RDR 14 */
101 	{ 8,	1,	0 },   /* RDR 15 */
102 	{ 1530,	24,	0 },   /* RDR 16 */
103 	{ 16,	1,	0 },   /* RDR 17 */
104 	{ 4,	1,	0 },   /* RDR 18 */
105 	{ 0,	0,	0 },   /* RDR 19 */
106 	{ 152,	3,	24 },  /* RDR 20 */
107 	{ 152,	3,	24 },  /* RDR 21 */
108 	{ 233,	4,	48 },  /* RDR 22 */
109 	{ 233,	4,	48 },  /* RDR 23 */
110 	{ 71,	2,	0 },   /* RDR 24 */
111 	{ 71,	2,	0 },   /* RDR 25 */
112 	{ 11,	1,	0 },   /* RDR 26 */
113 	{ 18,	1,	0 },   /* RDR 27 */
114 	{ 128,	2,	0 },   /* RDR 28 */
115 	{ 0,	0,	0 },   /* RDR 29 */
116 	{ 16,	1,	0 },   /* RDR 30 */
117 	{ 16,	1,	0 },   /* RDR 31 */
118 };
119 
120 /* RDR register descriptions for PCX-U */
121 static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
122 	{ 19,	1,	8 },              /* RDR 0 */
123 	{ 32,	1,	16 },             /* RDR 1 */
124 	{ 20,	1,	0 },              /* RDR 2 */
125 	{ 0,	0,	0 },              /* RDR 3 */
126 	{ 344,	6,	0 },              /* RDR 4 */
127 	{ 176,	3,	0 },              /* RDR 5 */
128 	{ 336,	6,	0 },              /* RDR 6 */
129 	{ 0,	0,	0 },              /* RDR 7 */
130 	{ 0,	0,	0 },              /* RDR 8 */
131 	{ 0,	0,	0 },              /* RDR 9 */
132 	{ 28,	1,	0 },              /* RDR 10 */
133 	{ 33,	1,	0 },              /* RDR 11 */
134 	{ 0,	0,	0 },              /* RDR 12 */
135 	{ 230,	4,	0 },              /* RDR 13 */
136 	{ 32,	1,	0 },              /* RDR 14 */
137 	{ 128,	2,	0 },              /* RDR 15 */
138 	{ 1494,	24,	0 },              /* RDR 16 */
139 	{ 18,	1,	0 },              /* RDR 17 */
140 	{ 4,	1,	0 },              /* RDR 18 */
141 	{ 0,	0,	0 },              /* RDR 19 */
142 	{ 158,	3,	24 },             /* RDR 20 */
143 	{ 158,	3,	24 },             /* RDR 21 */
144 	{ 194,	4,	48 },             /* RDR 22 */
145 	{ 194,	4,	48 },             /* RDR 23 */
146 	{ 71,	2,	0 },              /* RDR 24 */
147 	{ 71,	2,	0 },              /* RDR 25 */
148 	{ 28,	1,	0 },              /* RDR 26 */
149 	{ 33,	1,	0 },              /* RDR 27 */
150 	{ 88,	2,	0 },              /* RDR 28 */
151 	{ 32,	1,	0 },              /* RDR 29 */
152 	{ 24,	1,	0 },              /* RDR 30 */
153 	{ 16,	1,	0 },              /* RDR 31 */
154 };
155 
156 /*
157  * A non-zero write_control in the above tables is a byte offset into
158  * this array.
159  */
160 static const uint64_t perf_bitmasks[] = {
161 	0x0000000000000000ul,     /* first dbl word must be zero */
162 	0xfdffe00000000000ul,     /* RDR0 bitmask */
163 	0x003f000000000000ul,     /* RDR1 bitmask */
164 	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
165 	0xfffffffffffffffful,
166 	0xfffffffc00000000ul,
167 	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
168 	0xfffffffffffffffful,
169 	0xfffffffffffffffcul,
170 	0xff00000000000000ul
171 };
172 
173 /*
174  * Write control bitmasks for Pa-8700 processor given
175  * some things have changed slightly.
176  */
177 static const uint64_t perf_bitmasks_piranha[] = {
178 	0x0000000000000000ul,     /* first dbl word must be zero */
179 	0xfdffe00000000000ul,     /* RDR0 bitmask */
180 	0x003f000000000000ul,     /* RDR1 bitmask */
181 	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
182 	0xfffffffffffffffful,
183 	0xfffffffc00000000ul,
184 	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
185 	0xfffffffffffffffful,
186 	0xfffffffffffffffful,
187 	0xfffc000000000000ul
188 };
189 
190 static const uint64_t *bitmask_array;   /* array of bitmasks to use */
191 
192 /******************************************************************************
193  * Function Prototypes
194  *****************************************************************************/
195 static int perf_config(uint32_t *image_ptr);
196 static int perf_release(struct inode *inode, struct file *file);
197 static int perf_open(struct inode *inode, struct file *file);
198 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
199 static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
200 	loff_t *ppos);
201 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
202 static void perf_start_counters(void);
203 static int perf_stop_counters(uint32_t *raddr);
204 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
205 static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer);
206 static int perf_rdr_clear(uint32_t rdr_num);
207 static int perf_write_image(uint64_t *memaddr);
208 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
209 
210 /* External Assembly Routines */
211 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
212 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
213 extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
214 extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
215 extern void perf_intrigue_enable_perf_counters (void);
216 extern void perf_intrigue_disable_perf_counters (void);
217 
218 /******************************************************************************
219  * Function Definitions
220  *****************************************************************************/
221 
222 
223 /*
224  * configure:
225  *
226  * Configure the cpu with a given data image.  First turn off the counters,
227  * then download the image, then turn the counters back on.
228  */
229 static int perf_config(uint32_t *image_ptr)
230 {
231 	long error;
232 	uint32_t raddr[4];
233 
234 	/* Stop the counters*/
235 	error = perf_stop_counters(raddr);
236 	if (error != 0) {
237 		printk("perf_config: perf_stop_counters = %ld\n", error);
238 		return -EINVAL;
239 	}
240 
241 printk("Preparing to write image\n");
242 	/* Write the image to the chip */
243 	error = perf_write_image((uint64_t *)image_ptr);
244 	if (error != 0) {
245 		printk("perf_config: DOWNLOAD = %ld\n", error);
246 		return -EINVAL;
247 	}
248 
249 printk("Preparing to start counters\n");
250 
251 	/* Start the counters */
252 	perf_start_counters();
253 
254 	return sizeof(uint32_t);
255 }
256 
257 /*
258  * Open the device and initialize all of its memory.  The device is only
259  * opened once, but can be "queried" by multiple processes that know its
260  * file descriptor.
261  */
262 static int perf_open(struct inode *inode, struct file *file)
263 {
264 	lock_kernel();
265 	spin_lock(&perf_lock);
266 	if (perf_enabled) {
267 		spin_unlock(&perf_lock);
268 		unlock_kernel();
269 		return -EBUSY;
270 	}
271 	perf_enabled = 1;
272  	spin_unlock(&perf_lock);
273 	unlock_kernel();
274 
275 	return 0;
276 }
277 
278 /*
279  * Close the device.
280  */
281 static int perf_release(struct inode *inode, struct file *file)
282 {
283 	spin_lock(&perf_lock);
284 	perf_enabled = 0;
285 	spin_unlock(&perf_lock);
286 
287 	return 0;
288 }
289 
290 /*
291  * Read does nothing for this driver
292  */
293 static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
294 {
295 	return 0;
296 }
297 
298 /*
299  * write:
300  *
301  * This routine downloads the image to the chip.  It must be
302  * called on the processor that the download should happen
303  * on.
304  */
305 static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
306 	loff_t *ppos)
307 {
308 	int err;
309 	size_t image_size;
310 	uint32_t image_type;
311 	uint32_t interface_type;
312 	uint32_t test;
313 
314 	if (perf_processor_interface == ONYX_INTF)
315 		image_size = PCXU_IMAGE_SIZE;
316 	else if (perf_processor_interface == CUDA_INTF)
317 		image_size = PCXW_IMAGE_SIZE;
318 	else
319 		return -EFAULT;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	if (count != sizeof(uint32_t))
325 		return -EIO;
326 
327 	if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
328 		return err;
329 
330 	/* Get the interface type and test type */
331    	interface_type = (image_type >> 16) & 0xffff;
332 	test           = (image_type & 0xffff);
333 
334 	/* Make sure everything makes sense */
335 
336 	/* First check the machine type is correct for
337 	   the requested image */
338         if (((perf_processor_interface == CUDA_INTF) &&
339 		       (interface_type != CUDA_INTF)) ||
340 	    ((perf_processor_interface == ONYX_INTF) &&
341 	               (interface_type != ONYX_INTF)))
342 		return -EINVAL;
343 
344 	/* Next check to make sure the requested image
345 	   is valid */
346 	if (((interface_type == CUDA_INTF) &&
347 		       (test >= MAX_CUDA_IMAGES)) ||
348 	    ((interface_type == ONYX_INTF) &&
349 		       (test >= MAX_ONYX_IMAGES)))
350 		return -EINVAL;
351 
352 	/* Copy the image into the processor */
353 	if (interface_type == CUDA_INTF)
354 		return perf_config(cuda_images[test]);
355 	else
356 		return perf_config(onyx_images[test]);
357 
358 	return count;
359 }
360 
361 /*
362  * Patch the images that need to know the IVA addresses.
363  */
364 static void perf_patch_images(void)
365 {
366 #if 0 /* FIXME!! */
367 /*
368  * NOTE:  this routine is VERY specific to the current TLB image.
369  * If the image is changed, this routine might also need to be changed.
370  */
371 	extern void $i_itlb_miss_2_0();
372 	extern void $i_dtlb_miss_2_0();
373 	extern void PA2_0_iva();
374 
375 	/*
376 	 * We can only use the lower 32-bits, the upper 32-bits should be 0
377 	 * anyway given this is in the kernel
378 	 */
379 	uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
380 	uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
381 	uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
382 
383 	if (perf_processor_interface == ONYX_INTF) {
384 		/* clear last 2 bytes */
385 		onyx_images[TLBMISS][15] &= 0xffffff00;
386 		/* set 2 bytes */
387 		onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
388 		onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
389 		onyx_images[TLBMISS][17] = itlb_addr;
390 
391 		/* clear last 2 bytes */
392 		onyx_images[TLBHANDMISS][15] &= 0xffffff00;
393 		/* set 2 bytes */
394 		onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
395 		onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
396 		onyx_images[TLBHANDMISS][17] = itlb_addr;
397 
398 		/* clear last 2 bytes */
399 		onyx_images[BIG_CPI][15] &= 0xffffff00;
400 		/* set 2 bytes */
401 		onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
402 		onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
403 		onyx_images[BIG_CPI][17] = itlb_addr;
404 
405 	    onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
406 	 	onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
407 		onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
408 
409 
410 	} else if (perf_processor_interface == CUDA_INTF) {
411 		/* Cuda interface */
412 		cuda_images[TLBMISS][16] =
413 			(cuda_images[TLBMISS][16]&0xffff0000) |
414 			((dtlb_addr >> 8)&0x0000ffff);
415 		cuda_images[TLBMISS][17] =
416 			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
417 		cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
418 
419 		cuda_images[TLBHANDMISS][16] =
420 			(cuda_images[TLBHANDMISS][16]&0xffff0000) |
421 			((dtlb_addr >> 8)&0x0000ffff);
422 		cuda_images[TLBHANDMISS][17] =
423 			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
424 		cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
425 
426 		cuda_images[BIG_CPI][16] =
427 			(cuda_images[BIG_CPI][16]&0xffff0000) |
428 			((dtlb_addr >> 8)&0x0000ffff);
429 		cuda_images[BIG_CPI][17] =
430 			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
431 		cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
432 	} else {
433 		/* Unknown type */
434 	}
435 #endif
436 }
437 
438 
439 /*
440  * ioctl routine
441  * All routines effect the processor that they are executed on.  Thus you
442  * must be running on the processor that you wish to change.
443  */
444 
445 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
446 {
447 	long error_start;
448 	uint32_t raddr[4];
449 	int error = 0;
450 
451 	switch (cmd) {
452 
453 	    case PA_PERF_ON:
454 			/* Start the counters */
455 			perf_start_counters();
456 			break;
457 
458 	    case PA_PERF_OFF:
459 			error_start = perf_stop_counters(raddr);
460 			if (error_start != 0) {
461 				printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
462 				error = -EFAULT;
463 				break;
464 			}
465 
466 			/* copy out the Counters */
467 			if (copy_to_user((void __user *)arg, raddr,
468 					sizeof (raddr)) != 0) {
469 				error =  -EFAULT;
470 				break;
471 			}
472 			break;
473 
474 	    case PA_PERF_VERSION:
475   	  		/* Return the version # */
476 			error = put_user(PERF_VERSION, (int *)arg);
477 			break;
478 
479 	    default:
480   	 		error = -ENOTTY;
481 	}
482 
483 	return error;
484 }
485 
486 static const struct file_operations perf_fops = {
487 	.llseek = no_llseek,
488 	.read = perf_read,
489 	.write = perf_write,
490 	.unlocked_ioctl = perf_ioctl,
491 	.compat_ioctl = perf_ioctl,
492 	.open = perf_open,
493 	.release = perf_release
494 };
495 
496 static struct miscdevice perf_dev = {
497 	MISC_DYNAMIC_MINOR,
498 	PA_PERF_DEV,
499 	&perf_fops
500 };
501 
502 /*
503  * Initialize the module
504  */
505 static int __init perf_init(void)
506 {
507 	int ret;
508 
509 	/* Determine correct processor interface to use */
510 	bitmask_array = perf_bitmasks;
511 
512 	if (boot_cpu_data.cpu_type == pcxu ||
513 	    boot_cpu_data.cpu_type == pcxu_) {
514 		perf_processor_interface = ONYX_INTF;
515 	} else if (boot_cpu_data.cpu_type == pcxw ||
516 		 boot_cpu_data.cpu_type == pcxw_ ||
517 		 boot_cpu_data.cpu_type == pcxw2 ||
518 		 boot_cpu_data.cpu_type == mako ||
519 		 boot_cpu_data.cpu_type == mako2) {
520 		perf_processor_interface = CUDA_INTF;
521 		if (boot_cpu_data.cpu_type == pcxw2 ||
522 		    boot_cpu_data.cpu_type == mako ||
523 		    boot_cpu_data.cpu_type == mako2)
524 			bitmask_array = perf_bitmasks_piranha;
525 	} else {
526 		perf_processor_interface = UNKNOWN_INTF;
527 		printk("Performance monitoring counters not supported on this processor\n");
528 		return -ENODEV;
529 	}
530 
531 	ret = misc_register(&perf_dev);
532 	if (ret) {
533 		printk(KERN_ERR "Performance monitoring counters: "
534 			"cannot register misc device.\n");
535 		return ret;
536 	}
537 
538 	/* Patch the images to match the system */
539     	perf_patch_images();
540 
541 	spin_lock_init(&perf_lock);
542 
543 	/* TODO: this only lets us access the first cpu.. what to do for SMP? */
544 	cpu_device = per_cpu(cpu_data, 0).dev;
545 	printk("Performance monitoring counters enabled for %s\n",
546 		per_cpu(cpu_data, 0).dev->name);
547 
548 	return 0;
549 }
550 
551 /*
552  * perf_start_counters(void)
553  *
554  * Start the counters.
555  */
556 static void perf_start_counters(void)
557 {
558 	/* Enable performance monitor counters */
559 	perf_intrigue_enable_perf_counters();
560 }
561 
562 /*
563  * perf_stop_counters
564  *
565  * Stop the performance counters and save counts
566  * in a per_processor array.
567  */
568 static int perf_stop_counters(uint32_t *raddr)
569 {
570 	uint64_t userbuf[MAX_RDR_WORDS];
571 
572 	/* Disable performance counters */
573 	perf_intrigue_disable_perf_counters();
574 
575 	if (perf_processor_interface == ONYX_INTF) {
576 		uint64_t tmp64;
577 		/*
578 		 * Read the counters
579 		 */
580 		if (!perf_rdr_read_ubuf(16, userbuf))
581 			return -13;
582 
583 		/* Counter0 is bits 1398 to 1429 */
584 		tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
585 		tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
586 		/* OR sticky0 (bit 1430) to counter0 bit 32 */
587 		tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
588 		raddr[0] = (uint32_t)tmp64;
589 
590 		/* Counter1 is bits 1431 to 1462 */
591 		tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
592 		/* OR sticky1 (bit 1463) to counter1 bit 32 */
593 		tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
594 		raddr[1] = (uint32_t)tmp64;
595 
596 		/* Counter2 is bits 1464 to 1495 */
597 		tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
598 		tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
599 		/* OR sticky2 (bit 1496) to counter2 bit 32 */
600 		tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
601 		raddr[2] = (uint32_t)tmp64;
602 
603 		/* Counter3 is bits 1497 to 1528 */
604 		tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
605 		/* OR sticky3 (bit 1529) to counter3 bit 32 */
606 		tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
607 		raddr[3] = (uint32_t)tmp64;
608 
609 		/*
610 		 * Zero out the counters
611 		 */
612 
613 		/*
614 		 * The counters and sticky-bits comprise the last 132 bits
615 		 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
616 		 * out the easy way: zero out last 10 bits of dword 21,
617 		 * all of dword 22 and 58 bits (plus 6 don't care bits) of
618 		 * dword 23.
619 		 */
620 		userbuf[21] &= 0xfffffffffffffc00ul;	/* 0 to last 10 bits */
621 		userbuf[22] = 0;
622 		userbuf[23] = 0;
623 
624 		/*
625 		 * Write back the zeroed bytes + the image given
626 		 * the read was destructive.
627 		 */
628 		perf_rdr_write(16, userbuf);
629 	} else {
630 
631 		/*
632 		 * Read RDR-15 which contains the counters and sticky bits
633 		 */
634 		if (!perf_rdr_read_ubuf(15, userbuf)) {
635 			return -13;
636 		}
637 
638 		/*
639 		 * Clear out the counters
640 		 */
641 		perf_rdr_clear(15);
642 
643 		/*
644 		 * Copy the counters
645 		 */
646 		raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
647 		raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
648 		raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
649 		raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
650 	}
651 
652 	return 0;
653 }
654 
655 /*
656  * perf_rdr_get_entry
657  *
658  * Retrieve a pointer to the description of what this
659  * RDR contains.
660  */
661 static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
662 {
663 	if (perf_processor_interface == ONYX_INTF) {
664 		return &perf_rdr_tbl_U[rdr_num];
665 	} else {
666 		return &perf_rdr_tbl_W[rdr_num];
667 	}
668 }
669 
670 /*
671  * perf_rdr_read_ubuf
672  *
673  * Read the RDR value into the buffer specified.
674  */
675 static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer)
676 {
677 	uint64_t	data, data_mask = 0;
678 	uint32_t	width, xbits, i;
679 	const struct rdr_tbl_ent *tentry;
680 
681 	tentry = perf_rdr_get_entry(rdr_num);
682 	if ((width = tentry->width) == 0)
683 		return 0;
684 
685 	/* Clear out buffer */
686 	i = tentry->num_words;
687 	while (i--) {
688 		buffer[i] = 0;
689 	}
690 
691 	/* Check for bits an even number of 64 */
692 	if ((xbits = width & 0x03f) != 0) {
693 		data_mask = 1;
694 		data_mask <<= (64 - xbits);
695 		data_mask--;
696 	}
697 
698 	/* Grab all of the data */
699 	i = tentry->num_words;
700 	while (i--) {
701 
702 		if (perf_processor_interface == ONYX_INTF) {
703 			data = perf_rdr_shift_in_U(rdr_num, width);
704 		} else {
705 			data = perf_rdr_shift_in_W(rdr_num, width);
706 		}
707 		if (xbits) {
708 			buffer[i] |= (data << (64 - xbits));
709 			if (i) {
710 				buffer[i-1] |= ((data >> xbits) & data_mask);
711 			}
712 		} else {
713 			buffer[i] = data;
714 		}
715 	}
716 
717 	return 1;
718 }
719 
720 /*
721  * perf_rdr_clear
722  *
723  * Zero out the given RDR register
724  */
725 static int perf_rdr_clear(uint32_t	rdr_num)
726 {
727 	const struct rdr_tbl_ent *tentry;
728 	int32_t		i;
729 
730 	tentry = perf_rdr_get_entry(rdr_num);
731 
732 	if (tentry->width == 0) {
733 		return -1;
734 	}
735 
736 	i = tentry->num_words;
737 	while (i--) {
738 		if (perf_processor_interface == ONYX_INTF) {
739 			perf_rdr_shift_out_U(rdr_num, 0UL);
740 		} else {
741 			perf_rdr_shift_out_W(rdr_num, 0UL);
742 		}
743 	}
744 
745 	return 0;
746 }
747 
748 
749 /*
750  * perf_write_image
751  *
752  * Write the given image out to the processor
753  */
754 static int perf_write_image(uint64_t *memaddr)
755 {
756 	uint64_t buffer[MAX_RDR_WORDS];
757 	uint64_t *bptr;
758 	uint32_t dwords;
759 	const uint32_t *intrigue_rdr;
760 	const uint64_t *intrigue_bitmask;
761 	uint64_t tmp64;
762 	void __iomem *runway;
763 	const struct rdr_tbl_ent *tentry;
764 	int i;
765 
766 	/* Clear out counters */
767 	if (perf_processor_interface == ONYX_INTF) {
768 
769 		perf_rdr_clear(16);
770 
771 		/* Toggle performance monitor */
772 		perf_intrigue_enable_perf_counters();
773 		perf_intrigue_disable_perf_counters();
774 
775 		intrigue_rdr = perf_rdrs_U;
776 	} else {
777 		perf_rdr_clear(15);
778 		intrigue_rdr = perf_rdrs_W;
779 	}
780 
781 	/* Write all RDRs */
782 	while (*intrigue_rdr != -1) {
783 		tentry = perf_rdr_get_entry(*intrigue_rdr);
784 		perf_rdr_read_ubuf(*intrigue_rdr, buffer);
785 		bptr   = &buffer[0];
786 		dwords = tentry->num_words;
787 		if (tentry->write_control) {
788 			intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
789 			while (dwords--) {
790 				tmp64 = *intrigue_bitmask & *memaddr++;
791 				tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
792 				*bptr++ = tmp64;
793 			}
794 		} else {
795 			while (dwords--) {
796 				*bptr++ = *memaddr++;
797 			}
798 		}
799 
800 		perf_rdr_write(*intrigue_rdr, buffer);
801 		intrigue_rdr++;
802 	}
803 
804 	/*
805 	 * Now copy out the Runway stuff which is not in RDRs
806 	 */
807 
808 	if (cpu_device == NULL)
809 	{
810 		printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
811 		return -1;
812 	}
813 
814 	runway = ioremap_nocache(cpu_device->hpa.start, 4096);
815 
816 	/* Merge intrigue bits into Runway STATUS 0 */
817 	tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
818 	__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
819 		     runway + RUNWAY_STATUS);
820 
821 	/* Write RUNWAY DEBUG registers */
822 	for (i = 0; i < 8; i++) {
823 		__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
824 	}
825 
826 	return 0;
827 }
828 
829 /*
830  * perf_rdr_write
831  *
832  * Write the given RDR register with the contents
833  * of the given buffer.
834  */
835 static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
836 {
837 	const struct rdr_tbl_ent *tentry;
838 	int32_t		i;
839 
840 printk("perf_rdr_write\n");
841 	tentry = perf_rdr_get_entry(rdr_num);
842 	if (tentry->width == 0) { return; }
843 
844 	i = tentry->num_words;
845 	while (i--) {
846 		if (perf_processor_interface == ONYX_INTF) {
847 			perf_rdr_shift_out_U(rdr_num, buffer[i]);
848 		} else {
849 			perf_rdr_shift_out_W(rdr_num, buffer[i]);
850 		}
851 	}
852 printk("perf_rdr_write done\n");
853 }
854 
855 module_init(perf_init);
856