1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Kernel dynamically loadable module help for PARISC. 3 * 4 * The best reference for this stuff is probably the Processor- 5 * Specific ELF Supplement for PA-RISC: 6 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf 7 * 8 * Linux/PA-RISC Project (http://www.parisc-linux.org/) 9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org> 10 * Copyright (C) 2008 Helge Deller <deller@gmx.de> 11 * 12 * Notes: 13 * - PLT stub handling 14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or 15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may 16 * fail to reach their PLT stub if we only create one big stub array for 17 * all sections at the beginning of the core or init section. 18 * Instead we now insert individual PLT stub entries directly in front of 19 * of the code sections where the stubs are actually called. 20 * This reduces the distance between the PCREL location and the stub entry 21 * so that the relocations can be fulfilled. 22 * While calculating the final layout of the kernel module in memory, the 23 * kernel module loader calls arch_mod_section_prepend() to request the 24 * to be reserved amount of memory in front of each individual section. 25 * 26 * - SEGREL32 handling 27 * We are not doing SEGREL32 handling correctly. According to the ABI, we 28 * should do a value offset, like this: 29 * if (in_init(me, (void *)val)) 30 * val -= (uint32_t)me->init_layout.base; 31 * else 32 * val -= (uint32_t)me->core_layout.base; 33 * However, SEGREL32 is used only for PARISC unwind entries, and we want 34 * those entries to have an absolute address, and not just an offset. 35 * 36 * The unwind table mechanism has the ability to specify an offset for 37 * the unwind table; however, because we split off the init functions into 38 * a different piece of memory, it is not possible to do this using a 39 * single offset. Instead, we use the above hack for now. 40 */ 41 42 #include <linux/moduleloader.h> 43 #include <linux/elf.h> 44 #include <linux/vmalloc.h> 45 #include <linux/fs.h> 46 #include <linux/string.h> 47 #include <linux/kernel.h> 48 #include <linux/bug.h> 49 #include <linux/mm.h> 50 #include <linux/slab.h> 51 52 #include <asm/pgtable.h> 53 #include <asm/unwind.h> 54 #include <asm/sections.h> 55 56 #if 0 57 #define DEBUGP printk 58 #else 59 #define DEBUGP(fmt...) 60 #endif 61 62 #define RELOC_REACHABLE(val, bits) \ 63 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \ 64 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \ 65 0 : 1) 66 67 #define CHECK_RELOC(val, bits) \ 68 if (!RELOC_REACHABLE(val, bits)) { \ 69 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \ 70 me->name, strtab + sym->st_name, (unsigned long)val, bits); \ 71 return -ENOEXEC; \ 72 } 73 74 /* Maximum number of GOT entries. We use a long displacement ldd from 75 * the bottom of the table, which has a maximum signed displacement of 76 * 0x3fff; however, since we're only going forward, this becomes 77 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have 78 * at most 1023 entries. 79 * To overcome this 14bit displacement with some kernel modules, we'll 80 * use instead the unusal 16bit displacement method (see reassemble_16a) 81 * which gives us a maximum positive displacement of 0x7fff, and as such 82 * allows us to allocate up to 4095 GOT entries. */ 83 #define MAX_GOTS 4095 84 85 /* three functions to determine where in the module core 86 * or init pieces the location is */ 87 static inline int in_init(struct module *me, void *loc) 88 { 89 return (loc >= me->init_layout.base && 90 loc <= (me->init_layout.base + me->init_layout.size)); 91 } 92 93 static inline int in_core(struct module *me, void *loc) 94 { 95 return (loc >= me->core_layout.base && 96 loc <= (me->core_layout.base + me->core_layout.size)); 97 } 98 99 static inline int in_local(struct module *me, void *loc) 100 { 101 return in_init(me, loc) || in_core(me, loc); 102 } 103 104 #ifndef CONFIG_64BIT 105 struct got_entry { 106 Elf32_Addr addr; 107 }; 108 109 struct stub_entry { 110 Elf32_Word insns[2]; /* each stub entry has two insns */ 111 }; 112 #else 113 struct got_entry { 114 Elf64_Addr addr; 115 }; 116 117 struct stub_entry { 118 Elf64_Word insns[4]; /* each stub entry has four insns */ 119 }; 120 #endif 121 122 /* Field selection types defined by hppa */ 123 #define rnd(x) (((x)+0x1000)&~0x1fff) 124 /* fsel: full 32 bits */ 125 #define fsel(v,a) ((v)+(a)) 126 /* lsel: select left 21 bits */ 127 #define lsel(v,a) (((v)+(a))>>11) 128 /* rsel: select right 11 bits */ 129 #define rsel(v,a) (((v)+(a))&0x7ff) 130 /* lrsel with rounding of addend to nearest 8k */ 131 #define lrsel(v,a) (((v)+rnd(a))>>11) 132 /* rrsel with rounding of addend to nearest 8k */ 133 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a))) 134 135 #define mask(x,sz) ((x) & ~((1<<(sz))-1)) 136 137 138 /* The reassemble_* functions prepare an immediate value for 139 insertion into an opcode. pa-risc uses all sorts of weird bitfields 140 in the instruction to hold the value. */ 141 static inline int sign_unext(int x, int len) 142 { 143 int len_ones; 144 145 len_ones = (1 << len) - 1; 146 return x & len_ones; 147 } 148 149 static inline int low_sign_unext(int x, int len) 150 { 151 int sign, temp; 152 153 sign = (x >> (len-1)) & 1; 154 temp = sign_unext(x, len-1); 155 return (temp << 1) | sign; 156 } 157 158 static inline int reassemble_14(int as14) 159 { 160 return (((as14 & 0x1fff) << 1) | 161 ((as14 & 0x2000) >> 13)); 162 } 163 164 static inline int reassemble_16a(int as16) 165 { 166 int s, t; 167 168 /* Unusual 16-bit encoding, for wide mode only. */ 169 t = (as16 << 1) & 0xffff; 170 s = (as16 & 0x8000); 171 return (t ^ s ^ (s >> 1)) | (s >> 15); 172 } 173 174 175 static inline int reassemble_17(int as17) 176 { 177 return (((as17 & 0x10000) >> 16) | 178 ((as17 & 0x0f800) << 5) | 179 ((as17 & 0x00400) >> 8) | 180 ((as17 & 0x003ff) << 3)); 181 } 182 183 static inline int reassemble_21(int as21) 184 { 185 return (((as21 & 0x100000) >> 20) | 186 ((as21 & 0x0ffe00) >> 8) | 187 ((as21 & 0x000180) << 7) | 188 ((as21 & 0x00007c) << 14) | 189 ((as21 & 0x000003) << 12)); 190 } 191 192 static inline int reassemble_22(int as22) 193 { 194 return (((as22 & 0x200000) >> 21) | 195 ((as22 & 0x1f0000) << 5) | 196 ((as22 & 0x00f800) << 5) | 197 ((as22 & 0x000400) >> 8) | 198 ((as22 & 0x0003ff) << 3)); 199 } 200 201 void *module_alloc(unsigned long size) 202 { 203 /* using RWX means less protection for modules, but it's 204 * easier than trying to map the text, data, init_text and 205 * init_data correctly */ 206 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 207 GFP_KERNEL, 208 PAGE_KERNEL_RWX, 0, NUMA_NO_NODE, 209 __builtin_return_address(0)); 210 } 211 212 #ifndef CONFIG_64BIT 213 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 214 { 215 return 0; 216 } 217 218 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 219 { 220 return 0; 221 } 222 223 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 224 { 225 unsigned long cnt = 0; 226 227 for (; n > 0; n--, rela++) 228 { 229 switch (ELF32_R_TYPE(rela->r_info)) { 230 case R_PARISC_PCREL17F: 231 case R_PARISC_PCREL22F: 232 cnt++; 233 } 234 } 235 236 return cnt; 237 } 238 #else 239 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 240 { 241 unsigned long cnt = 0; 242 243 for (; n > 0; n--, rela++) 244 { 245 switch (ELF64_R_TYPE(rela->r_info)) { 246 case R_PARISC_LTOFF21L: 247 case R_PARISC_LTOFF14R: 248 case R_PARISC_PCREL22F: 249 cnt++; 250 } 251 } 252 253 return cnt; 254 } 255 256 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 257 { 258 unsigned long cnt = 0; 259 260 for (; n > 0; n--, rela++) 261 { 262 switch (ELF64_R_TYPE(rela->r_info)) { 263 case R_PARISC_FPTR64: 264 cnt++; 265 } 266 } 267 268 return cnt; 269 } 270 271 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 272 { 273 unsigned long cnt = 0; 274 275 for (; n > 0; n--, rela++) 276 { 277 switch (ELF64_R_TYPE(rela->r_info)) { 278 case R_PARISC_PCREL22F: 279 cnt++; 280 } 281 } 282 283 return cnt; 284 } 285 #endif 286 287 void module_arch_freeing_init(struct module *mod) 288 { 289 kfree(mod->arch.section); 290 mod->arch.section = NULL; 291 } 292 293 /* Additional bytes needed in front of individual sections */ 294 unsigned int arch_mod_section_prepend(struct module *mod, 295 unsigned int section) 296 { 297 /* size needed for all stubs of this section (including 298 * one additional for correct alignment of the stubs) */ 299 return (mod->arch.section[section].stub_entries + 1) 300 * sizeof(struct stub_entry); 301 } 302 303 #define CONST 304 int module_frob_arch_sections(CONST Elf_Ehdr *hdr, 305 CONST Elf_Shdr *sechdrs, 306 CONST char *secstrings, 307 struct module *me) 308 { 309 unsigned long gots = 0, fdescs = 0, len; 310 unsigned int i; 311 312 len = hdr->e_shnum * sizeof(me->arch.section[0]); 313 me->arch.section = kzalloc(len, GFP_KERNEL); 314 if (!me->arch.section) 315 return -ENOMEM; 316 317 for (i = 1; i < hdr->e_shnum; i++) { 318 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr; 319 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels); 320 unsigned int count, s; 321 322 if (strncmp(secstrings + sechdrs[i].sh_name, 323 ".PARISC.unwind", 14) == 0) 324 me->arch.unwind_section = i; 325 326 if (sechdrs[i].sh_type != SHT_RELA) 327 continue; 328 329 /* some of these are not relevant for 32-bit/64-bit 330 * we leave them here to make the code common. the 331 * compiler will do its thing and optimize out the 332 * stuff we don't need 333 */ 334 gots += count_gots(rels, nrels); 335 fdescs += count_fdescs(rels, nrels); 336 337 /* XXX: By sorting the relocs and finding duplicate entries 338 * we could reduce the number of necessary stubs and save 339 * some memory. */ 340 count = count_stubs(rels, nrels); 341 if (!count) 342 continue; 343 344 /* so we need relocation stubs. reserve necessary memory. */ 345 /* sh_info gives the section for which we need to add stubs. */ 346 s = sechdrs[i].sh_info; 347 348 /* each code section should only have one relocation section */ 349 WARN_ON(me->arch.section[s].stub_entries); 350 351 /* store number of stubs we need for this section */ 352 me->arch.section[s].stub_entries += count; 353 } 354 355 /* align things a bit */ 356 me->core_layout.size = ALIGN(me->core_layout.size, 16); 357 me->arch.got_offset = me->core_layout.size; 358 me->core_layout.size += gots * sizeof(struct got_entry); 359 360 me->core_layout.size = ALIGN(me->core_layout.size, 16); 361 me->arch.fdesc_offset = me->core_layout.size; 362 me->core_layout.size += fdescs * sizeof(Elf_Fdesc); 363 364 me->arch.got_max = gots; 365 me->arch.fdesc_max = fdescs; 366 367 return 0; 368 } 369 370 #ifdef CONFIG_64BIT 371 static Elf64_Word get_got(struct module *me, unsigned long value, long addend) 372 { 373 unsigned int i; 374 struct got_entry *got; 375 376 value += addend; 377 378 BUG_ON(value == 0); 379 380 got = me->core_layout.base + me->arch.got_offset; 381 for (i = 0; got[i].addr; i++) 382 if (got[i].addr == value) 383 goto out; 384 385 BUG_ON(++me->arch.got_count > me->arch.got_max); 386 387 got[i].addr = value; 388 out: 389 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry), 390 value); 391 return i * sizeof(struct got_entry); 392 } 393 #endif /* CONFIG_64BIT */ 394 395 #ifdef CONFIG_64BIT 396 static Elf_Addr get_fdesc(struct module *me, unsigned long value) 397 { 398 Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset; 399 400 if (!value) { 401 printk(KERN_ERR "%s: zero OPD requested!\n", me->name); 402 return 0; 403 } 404 405 /* Look for existing fdesc entry. */ 406 while (fdesc->addr) { 407 if (fdesc->addr == value) 408 return (Elf_Addr)fdesc; 409 fdesc++; 410 } 411 412 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max); 413 414 /* Create new one */ 415 fdesc->addr = value; 416 fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset; 417 return (Elf_Addr)fdesc; 418 } 419 #endif /* CONFIG_64BIT */ 420 421 enum elf_stub_type { 422 ELF_STUB_GOT, 423 ELF_STUB_MILLI, 424 ELF_STUB_DIRECT, 425 }; 426 427 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend, 428 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec) 429 { 430 struct stub_entry *stub; 431 int __maybe_unused d; 432 433 /* initialize stub_offset to point in front of the section */ 434 if (!me->arch.section[targetsec].stub_offset) { 435 loc0 -= (me->arch.section[targetsec].stub_entries + 1) * 436 sizeof(struct stub_entry); 437 /* get correct alignment for the stubs */ 438 loc0 = ALIGN(loc0, sizeof(struct stub_entry)); 439 me->arch.section[targetsec].stub_offset = loc0; 440 } 441 442 /* get address of stub entry */ 443 stub = (void *) me->arch.section[targetsec].stub_offset; 444 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry); 445 446 /* do not write outside available stub area */ 447 BUG_ON(0 == me->arch.section[targetsec].stub_entries--); 448 449 450 #ifndef CONFIG_64BIT 451 /* for 32-bit the stub looks like this: 452 * ldil L'XXX,%r1 453 * be,n R'XXX(%sr4,%r1) 454 */ 455 //value = *(unsigned long *)((value + addend) & ~3); /* why? */ 456 457 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */ 458 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */ 459 460 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 461 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4); 462 463 #else 464 /* for 64-bit we have three kinds of stubs: 465 * for normal function calls: 466 * ldd 0(%dp),%dp 467 * ldd 10(%dp), %r1 468 * bve (%r1) 469 * ldd 18(%dp), %dp 470 * 471 * for millicode: 472 * ldil 0, %r1 473 * ldo 0(%r1), %r1 474 * ldd 10(%r1), %r1 475 * bve,n (%r1) 476 * 477 * for direct branches (jumps between different section of the 478 * same module): 479 * ldil 0, %r1 480 * ldo 0(%r1), %r1 481 * bve,n (%r1) 482 */ 483 switch (stub_type) { 484 case ELF_STUB_GOT: 485 d = get_got(me, value, addend); 486 if (d <= 15) { 487 /* Format 5 */ 488 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */ 489 stub->insns[0] |= low_sign_unext(d, 5) << 16; 490 } else { 491 /* Format 3 */ 492 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */ 493 stub->insns[0] |= reassemble_16a(d); 494 } 495 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */ 496 stub->insns[2] = 0xe820d000; /* bve (%r1) */ 497 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */ 498 break; 499 case ELF_STUB_MILLI: 500 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 501 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 502 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */ 503 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */ 504 505 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 506 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 507 break; 508 case ELF_STUB_DIRECT: 509 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 510 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 511 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */ 512 513 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 514 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 515 break; 516 } 517 518 #endif 519 520 return (Elf_Addr)stub; 521 } 522 523 #ifndef CONFIG_64BIT 524 int apply_relocate_add(Elf_Shdr *sechdrs, 525 const char *strtab, 526 unsigned int symindex, 527 unsigned int relsec, 528 struct module *me) 529 { 530 int i; 531 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; 532 Elf32_Sym *sym; 533 Elf32_Word *loc; 534 Elf32_Addr val; 535 Elf32_Sword addend; 536 Elf32_Addr dot; 537 Elf_Addr loc0; 538 unsigned int targetsec = sechdrs[relsec].sh_info; 539 //unsigned long dp = (unsigned long)$global$; 540 register unsigned long dp asm ("r27"); 541 542 DEBUGP("Applying relocate section %u to %u\n", relsec, 543 targetsec); 544 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 545 /* This is where to make the change */ 546 loc = (void *)sechdrs[targetsec].sh_addr 547 + rel[i].r_offset; 548 /* This is the start of the target section */ 549 loc0 = sechdrs[targetsec].sh_addr; 550 /* This is the symbol it is referring to */ 551 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 552 + ELF32_R_SYM(rel[i].r_info); 553 if (!sym->st_value) { 554 printk(KERN_WARNING "%s: Unknown symbol %s\n", 555 me->name, strtab + sym->st_name); 556 return -ENOENT; 557 } 558 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 559 dot = (Elf32_Addr)loc & ~0x03; 560 561 val = sym->st_value; 562 addend = rel[i].r_addend; 563 564 #if 0 565 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t : 566 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n", 567 strtab + sym->st_name, 568 (uint32_t)loc, val, addend, 569 r(R_PARISC_PLABEL32) 570 r(R_PARISC_DIR32) 571 r(R_PARISC_DIR21L) 572 r(R_PARISC_DIR14R) 573 r(R_PARISC_SEGREL32) 574 r(R_PARISC_DPREL21L) 575 r(R_PARISC_DPREL14R) 576 r(R_PARISC_PCREL17F) 577 r(R_PARISC_PCREL22F) 578 "UNKNOWN"); 579 #undef r 580 #endif 581 582 switch (ELF32_R_TYPE(rel[i].r_info)) { 583 case R_PARISC_PLABEL32: 584 /* 32-bit function address */ 585 /* no function descriptors... */ 586 *loc = fsel(val, addend); 587 break; 588 case R_PARISC_DIR32: 589 /* direct 32-bit ref */ 590 *loc = fsel(val, addend); 591 break; 592 case R_PARISC_DIR21L: 593 /* left 21 bits of effective address */ 594 val = lrsel(val, addend); 595 *loc = mask(*loc, 21) | reassemble_21(val); 596 break; 597 case R_PARISC_DIR14R: 598 /* right 14 bits of effective address */ 599 val = rrsel(val, addend); 600 *loc = mask(*loc, 14) | reassemble_14(val); 601 break; 602 case R_PARISC_SEGREL32: 603 /* 32-bit segment relative address */ 604 /* See note about special handling of SEGREL32 at 605 * the beginning of this file. 606 */ 607 *loc = fsel(val, addend); 608 break; 609 case R_PARISC_SECREL32: 610 /* 32-bit section relative address. */ 611 *loc = fsel(val, addend); 612 break; 613 case R_PARISC_DPREL21L: 614 /* left 21 bit of relative address */ 615 val = lrsel(val - dp, addend); 616 *loc = mask(*loc, 21) | reassemble_21(val); 617 break; 618 case R_PARISC_DPREL14R: 619 /* right 14 bit of relative address */ 620 val = rrsel(val - dp, addend); 621 *loc = mask(*loc, 14) | reassemble_14(val); 622 break; 623 case R_PARISC_PCREL17F: 624 /* 17-bit PC relative address */ 625 /* calculate direct call offset */ 626 val += addend; 627 val = (val - dot - 8)/4; 628 if (!RELOC_REACHABLE(val, 17)) { 629 /* direct distance too far, create 630 * stub entry instead */ 631 val = get_stub(me, sym->st_value, addend, 632 ELF_STUB_DIRECT, loc0, targetsec); 633 val = (val - dot - 8)/4; 634 CHECK_RELOC(val, 17); 635 } 636 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val); 637 break; 638 case R_PARISC_PCREL22F: 639 /* 22-bit PC relative address; only defined for pa20 */ 640 /* calculate direct call offset */ 641 val += addend; 642 val = (val - dot - 8)/4; 643 if (!RELOC_REACHABLE(val, 22)) { 644 /* direct distance too far, create 645 * stub entry instead */ 646 val = get_stub(me, sym->st_value, addend, 647 ELF_STUB_DIRECT, loc0, targetsec); 648 val = (val - dot - 8)/4; 649 CHECK_RELOC(val, 22); 650 } 651 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 652 break; 653 case R_PARISC_PCREL32: 654 /* 32-bit PC relative address */ 655 *loc = val - dot - 8 + addend; 656 break; 657 658 default: 659 printk(KERN_ERR "module %s: Unknown relocation: %u\n", 660 me->name, ELF32_R_TYPE(rel[i].r_info)); 661 return -ENOEXEC; 662 } 663 } 664 665 return 0; 666 } 667 668 #else 669 int apply_relocate_add(Elf_Shdr *sechdrs, 670 const char *strtab, 671 unsigned int symindex, 672 unsigned int relsec, 673 struct module *me) 674 { 675 int i; 676 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 677 Elf64_Sym *sym; 678 Elf64_Word *loc; 679 Elf64_Xword *loc64; 680 Elf64_Addr val; 681 Elf64_Sxword addend; 682 Elf64_Addr dot; 683 Elf_Addr loc0; 684 unsigned int targetsec = sechdrs[relsec].sh_info; 685 686 DEBUGP("Applying relocate section %u to %u\n", relsec, 687 targetsec); 688 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 689 /* This is where to make the change */ 690 loc = (void *)sechdrs[targetsec].sh_addr 691 + rel[i].r_offset; 692 /* This is the start of the target section */ 693 loc0 = sechdrs[targetsec].sh_addr; 694 /* This is the symbol it is referring to */ 695 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 696 + ELF64_R_SYM(rel[i].r_info); 697 if (!sym->st_value) { 698 printk(KERN_WARNING "%s: Unknown symbol %s\n", 699 me->name, strtab + sym->st_name); 700 return -ENOENT; 701 } 702 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 703 dot = (Elf64_Addr)loc & ~0x03; 704 loc64 = (Elf64_Xword *)loc; 705 706 val = sym->st_value; 707 addend = rel[i].r_addend; 708 709 #if 0 710 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t : 711 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n", 712 strtab + sym->st_name, 713 loc, val, addend, 714 r(R_PARISC_LTOFF14R) 715 r(R_PARISC_LTOFF21L) 716 r(R_PARISC_PCREL22F) 717 r(R_PARISC_DIR64) 718 r(R_PARISC_SEGREL32) 719 r(R_PARISC_FPTR64) 720 "UNKNOWN"); 721 #undef r 722 #endif 723 724 switch (ELF64_R_TYPE(rel[i].r_info)) { 725 case R_PARISC_LTOFF21L: 726 /* LT-relative; left 21 bits */ 727 val = get_got(me, val, addend); 728 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n", 729 strtab + sym->st_name, 730 loc, val); 731 val = lrsel(val, 0); 732 *loc = mask(*loc, 21) | reassemble_21(val); 733 break; 734 case R_PARISC_LTOFF14R: 735 /* L(ltoff(val+addend)) */ 736 /* LT-relative; right 14 bits */ 737 val = get_got(me, val, addend); 738 val = rrsel(val, 0); 739 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n", 740 strtab + sym->st_name, 741 loc, val); 742 *loc = mask(*loc, 14) | reassemble_14(val); 743 break; 744 case R_PARISC_PCREL22F: 745 /* PC-relative; 22 bits */ 746 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n", 747 strtab + sym->st_name, 748 loc, val); 749 val += addend; 750 /* can we reach it locally? */ 751 if (in_local(me, (void *)val)) { 752 /* this is the case where the symbol is local 753 * to the module, but in a different section, 754 * so stub the jump in case it's more than 22 755 * bits away */ 756 val = (val - dot - 8)/4; 757 if (!RELOC_REACHABLE(val, 22)) { 758 /* direct distance too far, create 759 * stub entry instead */ 760 val = get_stub(me, sym->st_value, 761 addend, ELF_STUB_DIRECT, 762 loc0, targetsec); 763 } else { 764 /* Ok, we can reach it directly. */ 765 val = sym->st_value; 766 val += addend; 767 } 768 } else { 769 val = sym->st_value; 770 if (strncmp(strtab + sym->st_name, "$$", 2) 771 == 0) 772 val = get_stub(me, val, addend, ELF_STUB_MILLI, 773 loc0, targetsec); 774 else 775 val = get_stub(me, val, addend, ELF_STUB_GOT, 776 loc0, targetsec); 777 } 778 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n", 779 strtab + sym->st_name, loc, sym->st_value, 780 addend, val); 781 val = (val - dot - 8)/4; 782 CHECK_RELOC(val, 22); 783 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 784 break; 785 case R_PARISC_PCREL32: 786 /* 32-bit PC relative address */ 787 *loc = val - dot - 8 + addend; 788 break; 789 case R_PARISC_DIR64: 790 /* 64-bit effective address */ 791 *loc64 = val + addend; 792 break; 793 case R_PARISC_SEGREL32: 794 /* 32-bit segment relative address */ 795 /* See note about special handling of SEGREL32 at 796 * the beginning of this file. 797 */ 798 *loc = fsel(val, addend); 799 break; 800 case R_PARISC_SECREL32: 801 /* 32-bit section relative address. */ 802 *loc = fsel(val, addend); 803 break; 804 case R_PARISC_FPTR64: 805 /* 64-bit function address */ 806 if(in_local(me, (void *)(val + addend))) { 807 *loc64 = get_fdesc(me, val+addend); 808 DEBUGP("FDESC for %s at %p points to %lx\n", 809 strtab + sym->st_name, *loc64, 810 ((Elf_Fdesc *)*loc64)->addr); 811 } else { 812 /* if the symbol is not local to this 813 * module then val+addend is a pointer 814 * to the function descriptor */ 815 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n", 816 strtab + sym->st_name, 817 loc, val); 818 *loc64 = val + addend; 819 } 820 break; 821 822 default: 823 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n", 824 me->name, ELF64_R_TYPE(rel[i].r_info)); 825 return -ENOEXEC; 826 } 827 } 828 return 0; 829 } 830 #endif 831 832 static void 833 register_unwind_table(struct module *me, 834 const Elf_Shdr *sechdrs) 835 { 836 unsigned char *table, *end; 837 unsigned long gp; 838 839 if (!me->arch.unwind_section) 840 return; 841 842 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr; 843 end = table + sechdrs[me->arch.unwind_section].sh_size; 844 gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset; 845 846 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n", 847 me->arch.unwind_section, table, end, gp); 848 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end); 849 } 850 851 static void 852 deregister_unwind_table(struct module *me) 853 { 854 if (me->arch.unwind) 855 unwind_table_remove(me->arch.unwind); 856 } 857 858 int module_finalize(const Elf_Ehdr *hdr, 859 const Elf_Shdr *sechdrs, 860 struct module *me) 861 { 862 int i; 863 unsigned long nsyms; 864 const char *strtab = NULL; 865 const Elf_Shdr *s; 866 char *secstrings; 867 Elf_Sym *newptr, *oldptr; 868 Elf_Shdr *symhdr = NULL; 869 #ifdef DEBUG 870 Elf_Fdesc *entry; 871 u32 *addr; 872 873 entry = (Elf_Fdesc *)me->init; 874 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry, 875 entry->gp, entry->addr); 876 addr = (u32 *)entry->addr; 877 printk("INSNS: %x %x %x %x\n", 878 addr[0], addr[1], addr[2], addr[3]); 879 printk("got entries used %ld, gots max %ld\n" 880 "fdescs used %ld, fdescs max %ld\n", 881 me->arch.got_count, me->arch.got_max, 882 me->arch.fdesc_count, me->arch.fdesc_max); 883 #endif 884 885 register_unwind_table(me, sechdrs); 886 887 /* haven't filled in me->symtab yet, so have to find it 888 * ourselves */ 889 for (i = 1; i < hdr->e_shnum; i++) { 890 if(sechdrs[i].sh_type == SHT_SYMTAB 891 && (sechdrs[i].sh_flags & SHF_ALLOC)) { 892 int strindex = sechdrs[i].sh_link; 893 /* FIXME: AWFUL HACK 894 * The cast is to drop the const from 895 * the sechdrs pointer */ 896 symhdr = (Elf_Shdr *)&sechdrs[i]; 897 strtab = (char *)sechdrs[strindex].sh_addr; 898 break; 899 } 900 } 901 902 DEBUGP("module %s: strtab %p, symhdr %p\n", 903 me->name, strtab, symhdr); 904 905 if(me->arch.got_count > MAX_GOTS) { 906 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n", 907 me->name, me->arch.got_count, MAX_GOTS); 908 return -EINVAL; 909 } 910 911 kfree(me->arch.section); 912 me->arch.section = NULL; 913 914 /* no symbol table */ 915 if(symhdr == NULL) 916 return 0; 917 918 oldptr = (void *)symhdr->sh_addr; 919 newptr = oldptr + 1; /* we start counting at 1 */ 920 nsyms = symhdr->sh_size / sizeof(Elf_Sym); 921 DEBUGP("OLD num_symtab %lu\n", nsyms); 922 923 for (i = 1; i < nsyms; i++) { 924 oldptr++; /* note, count starts at 1 so preincrement */ 925 if(strncmp(strtab + oldptr->st_name, 926 ".L", 2) == 0) 927 continue; 928 929 if(newptr != oldptr) 930 *newptr++ = *oldptr; 931 else 932 newptr++; 933 934 } 935 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr; 936 DEBUGP("NEW num_symtab %lu\n", nsyms); 937 symhdr->sh_size = nsyms * sizeof(Elf_Sym); 938 939 /* find .altinstructions section */ 940 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 941 for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { 942 void *aseg = (void *) s->sh_addr; 943 char *secname = secstrings + s->sh_name; 944 945 if (!strcmp(".altinstructions", secname)) 946 /* patch .altinstructions */ 947 apply_alternatives(aseg, aseg + s->sh_size, me->name); 948 } 949 950 return 0; 951 } 952 953 void module_arch_cleanup(struct module *mod) 954 { 955 deregister_unwind_table(mod); 956 } 957 958 #ifdef CONFIG_64BIT 959 void *dereference_module_function_descriptor(struct module *mod, void *ptr) 960 { 961 unsigned long start_opd = (Elf64_Addr)mod->core_layout.base + 962 mod->arch.fdesc_offset; 963 unsigned long end_opd = start_opd + 964 mod->arch.fdesc_count * sizeof(Elf64_Fdesc); 965 966 if (ptr < (void *)start_opd || ptr >= (void *)end_opd) 967 return ptr; 968 969 return dereference_function_descriptor(ptr); 970 } 971 #endif 972