xref: /openbmc/linux/arch/parisc/kernel/module.c (revision f8e17c17)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*    Kernel dynamically loadable module help for PARISC.
3  *
4  *    The best reference for this stuff is probably the Processor-
5  *    Specific ELF Supplement for PA-RISC:
6  *        http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
7  *
8  *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
9  *    Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10  *    Copyright (C) 2008 Helge Deller <deller@gmx.de>
11  *
12  *    Notes:
13  *    - PLT stub handling
14  *      On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15  *      ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16  *      fail to reach their PLT stub if we only create one big stub array for
17  *      all sections at the beginning of the core or init section.
18  *      Instead we now insert individual PLT stub entries directly in front of
19  *      of the code sections where the stubs are actually called.
20  *      This reduces the distance between the PCREL location and the stub entry
21  *      so that the relocations can be fulfilled.
22  *      While calculating the final layout of the kernel module in memory, the
23  *      kernel module loader calls arch_mod_section_prepend() to request the
24  *      to be reserved amount of memory in front of each individual section.
25  *
26  *    - SEGREL32 handling
27  *      We are not doing SEGREL32 handling correctly. According to the ABI, we
28  *      should do a value offset, like this:
29  *			if (in_init(me, (void *)val))
30  *				val -= (uint32_t)me->init_layout.base;
31  *			else
32  *				val -= (uint32_t)me->core_layout.base;
33  *	However, SEGREL32 is used only for PARISC unwind entries, and we want
34  *	those entries to have an absolute address, and not just an offset.
35  *
36  *	The unwind table mechanism has the ability to specify an offset for
37  *	the unwind table; however, because we split off the init functions into
38  *	a different piece of memory, it is not possible to do this using a
39  *	single offset. Instead, we use the above hack for now.
40  */
41 
42 #include <linux/moduleloader.h>
43 #include <linux/elf.h>
44 #include <linux/vmalloc.h>
45 #include <linux/fs.h>
46 #include <linux/ftrace.h>
47 #include <linux/string.h>
48 #include <linux/kernel.h>
49 #include <linux/bug.h>
50 #include <linux/mm.h>
51 #include <linux/slab.h>
52 
53 #include <asm/pgtable.h>
54 #include <asm/unwind.h>
55 #include <asm/sections.h>
56 
57 #define RELOC_REACHABLE(val, bits) \
58 	(( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 )  ||	\
59 	     ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
60 	0 : 1)
61 
62 #define CHECK_RELOC(val, bits) \
63 	if (!RELOC_REACHABLE(val, bits)) { \
64 		printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
65 		me->name, strtab + sym->st_name, (unsigned long)val, bits); \
66 		return -ENOEXEC;			\
67 	}
68 
69 /* Maximum number of GOT entries. We use a long displacement ldd from
70  * the bottom of the table, which has a maximum signed displacement of
71  * 0x3fff; however, since we're only going forward, this becomes
72  * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
73  * at most 1023 entries.
74  * To overcome this 14bit displacement with some kernel modules, we'll
75  * use instead the unusal 16bit displacement method (see reassemble_16a)
76  * which gives us a maximum positive displacement of 0x7fff, and as such
77  * allows us to allocate up to 4095 GOT entries. */
78 #define MAX_GOTS	4095
79 
80 /* three functions to determine where in the module core
81  * or init pieces the location is */
82 static inline int in_init(struct module *me, void *loc)
83 {
84 	return (loc >= me->init_layout.base &&
85 		loc <= (me->init_layout.base + me->init_layout.size));
86 }
87 
88 static inline int in_core(struct module *me, void *loc)
89 {
90 	return (loc >= me->core_layout.base &&
91 		loc <= (me->core_layout.base + me->core_layout.size));
92 }
93 
94 static inline int in_local(struct module *me, void *loc)
95 {
96 	return in_init(me, loc) || in_core(me, loc);
97 }
98 
99 #ifndef CONFIG_64BIT
100 struct got_entry {
101 	Elf32_Addr addr;
102 };
103 
104 struct stub_entry {
105 	Elf32_Word insns[2]; /* each stub entry has two insns */
106 };
107 #else
108 struct got_entry {
109 	Elf64_Addr addr;
110 };
111 
112 struct stub_entry {
113 	Elf64_Word insns[4]; /* each stub entry has four insns */
114 };
115 #endif
116 
117 /* Field selection types defined by hppa */
118 #define rnd(x)			(((x)+0x1000)&~0x1fff)
119 /* fsel: full 32 bits */
120 #define fsel(v,a)		((v)+(a))
121 /* lsel: select left 21 bits */
122 #define lsel(v,a)		(((v)+(a))>>11)
123 /* rsel: select right 11 bits */
124 #define rsel(v,a)		(((v)+(a))&0x7ff)
125 /* lrsel with rounding of addend to nearest 8k */
126 #define lrsel(v,a)		(((v)+rnd(a))>>11)
127 /* rrsel with rounding of addend to nearest 8k */
128 #define rrsel(v,a)		((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
129 
130 #define mask(x,sz)		((x) & ~((1<<(sz))-1))
131 
132 
133 /* The reassemble_* functions prepare an immediate value for
134    insertion into an opcode. pa-risc uses all sorts of weird bitfields
135    in the instruction to hold the value.  */
136 static inline int sign_unext(int x, int len)
137 {
138 	int len_ones;
139 
140 	len_ones = (1 << len) - 1;
141 	return x & len_ones;
142 }
143 
144 static inline int low_sign_unext(int x, int len)
145 {
146 	int sign, temp;
147 
148 	sign = (x >> (len-1)) & 1;
149 	temp = sign_unext(x, len-1);
150 	return (temp << 1) | sign;
151 }
152 
153 static inline int reassemble_14(int as14)
154 {
155 	return (((as14 & 0x1fff) << 1) |
156 		((as14 & 0x2000) >> 13));
157 }
158 
159 static inline int reassemble_16a(int as16)
160 {
161 	int s, t;
162 
163 	/* Unusual 16-bit encoding, for wide mode only.  */
164 	t = (as16 << 1) & 0xffff;
165 	s = (as16 & 0x8000);
166 	return (t ^ s ^ (s >> 1)) | (s >> 15);
167 }
168 
169 
170 static inline int reassemble_17(int as17)
171 {
172 	return (((as17 & 0x10000) >> 16) |
173 		((as17 & 0x0f800) << 5) |
174 		((as17 & 0x00400) >> 8) |
175 		((as17 & 0x003ff) << 3));
176 }
177 
178 static inline int reassemble_21(int as21)
179 {
180 	return (((as21 & 0x100000) >> 20) |
181 		((as21 & 0x0ffe00) >> 8) |
182 		((as21 & 0x000180) << 7) |
183 		((as21 & 0x00007c) << 14) |
184 		((as21 & 0x000003) << 12));
185 }
186 
187 static inline int reassemble_22(int as22)
188 {
189 	return (((as22 & 0x200000) >> 21) |
190 		((as22 & 0x1f0000) << 5) |
191 		((as22 & 0x00f800) << 5) |
192 		((as22 & 0x000400) >> 8) |
193 		((as22 & 0x0003ff) << 3));
194 }
195 
196 void *module_alloc(unsigned long size)
197 {
198 	/* using RWX means less protection for modules, but it's
199 	 * easier than trying to map the text, data, init_text and
200 	 * init_data correctly */
201 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
202 				    GFP_KERNEL,
203 				    PAGE_KERNEL_RWX, 0, NUMA_NO_NODE,
204 				    __builtin_return_address(0));
205 }
206 
207 #ifndef CONFIG_64BIT
208 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
209 {
210 	return 0;
211 }
212 
213 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
214 {
215 	return 0;
216 }
217 
218 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
219 {
220 	unsigned long cnt = 0;
221 
222 	for (; n > 0; n--, rela++)
223 	{
224 		switch (ELF32_R_TYPE(rela->r_info)) {
225 			case R_PARISC_PCREL17F:
226 			case R_PARISC_PCREL22F:
227 				cnt++;
228 		}
229 	}
230 
231 	return cnt;
232 }
233 #else
234 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
235 {
236 	unsigned long cnt = 0;
237 
238 	for (; n > 0; n--, rela++)
239 	{
240 		switch (ELF64_R_TYPE(rela->r_info)) {
241 			case R_PARISC_LTOFF21L:
242 			case R_PARISC_LTOFF14R:
243 			case R_PARISC_PCREL22F:
244 				cnt++;
245 		}
246 	}
247 
248 	return cnt;
249 }
250 
251 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
252 {
253 	unsigned long cnt = 0;
254 
255 	for (; n > 0; n--, rela++)
256 	{
257 		switch (ELF64_R_TYPE(rela->r_info)) {
258 			case R_PARISC_FPTR64:
259 				cnt++;
260 		}
261 	}
262 
263 	return cnt;
264 }
265 
266 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
267 {
268 	unsigned long cnt = 0;
269 
270 	for (; n > 0; n--, rela++)
271 	{
272 		switch (ELF64_R_TYPE(rela->r_info)) {
273 			case R_PARISC_PCREL22F:
274 				cnt++;
275 		}
276 	}
277 
278 	return cnt;
279 }
280 #endif
281 
282 void module_arch_freeing_init(struct module *mod)
283 {
284 	kfree(mod->arch.section);
285 	mod->arch.section = NULL;
286 }
287 
288 /* Additional bytes needed in front of individual sections */
289 unsigned int arch_mod_section_prepend(struct module *mod,
290 				      unsigned int section)
291 {
292 	/* size needed for all stubs of this section (including
293 	 * one additional for correct alignment of the stubs) */
294 	return (mod->arch.section[section].stub_entries + 1)
295 		* sizeof(struct stub_entry);
296 }
297 
298 #define CONST
299 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
300 			      CONST Elf_Shdr *sechdrs,
301 			      CONST char *secstrings,
302 			      struct module *me)
303 {
304 	unsigned long gots = 0, fdescs = 0, len;
305 	unsigned int i;
306 
307 	len = hdr->e_shnum * sizeof(me->arch.section[0]);
308 	me->arch.section = kzalloc(len, GFP_KERNEL);
309 	if (!me->arch.section)
310 		return -ENOMEM;
311 
312 	for (i = 1; i < hdr->e_shnum; i++) {
313 		const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
314 		unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
315 		unsigned int count, s;
316 
317 		if (strncmp(secstrings + sechdrs[i].sh_name,
318 			    ".PARISC.unwind", 14) == 0)
319 			me->arch.unwind_section = i;
320 
321 		if (sechdrs[i].sh_type != SHT_RELA)
322 			continue;
323 
324 		/* some of these are not relevant for 32-bit/64-bit
325 		 * we leave them here to make the code common. the
326 		 * compiler will do its thing and optimize out the
327 		 * stuff we don't need
328 		 */
329 		gots += count_gots(rels, nrels);
330 		fdescs += count_fdescs(rels, nrels);
331 
332 		/* XXX: By sorting the relocs and finding duplicate entries
333 		 *  we could reduce the number of necessary stubs and save
334 		 *  some memory. */
335 		count = count_stubs(rels, nrels);
336 		if (!count)
337 			continue;
338 
339 		/* so we need relocation stubs. reserve necessary memory. */
340 		/* sh_info gives the section for which we need to add stubs. */
341 		s = sechdrs[i].sh_info;
342 
343 		/* each code section should only have one relocation section */
344 		WARN_ON(me->arch.section[s].stub_entries);
345 
346 		/* store number of stubs we need for this section */
347 		me->arch.section[s].stub_entries += count;
348 	}
349 
350 	/* align things a bit */
351 	me->core_layout.size = ALIGN(me->core_layout.size, 16);
352 	me->arch.got_offset = me->core_layout.size;
353 	me->core_layout.size += gots * sizeof(struct got_entry);
354 
355 	me->core_layout.size = ALIGN(me->core_layout.size, 16);
356 	me->arch.fdesc_offset = me->core_layout.size;
357 	me->core_layout.size += fdescs * sizeof(Elf_Fdesc);
358 
359 	me->arch.got_max = gots;
360 	me->arch.fdesc_max = fdescs;
361 
362 	return 0;
363 }
364 
365 #ifdef CONFIG_64BIT
366 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
367 {
368 	unsigned int i;
369 	struct got_entry *got;
370 
371 	value += addend;
372 
373 	BUG_ON(value == 0);
374 
375 	got = me->core_layout.base + me->arch.got_offset;
376 	for (i = 0; got[i].addr; i++)
377 		if (got[i].addr == value)
378 			goto out;
379 
380 	BUG_ON(++me->arch.got_count > me->arch.got_max);
381 
382 	got[i].addr = value;
383  out:
384 	pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry),
385 	       value);
386 	return i * sizeof(struct got_entry);
387 }
388 #endif /* CONFIG_64BIT */
389 
390 #ifdef CONFIG_64BIT
391 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
392 {
393 	Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset;
394 
395 	if (!value) {
396 		printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
397 		return 0;
398 	}
399 
400 	/* Look for existing fdesc entry. */
401 	while (fdesc->addr) {
402 		if (fdesc->addr == value)
403 			return (Elf_Addr)fdesc;
404 		fdesc++;
405 	}
406 
407 	BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
408 
409 	/* Create new one */
410 	fdesc->addr = value;
411 	fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
412 	return (Elf_Addr)fdesc;
413 }
414 #endif /* CONFIG_64BIT */
415 
416 enum elf_stub_type {
417 	ELF_STUB_GOT,
418 	ELF_STUB_MILLI,
419 	ELF_STUB_DIRECT,
420 };
421 
422 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
423 	enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
424 {
425 	struct stub_entry *stub;
426 	int __maybe_unused d;
427 
428 	/* initialize stub_offset to point in front of the section */
429 	if (!me->arch.section[targetsec].stub_offset) {
430 		loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
431 				sizeof(struct stub_entry);
432 		/* get correct alignment for the stubs */
433 		loc0 = ALIGN(loc0, sizeof(struct stub_entry));
434 		me->arch.section[targetsec].stub_offset = loc0;
435 	}
436 
437 	/* get address of stub entry */
438 	stub = (void *) me->arch.section[targetsec].stub_offset;
439 	me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
440 
441 	/* do not write outside available stub area */
442 	BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
443 
444 
445 #ifndef CONFIG_64BIT
446 /* for 32-bit the stub looks like this:
447  * 	ldil L'XXX,%r1
448  * 	be,n R'XXX(%sr4,%r1)
449  */
450 	//value = *(unsigned long *)((value + addend) & ~3); /* why? */
451 
452 	stub->insns[0] = 0x20200000;	/* ldil L'XXX,%r1	*/
453 	stub->insns[1] = 0xe0202002;	/* be,n R'XXX(%sr4,%r1)	*/
454 
455 	stub->insns[0] |= reassemble_21(lrsel(value, addend));
456 	stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
457 
458 #else
459 /* for 64-bit we have three kinds of stubs:
460  * for normal function calls:
461  * 	ldd 0(%dp),%dp
462  * 	ldd 10(%dp), %r1
463  * 	bve (%r1)
464  * 	ldd 18(%dp), %dp
465  *
466  * for millicode:
467  * 	ldil 0, %r1
468  * 	ldo 0(%r1), %r1
469  * 	ldd 10(%r1), %r1
470  * 	bve,n (%r1)
471  *
472  * for direct branches (jumps between different section of the
473  * same module):
474  *	ldil 0, %r1
475  *	ldo 0(%r1), %r1
476  *	bve,n (%r1)
477  */
478 	switch (stub_type) {
479 	case ELF_STUB_GOT:
480 		d = get_got(me, value, addend);
481 		if (d <= 15) {
482 			/* Format 5 */
483 			stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp	*/
484 			stub->insns[0] |= low_sign_unext(d, 5) << 16;
485 		} else {
486 			/* Format 3 */
487 			stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp	*/
488 			stub->insns[0] |= reassemble_16a(d);
489 		}
490 		stub->insns[1] = 0x53610020;	/* ldd 10(%dp),%r1	*/
491 		stub->insns[2] = 0xe820d000;	/* bve (%r1)		*/
492 		stub->insns[3] = 0x537b0030;	/* ldd 18(%dp),%dp	*/
493 		break;
494 	case ELF_STUB_MILLI:
495 		stub->insns[0] = 0x20200000;	/* ldil 0,%r1		*/
496 		stub->insns[1] = 0x34210000;	/* ldo 0(%r1), %r1	*/
497 		stub->insns[2] = 0x50210020;	/* ldd 10(%r1),%r1	*/
498 		stub->insns[3] = 0xe820d002;	/* bve,n (%r1)		*/
499 
500 		stub->insns[0] |= reassemble_21(lrsel(value, addend));
501 		stub->insns[1] |= reassemble_14(rrsel(value, addend));
502 		break;
503 	case ELF_STUB_DIRECT:
504 		stub->insns[0] = 0x20200000;    /* ldil 0,%r1           */
505 		stub->insns[1] = 0x34210000;    /* ldo 0(%r1), %r1      */
506 		stub->insns[2] = 0xe820d002;    /* bve,n (%r1)          */
507 
508 		stub->insns[0] |= reassemble_21(lrsel(value, addend));
509 		stub->insns[1] |= reassemble_14(rrsel(value, addend));
510 		break;
511 	}
512 
513 #endif
514 
515 	return (Elf_Addr)stub;
516 }
517 
518 #ifndef CONFIG_64BIT
519 int apply_relocate_add(Elf_Shdr *sechdrs,
520 		       const char *strtab,
521 		       unsigned int symindex,
522 		       unsigned int relsec,
523 		       struct module *me)
524 {
525 	int i;
526 	Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
527 	Elf32_Sym *sym;
528 	Elf32_Word *loc;
529 	Elf32_Addr val;
530 	Elf32_Sword addend;
531 	Elf32_Addr dot;
532 	Elf_Addr loc0;
533 	unsigned int targetsec = sechdrs[relsec].sh_info;
534 	//unsigned long dp = (unsigned long)$global$;
535 	register unsigned long dp asm ("r27");
536 
537 	pr_debug("Applying relocate section %u to %u\n", relsec,
538 	       targetsec);
539 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
540 		/* This is where to make the change */
541 		loc = (void *)sechdrs[targetsec].sh_addr
542 		      + rel[i].r_offset;
543 		/* This is the start of the target section */
544 		loc0 = sechdrs[targetsec].sh_addr;
545 		/* This is the symbol it is referring to */
546 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
547 			+ ELF32_R_SYM(rel[i].r_info);
548 		if (!sym->st_value) {
549 			printk(KERN_WARNING "%s: Unknown symbol %s\n",
550 			       me->name, strtab + sym->st_name);
551 			return -ENOENT;
552 		}
553 		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
554 		dot =  (Elf32_Addr)loc & ~0x03;
555 
556 		val = sym->st_value;
557 		addend = rel[i].r_addend;
558 
559 #if 0
560 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
561 		pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
562 			strtab + sym->st_name,
563 			(uint32_t)loc, val, addend,
564 			r(R_PARISC_PLABEL32)
565 			r(R_PARISC_DIR32)
566 			r(R_PARISC_DIR21L)
567 			r(R_PARISC_DIR14R)
568 			r(R_PARISC_SEGREL32)
569 			r(R_PARISC_DPREL21L)
570 			r(R_PARISC_DPREL14R)
571 			r(R_PARISC_PCREL17F)
572 			r(R_PARISC_PCREL22F)
573 			"UNKNOWN");
574 #undef r
575 #endif
576 
577 		switch (ELF32_R_TYPE(rel[i].r_info)) {
578 		case R_PARISC_PLABEL32:
579 			/* 32-bit function address */
580 			/* no function descriptors... */
581 			*loc = fsel(val, addend);
582 			break;
583 		case R_PARISC_DIR32:
584 			/* direct 32-bit ref */
585 			*loc = fsel(val, addend);
586 			break;
587 		case R_PARISC_DIR21L:
588 			/* left 21 bits of effective address */
589 			val = lrsel(val, addend);
590 			*loc = mask(*loc, 21) | reassemble_21(val);
591 			break;
592 		case R_PARISC_DIR14R:
593 			/* right 14 bits of effective address */
594 			val = rrsel(val, addend);
595 			*loc = mask(*loc, 14) | reassemble_14(val);
596 			break;
597 		case R_PARISC_SEGREL32:
598 			/* 32-bit segment relative address */
599 			/* See note about special handling of SEGREL32 at
600 			 * the beginning of this file.
601 			 */
602 			*loc = fsel(val, addend);
603 			break;
604 		case R_PARISC_SECREL32:
605 			/* 32-bit section relative address. */
606 			*loc = fsel(val, addend);
607 			break;
608 		case R_PARISC_DPREL21L:
609 			/* left 21 bit of relative address */
610 			val = lrsel(val - dp, addend);
611 			*loc = mask(*loc, 21) | reassemble_21(val);
612 			break;
613 		case R_PARISC_DPREL14R:
614 			/* right 14 bit of relative address */
615 			val = rrsel(val - dp, addend);
616 			*loc = mask(*loc, 14) | reassemble_14(val);
617 			break;
618 		case R_PARISC_PCREL17F:
619 			/* 17-bit PC relative address */
620 			/* calculate direct call offset */
621 			val += addend;
622 			val = (val - dot - 8)/4;
623 			if (!RELOC_REACHABLE(val, 17)) {
624 				/* direct distance too far, create
625 				 * stub entry instead */
626 				val = get_stub(me, sym->st_value, addend,
627 					ELF_STUB_DIRECT, loc0, targetsec);
628 				val = (val - dot - 8)/4;
629 				CHECK_RELOC(val, 17);
630 			}
631 			*loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
632 			break;
633 		case R_PARISC_PCREL22F:
634 			/* 22-bit PC relative address; only defined for pa20 */
635 			/* calculate direct call offset */
636 			val += addend;
637 			val = (val - dot - 8)/4;
638 			if (!RELOC_REACHABLE(val, 22)) {
639 				/* direct distance too far, create
640 				 * stub entry instead */
641 				val = get_stub(me, sym->st_value, addend,
642 					ELF_STUB_DIRECT, loc0, targetsec);
643 				val = (val - dot - 8)/4;
644 				CHECK_RELOC(val, 22);
645 			}
646 			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
647 			break;
648 		case R_PARISC_PCREL32:
649 			/* 32-bit PC relative address */
650 			*loc = val - dot - 8 + addend;
651 			break;
652 
653 		default:
654 			printk(KERN_ERR "module %s: Unknown relocation: %u\n",
655 			       me->name, ELF32_R_TYPE(rel[i].r_info));
656 			return -ENOEXEC;
657 		}
658 	}
659 
660 	return 0;
661 }
662 
663 #else
664 int apply_relocate_add(Elf_Shdr *sechdrs,
665 		       const char *strtab,
666 		       unsigned int symindex,
667 		       unsigned int relsec,
668 		       struct module *me)
669 {
670 	int i;
671 	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
672 	Elf64_Sym *sym;
673 	Elf64_Word *loc;
674 	Elf64_Xword *loc64;
675 	Elf64_Addr val;
676 	Elf64_Sxword addend;
677 	Elf64_Addr dot;
678 	Elf_Addr loc0;
679 	unsigned int targetsec = sechdrs[relsec].sh_info;
680 
681 	pr_debug("Applying relocate section %u to %u\n", relsec,
682 	       targetsec);
683 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
684 		/* This is where to make the change */
685 		loc = (void *)sechdrs[targetsec].sh_addr
686 		      + rel[i].r_offset;
687 		/* This is the start of the target section */
688 		loc0 = sechdrs[targetsec].sh_addr;
689 		/* This is the symbol it is referring to */
690 		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
691 			+ ELF64_R_SYM(rel[i].r_info);
692 		if (!sym->st_value) {
693 			printk(KERN_WARNING "%s: Unknown symbol %s\n",
694 			       me->name, strtab + sym->st_name);
695 			return -ENOENT;
696 		}
697 		//dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
698 		dot = (Elf64_Addr)loc & ~0x03;
699 		loc64 = (Elf64_Xword *)loc;
700 
701 		val = sym->st_value;
702 		addend = rel[i].r_addend;
703 
704 #if 0
705 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
706 		printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
707 			strtab + sym->st_name,
708 			loc, val, addend,
709 			r(R_PARISC_LTOFF14R)
710 			r(R_PARISC_LTOFF21L)
711 			r(R_PARISC_PCREL22F)
712 			r(R_PARISC_DIR64)
713 			r(R_PARISC_SEGREL32)
714 			r(R_PARISC_FPTR64)
715 			"UNKNOWN");
716 #undef r
717 #endif
718 
719 		switch (ELF64_R_TYPE(rel[i].r_info)) {
720 		case R_PARISC_LTOFF21L:
721 			/* LT-relative; left 21 bits */
722 			val = get_got(me, val, addend);
723 			pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
724 			       strtab + sym->st_name,
725 			       loc, val);
726 			val = lrsel(val, 0);
727 			*loc = mask(*loc, 21) | reassemble_21(val);
728 			break;
729 		case R_PARISC_LTOFF14R:
730 			/* L(ltoff(val+addend)) */
731 			/* LT-relative; right 14 bits */
732 			val = get_got(me, val, addend);
733 			val = rrsel(val, 0);
734 			pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
735 			       strtab + sym->st_name,
736 			       loc, val);
737 			*loc = mask(*loc, 14) | reassemble_14(val);
738 			break;
739 		case R_PARISC_PCREL22F:
740 			/* PC-relative; 22 bits */
741 			pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
742 			       strtab + sym->st_name,
743 			       loc, val);
744 			val += addend;
745 			/* can we reach it locally? */
746 			if (in_local(me, (void *)val)) {
747 				/* this is the case where the symbol is local
748 				 * to the module, but in a different section,
749 				 * so stub the jump in case it's more than 22
750 				 * bits away */
751 				val = (val - dot - 8)/4;
752 				if (!RELOC_REACHABLE(val, 22)) {
753 					/* direct distance too far, create
754 					 * stub entry instead */
755 					val = get_stub(me, sym->st_value,
756 						addend, ELF_STUB_DIRECT,
757 						loc0, targetsec);
758 				} else {
759 					/* Ok, we can reach it directly. */
760 					val = sym->st_value;
761 					val += addend;
762 				}
763 			} else {
764 				val = sym->st_value;
765 				if (strncmp(strtab + sym->st_name, "$$", 2)
766 				    == 0)
767 					val = get_stub(me, val, addend, ELF_STUB_MILLI,
768 						       loc0, targetsec);
769 				else
770 					val = get_stub(me, val, addend, ELF_STUB_GOT,
771 						       loc0, targetsec);
772 			}
773 			pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
774 			       strtab + sym->st_name, loc, sym->st_value,
775 			       addend, val);
776 			val = (val - dot - 8)/4;
777 			CHECK_RELOC(val, 22);
778 			*loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
779 			break;
780 		case R_PARISC_PCREL32:
781 			/* 32-bit PC relative address */
782 			*loc = val - dot - 8 + addend;
783 			break;
784 		case R_PARISC_PCREL64:
785 			/* 64-bit PC relative address */
786 			*loc64 = val - dot - 8 + addend;
787 			break;
788 		case R_PARISC_DIR64:
789 			/* 64-bit effective address */
790 			*loc64 = val + addend;
791 			break;
792 		case R_PARISC_SEGREL32:
793 			/* 32-bit segment relative address */
794 			/* See note about special handling of SEGREL32 at
795 			 * the beginning of this file.
796 			 */
797 			*loc = fsel(val, addend);
798 			break;
799 		case R_PARISC_SECREL32:
800 			/* 32-bit section relative address. */
801 			*loc = fsel(val, addend);
802 			break;
803 		case R_PARISC_FPTR64:
804 			/* 64-bit function address */
805 			if(in_local(me, (void *)(val + addend))) {
806 				*loc64 = get_fdesc(me, val+addend);
807 				pr_debug("FDESC for %s at %llx points to %llx\n",
808 				       strtab + sym->st_name, *loc64,
809 				       ((Elf_Fdesc *)*loc64)->addr);
810 			} else {
811 				/* if the symbol is not local to this
812 				 * module then val+addend is a pointer
813 				 * to the function descriptor */
814 				pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
815 				       strtab + sym->st_name,
816 				       loc, val);
817 				*loc64 = val + addend;
818 			}
819 			break;
820 
821 		default:
822 			printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
823 			       me->name, ELF64_R_TYPE(rel[i].r_info));
824 			return -ENOEXEC;
825 		}
826 	}
827 	return 0;
828 }
829 #endif
830 
831 static void
832 register_unwind_table(struct module *me,
833 		      const Elf_Shdr *sechdrs)
834 {
835 	unsigned char *table, *end;
836 	unsigned long gp;
837 
838 	if (!me->arch.unwind_section)
839 		return;
840 
841 	table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
842 	end = table + sechdrs[me->arch.unwind_section].sh_size;
843 	gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset;
844 
845 	pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
846 	       me->arch.unwind_section, table, end, gp);
847 	me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
848 }
849 
850 static void
851 deregister_unwind_table(struct module *me)
852 {
853 	if (me->arch.unwind)
854 		unwind_table_remove(me->arch.unwind);
855 }
856 
857 int module_finalize(const Elf_Ehdr *hdr,
858 		    const Elf_Shdr *sechdrs,
859 		    struct module *me)
860 {
861 	int i;
862 	unsigned long nsyms;
863 	const char *strtab = NULL;
864 	const Elf_Shdr *s;
865 	char *secstrings;
866 	int symindex = -1;
867 	Elf_Sym *newptr, *oldptr;
868 	Elf_Shdr *symhdr = NULL;
869 #ifdef DEBUG
870 	Elf_Fdesc *entry;
871 	u32 *addr;
872 
873 	entry = (Elf_Fdesc *)me->init;
874 	printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
875 	       entry->gp, entry->addr);
876 	addr = (u32 *)entry->addr;
877 	printk("INSNS: %x %x %x %x\n",
878 	       addr[0], addr[1], addr[2], addr[3]);
879 	printk("got entries used %ld, gots max %ld\n"
880 	       "fdescs used %ld, fdescs max %ld\n",
881 	       me->arch.got_count, me->arch.got_max,
882 	       me->arch.fdesc_count, me->arch.fdesc_max);
883 #endif
884 
885 	register_unwind_table(me, sechdrs);
886 
887 	/* haven't filled in me->symtab yet, so have to find it
888 	 * ourselves */
889 	for (i = 1; i < hdr->e_shnum; i++) {
890 		if(sechdrs[i].sh_type == SHT_SYMTAB
891 		   && (sechdrs[i].sh_flags & SHF_ALLOC)) {
892 			int strindex = sechdrs[i].sh_link;
893 			symindex = i;
894 			/* FIXME: AWFUL HACK
895 			 * The cast is to drop the const from
896 			 * the sechdrs pointer */
897 			symhdr = (Elf_Shdr *)&sechdrs[i];
898 			strtab = (char *)sechdrs[strindex].sh_addr;
899 			break;
900 		}
901 	}
902 
903 	pr_debug("module %s: strtab %p, symhdr %p\n",
904 	       me->name, strtab, symhdr);
905 
906 	if(me->arch.got_count > MAX_GOTS) {
907 		printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
908 				me->name, me->arch.got_count, MAX_GOTS);
909 		return -EINVAL;
910 	}
911 
912 	kfree(me->arch.section);
913 	me->arch.section = NULL;
914 
915 	/* no symbol table */
916 	if(symhdr == NULL)
917 		return 0;
918 
919 	oldptr = (void *)symhdr->sh_addr;
920 	newptr = oldptr + 1;	/* we start counting at 1 */
921 	nsyms = symhdr->sh_size / sizeof(Elf_Sym);
922 	pr_debug("OLD num_symtab %lu\n", nsyms);
923 
924 	for (i = 1; i < nsyms; i++) {
925 		oldptr++;	/* note, count starts at 1 so preincrement */
926 		if(strncmp(strtab + oldptr->st_name,
927 			      ".L", 2) == 0)
928 			continue;
929 
930 		if(newptr != oldptr)
931 			*newptr++ = *oldptr;
932 		else
933 			newptr++;
934 
935 	}
936 	nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
937 	pr_debug("NEW num_symtab %lu\n", nsyms);
938 	symhdr->sh_size = nsyms * sizeof(Elf_Sym);
939 
940 	/* find .altinstructions section */
941 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
942 	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
943 		void *aseg = (void *) s->sh_addr;
944 		char *secname = secstrings + s->sh_name;
945 
946 		if (!strcmp(".altinstructions", secname))
947 			/* patch .altinstructions */
948 			apply_alternatives(aseg, aseg + s->sh_size, me->name);
949 
950 #ifdef CONFIG_DYNAMIC_FTRACE
951 		/* For 32 bit kernels we're compiling modules with
952 		 * -ffunction-sections so we must relocate the addresses in the
953 		 *  ftrace callsite section.
954 		 */
955 		if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
956 			int err;
957 			if (s->sh_type == SHT_REL)
958 				err = apply_relocate((Elf_Shdr *)sechdrs,
959 							strtab, symindex,
960 							s - sechdrs, me);
961 			else if (s->sh_type == SHT_RELA)
962 				err = apply_relocate_add((Elf_Shdr *)sechdrs,
963 							strtab, symindex,
964 							s - sechdrs, me);
965 			if (err)
966 				return err;
967 		}
968 #endif
969 	}
970 	return 0;
971 }
972 
973 void module_arch_cleanup(struct module *mod)
974 {
975 	deregister_unwind_table(mod);
976 }
977 
978 #ifdef CONFIG_64BIT
979 void *dereference_module_function_descriptor(struct module *mod, void *ptr)
980 {
981 	unsigned long start_opd = (Elf64_Addr)mod->core_layout.base +
982 				   mod->arch.fdesc_offset;
983 	unsigned long end_opd = start_opd +
984 				mod->arch.fdesc_count * sizeof(Elf64_Fdesc);
985 
986 	if (ptr < (void *)start_opd || ptr >= (void *)end_opd)
987 		return ptr;
988 
989 	return dereference_function_descriptor(ptr);
990 }
991 #endif
992