1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Kernel dynamically loadable module help for PARISC. 3 * 4 * The best reference for this stuff is probably the Processor- 5 * Specific ELF Supplement for PA-RISC: 6 * https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf 7 * 8 * Linux/PA-RISC Project 9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org> 10 * Copyright (C) 2008 Helge Deller <deller@gmx.de> 11 * 12 * Notes: 13 * - PLT stub handling 14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or 15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may 16 * fail to reach their PLT stub if we only create one big stub array for 17 * all sections at the beginning of the core or init section. 18 * Instead we now insert individual PLT stub entries directly in front of 19 * of the code sections where the stubs are actually called. 20 * This reduces the distance between the PCREL location and the stub entry 21 * so that the relocations can be fulfilled. 22 * While calculating the final layout of the kernel module in memory, the 23 * kernel module loader calls arch_mod_section_prepend() to request the 24 * to be reserved amount of memory in front of each individual section. 25 * 26 * - SEGREL32 handling 27 * We are not doing SEGREL32 handling correctly. According to the ABI, we 28 * should do a value offset, like this: 29 * if (in_init(me, (void *)val)) 30 * val -= (uint32_t)me->init_layout.base; 31 * else 32 * val -= (uint32_t)me->core_layout.base; 33 * However, SEGREL32 is used only for PARISC unwind entries, and we want 34 * those entries to have an absolute address, and not just an offset. 35 * 36 * The unwind table mechanism has the ability to specify an offset for 37 * the unwind table; however, because we split off the init functions into 38 * a different piece of memory, it is not possible to do this using a 39 * single offset. Instead, we use the above hack for now. 40 */ 41 42 #include <linux/moduleloader.h> 43 #include <linux/elf.h> 44 #include <linux/vmalloc.h> 45 #include <linux/fs.h> 46 #include <linux/ftrace.h> 47 #include <linux/string.h> 48 #include <linux/kernel.h> 49 #include <linux/bug.h> 50 #include <linux/mm.h> 51 #include <linux/slab.h> 52 53 #include <asm/unwind.h> 54 #include <asm/sections.h> 55 56 #define RELOC_REACHABLE(val, bits) \ 57 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \ 58 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \ 59 0 : 1) 60 61 #define CHECK_RELOC(val, bits) \ 62 if (!RELOC_REACHABLE(val, bits)) { \ 63 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \ 64 me->name, strtab + sym->st_name, (unsigned long)val, bits); \ 65 return -ENOEXEC; \ 66 } 67 68 /* Maximum number of GOT entries. We use a long displacement ldd from 69 * the bottom of the table, which has a maximum signed displacement of 70 * 0x3fff; however, since we're only going forward, this becomes 71 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have 72 * at most 1023 entries. 73 * To overcome this 14bit displacement with some kernel modules, we'll 74 * use instead the unusal 16bit displacement method (see reassemble_16a) 75 * which gives us a maximum positive displacement of 0x7fff, and as such 76 * allows us to allocate up to 4095 GOT entries. */ 77 #define MAX_GOTS 4095 78 79 /* three functions to determine where in the module core 80 * or init pieces the location is */ 81 static inline int in_init(struct module *me, void *loc) 82 { 83 return (loc >= me->init_layout.base && 84 loc <= (me->init_layout.base + me->init_layout.size)); 85 } 86 87 static inline int in_core(struct module *me, void *loc) 88 { 89 return (loc >= me->core_layout.base && 90 loc <= (me->core_layout.base + me->core_layout.size)); 91 } 92 93 static inline int in_local(struct module *me, void *loc) 94 { 95 return in_init(me, loc) || in_core(me, loc); 96 } 97 98 #ifndef CONFIG_64BIT 99 struct got_entry { 100 Elf32_Addr addr; 101 }; 102 103 struct stub_entry { 104 Elf32_Word insns[2]; /* each stub entry has two insns */ 105 }; 106 #else 107 struct got_entry { 108 Elf64_Addr addr; 109 }; 110 111 struct stub_entry { 112 Elf64_Word insns[4]; /* each stub entry has four insns */ 113 }; 114 #endif 115 116 /* Field selection types defined by hppa */ 117 #define rnd(x) (((x)+0x1000)&~0x1fff) 118 /* fsel: full 32 bits */ 119 #define fsel(v,a) ((v)+(a)) 120 /* lsel: select left 21 bits */ 121 #define lsel(v,a) (((v)+(a))>>11) 122 /* rsel: select right 11 bits */ 123 #define rsel(v,a) (((v)+(a))&0x7ff) 124 /* lrsel with rounding of addend to nearest 8k */ 125 #define lrsel(v,a) (((v)+rnd(a))>>11) 126 /* rrsel with rounding of addend to nearest 8k */ 127 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a))) 128 129 #define mask(x,sz) ((x) & ~((1<<(sz))-1)) 130 131 132 /* The reassemble_* functions prepare an immediate value for 133 insertion into an opcode. pa-risc uses all sorts of weird bitfields 134 in the instruction to hold the value. */ 135 static inline int sign_unext(int x, int len) 136 { 137 int len_ones; 138 139 len_ones = (1 << len) - 1; 140 return x & len_ones; 141 } 142 143 static inline int low_sign_unext(int x, int len) 144 { 145 int sign, temp; 146 147 sign = (x >> (len-1)) & 1; 148 temp = sign_unext(x, len-1); 149 return (temp << 1) | sign; 150 } 151 152 static inline int reassemble_14(int as14) 153 { 154 return (((as14 & 0x1fff) << 1) | 155 ((as14 & 0x2000) >> 13)); 156 } 157 158 static inline int reassemble_16a(int as16) 159 { 160 int s, t; 161 162 /* Unusual 16-bit encoding, for wide mode only. */ 163 t = (as16 << 1) & 0xffff; 164 s = (as16 & 0x8000); 165 return (t ^ s ^ (s >> 1)) | (s >> 15); 166 } 167 168 169 static inline int reassemble_17(int as17) 170 { 171 return (((as17 & 0x10000) >> 16) | 172 ((as17 & 0x0f800) << 5) | 173 ((as17 & 0x00400) >> 8) | 174 ((as17 & 0x003ff) << 3)); 175 } 176 177 static inline int reassemble_21(int as21) 178 { 179 return (((as21 & 0x100000) >> 20) | 180 ((as21 & 0x0ffe00) >> 8) | 181 ((as21 & 0x000180) << 7) | 182 ((as21 & 0x00007c) << 14) | 183 ((as21 & 0x000003) << 12)); 184 } 185 186 static inline int reassemble_22(int as22) 187 { 188 return (((as22 & 0x200000) >> 21) | 189 ((as22 & 0x1f0000) << 5) | 190 ((as22 & 0x00f800) << 5) | 191 ((as22 & 0x000400) >> 8) | 192 ((as22 & 0x0003ff) << 3)); 193 } 194 195 void *module_alloc(unsigned long size) 196 { 197 /* using RWX means less protection for modules, but it's 198 * easier than trying to map the text, data, init_text and 199 * init_data correctly */ 200 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 201 GFP_KERNEL, 202 PAGE_KERNEL_RWX, 0, NUMA_NO_NODE, 203 __builtin_return_address(0)); 204 } 205 206 #ifndef CONFIG_64BIT 207 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 208 { 209 return 0; 210 } 211 212 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 213 { 214 return 0; 215 } 216 217 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 218 { 219 unsigned long cnt = 0; 220 221 for (; n > 0; n--, rela++) 222 { 223 switch (ELF32_R_TYPE(rela->r_info)) { 224 case R_PARISC_PCREL17F: 225 case R_PARISC_PCREL22F: 226 cnt++; 227 } 228 } 229 230 return cnt; 231 } 232 #else 233 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n) 234 { 235 unsigned long cnt = 0; 236 237 for (; n > 0; n--, rela++) 238 { 239 switch (ELF64_R_TYPE(rela->r_info)) { 240 case R_PARISC_LTOFF21L: 241 case R_PARISC_LTOFF14R: 242 case R_PARISC_PCREL22F: 243 cnt++; 244 } 245 } 246 247 return cnt; 248 } 249 250 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n) 251 { 252 unsigned long cnt = 0; 253 254 for (; n > 0; n--, rela++) 255 { 256 switch (ELF64_R_TYPE(rela->r_info)) { 257 case R_PARISC_FPTR64: 258 cnt++; 259 } 260 } 261 262 return cnt; 263 } 264 265 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n) 266 { 267 unsigned long cnt = 0; 268 269 for (; n > 0; n--, rela++) 270 { 271 switch (ELF64_R_TYPE(rela->r_info)) { 272 case R_PARISC_PCREL22F: 273 cnt++; 274 } 275 } 276 277 return cnt; 278 } 279 #endif 280 281 void module_arch_freeing_init(struct module *mod) 282 { 283 kfree(mod->arch.section); 284 mod->arch.section = NULL; 285 } 286 287 /* Additional bytes needed in front of individual sections */ 288 unsigned int arch_mod_section_prepend(struct module *mod, 289 unsigned int section) 290 { 291 /* size needed for all stubs of this section (including 292 * one additional for correct alignment of the stubs) */ 293 return (mod->arch.section[section].stub_entries + 1) 294 * sizeof(struct stub_entry); 295 } 296 297 #define CONST 298 int module_frob_arch_sections(CONST Elf_Ehdr *hdr, 299 CONST Elf_Shdr *sechdrs, 300 CONST char *secstrings, 301 struct module *me) 302 { 303 unsigned long gots = 0, fdescs = 0, len; 304 unsigned int i; 305 306 len = hdr->e_shnum * sizeof(me->arch.section[0]); 307 me->arch.section = kzalloc(len, GFP_KERNEL); 308 if (!me->arch.section) 309 return -ENOMEM; 310 311 for (i = 1; i < hdr->e_shnum; i++) { 312 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr; 313 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels); 314 unsigned int count, s; 315 316 if (strncmp(secstrings + sechdrs[i].sh_name, 317 ".PARISC.unwind", 14) == 0) 318 me->arch.unwind_section = i; 319 320 if (sechdrs[i].sh_type != SHT_RELA) 321 continue; 322 323 /* some of these are not relevant for 32-bit/64-bit 324 * we leave them here to make the code common. the 325 * compiler will do its thing and optimize out the 326 * stuff we don't need 327 */ 328 gots += count_gots(rels, nrels); 329 fdescs += count_fdescs(rels, nrels); 330 331 /* XXX: By sorting the relocs and finding duplicate entries 332 * we could reduce the number of necessary stubs and save 333 * some memory. */ 334 count = count_stubs(rels, nrels); 335 if (!count) 336 continue; 337 338 /* so we need relocation stubs. reserve necessary memory. */ 339 /* sh_info gives the section for which we need to add stubs. */ 340 s = sechdrs[i].sh_info; 341 342 /* each code section should only have one relocation section */ 343 WARN_ON(me->arch.section[s].stub_entries); 344 345 /* store number of stubs we need for this section */ 346 me->arch.section[s].stub_entries += count; 347 } 348 349 /* align things a bit */ 350 me->core_layout.size = ALIGN(me->core_layout.size, 16); 351 me->arch.got_offset = me->core_layout.size; 352 me->core_layout.size += gots * sizeof(struct got_entry); 353 354 me->core_layout.size = ALIGN(me->core_layout.size, 16); 355 me->arch.fdesc_offset = me->core_layout.size; 356 me->core_layout.size += fdescs * sizeof(Elf_Fdesc); 357 358 me->arch.got_max = gots; 359 me->arch.fdesc_max = fdescs; 360 361 return 0; 362 } 363 364 #ifdef CONFIG_64BIT 365 static Elf64_Word get_got(struct module *me, unsigned long value, long addend) 366 { 367 unsigned int i; 368 struct got_entry *got; 369 370 value += addend; 371 372 BUG_ON(value == 0); 373 374 got = me->core_layout.base + me->arch.got_offset; 375 for (i = 0; got[i].addr; i++) 376 if (got[i].addr == value) 377 goto out; 378 379 BUG_ON(++me->arch.got_count > me->arch.got_max); 380 381 got[i].addr = value; 382 out: 383 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i, i*sizeof(struct got_entry), 384 value); 385 return i * sizeof(struct got_entry); 386 } 387 #endif /* CONFIG_64BIT */ 388 389 #ifdef CONFIG_64BIT 390 static Elf_Addr get_fdesc(struct module *me, unsigned long value) 391 { 392 Elf_Fdesc *fdesc = me->core_layout.base + me->arch.fdesc_offset; 393 394 if (!value) { 395 printk(KERN_ERR "%s: zero OPD requested!\n", me->name); 396 return 0; 397 } 398 399 /* Look for existing fdesc entry. */ 400 while (fdesc->addr) { 401 if (fdesc->addr == value) 402 return (Elf_Addr)fdesc; 403 fdesc++; 404 } 405 406 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max); 407 408 /* Create new one */ 409 fdesc->addr = value; 410 fdesc->gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset; 411 return (Elf_Addr)fdesc; 412 } 413 #endif /* CONFIG_64BIT */ 414 415 enum elf_stub_type { 416 ELF_STUB_GOT, 417 ELF_STUB_MILLI, 418 ELF_STUB_DIRECT, 419 }; 420 421 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend, 422 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec) 423 { 424 struct stub_entry *stub; 425 int __maybe_unused d; 426 427 /* initialize stub_offset to point in front of the section */ 428 if (!me->arch.section[targetsec].stub_offset) { 429 loc0 -= (me->arch.section[targetsec].stub_entries + 1) * 430 sizeof(struct stub_entry); 431 /* get correct alignment for the stubs */ 432 loc0 = ALIGN(loc0, sizeof(struct stub_entry)); 433 me->arch.section[targetsec].stub_offset = loc0; 434 } 435 436 /* get address of stub entry */ 437 stub = (void *) me->arch.section[targetsec].stub_offset; 438 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry); 439 440 /* do not write outside available stub area */ 441 BUG_ON(0 == me->arch.section[targetsec].stub_entries--); 442 443 444 #ifndef CONFIG_64BIT 445 /* for 32-bit the stub looks like this: 446 * ldil L'XXX,%r1 447 * be,n R'XXX(%sr4,%r1) 448 */ 449 //value = *(unsigned long *)((value + addend) & ~3); /* why? */ 450 451 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */ 452 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */ 453 454 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 455 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4); 456 457 #else 458 /* for 64-bit we have three kinds of stubs: 459 * for normal function calls: 460 * ldd 0(%dp),%dp 461 * ldd 10(%dp), %r1 462 * bve (%r1) 463 * ldd 18(%dp), %dp 464 * 465 * for millicode: 466 * ldil 0, %r1 467 * ldo 0(%r1), %r1 468 * ldd 10(%r1), %r1 469 * bve,n (%r1) 470 * 471 * for direct branches (jumps between different section of the 472 * same module): 473 * ldil 0, %r1 474 * ldo 0(%r1), %r1 475 * bve,n (%r1) 476 */ 477 switch (stub_type) { 478 case ELF_STUB_GOT: 479 d = get_got(me, value, addend); 480 if (d <= 15) { 481 /* Format 5 */ 482 stub->insns[0] = 0x0f6010db; /* ldd 0(%dp),%dp */ 483 stub->insns[0] |= low_sign_unext(d, 5) << 16; 484 } else { 485 /* Format 3 */ 486 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */ 487 stub->insns[0] |= reassemble_16a(d); 488 } 489 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */ 490 stub->insns[2] = 0xe820d000; /* bve (%r1) */ 491 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */ 492 break; 493 case ELF_STUB_MILLI: 494 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 495 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 496 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */ 497 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */ 498 499 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 500 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 501 break; 502 case ELF_STUB_DIRECT: 503 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */ 504 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */ 505 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */ 506 507 stub->insns[0] |= reassemble_21(lrsel(value, addend)); 508 stub->insns[1] |= reassemble_14(rrsel(value, addend)); 509 break; 510 } 511 512 #endif 513 514 return (Elf_Addr)stub; 515 } 516 517 #ifndef CONFIG_64BIT 518 int apply_relocate_add(Elf_Shdr *sechdrs, 519 const char *strtab, 520 unsigned int symindex, 521 unsigned int relsec, 522 struct module *me) 523 { 524 int i; 525 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; 526 Elf32_Sym *sym; 527 Elf32_Word *loc; 528 Elf32_Addr val; 529 Elf32_Sword addend; 530 Elf32_Addr dot; 531 Elf_Addr loc0; 532 unsigned int targetsec = sechdrs[relsec].sh_info; 533 //unsigned long dp = (unsigned long)$global$; 534 register unsigned long dp asm ("r27"); 535 536 pr_debug("Applying relocate section %u to %u\n", relsec, 537 targetsec); 538 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 539 /* This is where to make the change */ 540 loc = (void *)sechdrs[targetsec].sh_addr 541 + rel[i].r_offset; 542 /* This is the start of the target section */ 543 loc0 = sechdrs[targetsec].sh_addr; 544 /* This is the symbol it is referring to */ 545 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 546 + ELF32_R_SYM(rel[i].r_info); 547 if (!sym->st_value) { 548 printk(KERN_WARNING "%s: Unknown symbol %s\n", 549 me->name, strtab + sym->st_name); 550 return -ENOENT; 551 } 552 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 553 dot = (Elf32_Addr)loc & ~0x03; 554 555 val = sym->st_value; 556 addend = rel[i].r_addend; 557 558 #if 0 559 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t : 560 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n", 561 strtab + sym->st_name, 562 (uint32_t)loc, val, addend, 563 r(R_PARISC_PLABEL32) 564 r(R_PARISC_DIR32) 565 r(R_PARISC_DIR21L) 566 r(R_PARISC_DIR14R) 567 r(R_PARISC_SEGREL32) 568 r(R_PARISC_DPREL21L) 569 r(R_PARISC_DPREL14R) 570 r(R_PARISC_PCREL17F) 571 r(R_PARISC_PCREL22F) 572 "UNKNOWN"); 573 #undef r 574 #endif 575 576 switch (ELF32_R_TYPE(rel[i].r_info)) { 577 case R_PARISC_PLABEL32: 578 /* 32-bit function address */ 579 /* no function descriptors... */ 580 *loc = fsel(val, addend); 581 break; 582 case R_PARISC_DIR32: 583 /* direct 32-bit ref */ 584 *loc = fsel(val, addend); 585 break; 586 case R_PARISC_DIR21L: 587 /* left 21 bits of effective address */ 588 val = lrsel(val, addend); 589 *loc = mask(*loc, 21) | reassemble_21(val); 590 break; 591 case R_PARISC_DIR14R: 592 /* right 14 bits of effective address */ 593 val = rrsel(val, addend); 594 *loc = mask(*loc, 14) | reassemble_14(val); 595 break; 596 case R_PARISC_SEGREL32: 597 /* 32-bit segment relative address */ 598 /* See note about special handling of SEGREL32 at 599 * the beginning of this file. 600 */ 601 *loc = fsel(val, addend); 602 break; 603 case R_PARISC_SECREL32: 604 /* 32-bit section relative address. */ 605 *loc = fsel(val, addend); 606 break; 607 case R_PARISC_DPREL21L: 608 /* left 21 bit of relative address */ 609 val = lrsel(val - dp, addend); 610 *loc = mask(*loc, 21) | reassemble_21(val); 611 break; 612 case R_PARISC_DPREL14R: 613 /* right 14 bit of relative address */ 614 val = rrsel(val - dp, addend); 615 *loc = mask(*loc, 14) | reassemble_14(val); 616 break; 617 case R_PARISC_PCREL17F: 618 /* 17-bit PC relative address */ 619 /* calculate direct call offset */ 620 val += addend; 621 val = (val - dot - 8)/4; 622 if (!RELOC_REACHABLE(val, 17)) { 623 /* direct distance too far, create 624 * stub entry instead */ 625 val = get_stub(me, sym->st_value, addend, 626 ELF_STUB_DIRECT, loc0, targetsec); 627 val = (val - dot - 8)/4; 628 CHECK_RELOC(val, 17); 629 } 630 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val); 631 break; 632 case R_PARISC_PCREL22F: 633 /* 22-bit PC relative address; only defined for pa20 */ 634 /* calculate direct call offset */ 635 val += addend; 636 val = (val - dot - 8)/4; 637 if (!RELOC_REACHABLE(val, 22)) { 638 /* direct distance too far, create 639 * stub entry instead */ 640 val = get_stub(me, sym->st_value, addend, 641 ELF_STUB_DIRECT, loc0, targetsec); 642 val = (val - dot - 8)/4; 643 CHECK_RELOC(val, 22); 644 } 645 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 646 break; 647 case R_PARISC_PCREL32: 648 /* 32-bit PC relative address */ 649 *loc = val - dot - 8 + addend; 650 break; 651 652 default: 653 printk(KERN_ERR "module %s: Unknown relocation: %u\n", 654 me->name, ELF32_R_TYPE(rel[i].r_info)); 655 return -ENOEXEC; 656 } 657 } 658 659 return 0; 660 } 661 662 #else 663 int apply_relocate_add(Elf_Shdr *sechdrs, 664 const char *strtab, 665 unsigned int symindex, 666 unsigned int relsec, 667 struct module *me) 668 { 669 int i; 670 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr; 671 Elf64_Sym *sym; 672 Elf64_Word *loc; 673 Elf64_Xword *loc64; 674 Elf64_Addr val; 675 Elf64_Sxword addend; 676 Elf64_Addr dot; 677 Elf_Addr loc0; 678 unsigned int targetsec = sechdrs[relsec].sh_info; 679 680 pr_debug("Applying relocate section %u to %u\n", relsec, 681 targetsec); 682 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 683 /* This is where to make the change */ 684 loc = (void *)sechdrs[targetsec].sh_addr 685 + rel[i].r_offset; 686 /* This is the start of the target section */ 687 loc0 = sechdrs[targetsec].sh_addr; 688 /* This is the symbol it is referring to */ 689 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr 690 + ELF64_R_SYM(rel[i].r_info); 691 if (!sym->st_value) { 692 printk(KERN_WARNING "%s: Unknown symbol %s\n", 693 me->name, strtab + sym->st_name); 694 return -ENOENT; 695 } 696 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03; 697 dot = (Elf64_Addr)loc & ~0x03; 698 loc64 = (Elf64_Xword *)loc; 699 700 val = sym->st_value; 701 addend = rel[i].r_addend; 702 703 #if 0 704 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t : 705 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n", 706 strtab + sym->st_name, 707 loc, val, addend, 708 r(R_PARISC_LTOFF14R) 709 r(R_PARISC_LTOFF21L) 710 r(R_PARISC_PCREL22F) 711 r(R_PARISC_DIR64) 712 r(R_PARISC_SEGREL32) 713 r(R_PARISC_FPTR64) 714 "UNKNOWN"); 715 #undef r 716 #endif 717 718 switch (ELF64_R_TYPE(rel[i].r_info)) { 719 case R_PARISC_LTOFF21L: 720 /* LT-relative; left 21 bits */ 721 val = get_got(me, val, addend); 722 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n", 723 strtab + sym->st_name, 724 loc, val); 725 val = lrsel(val, 0); 726 *loc = mask(*loc, 21) | reassemble_21(val); 727 break; 728 case R_PARISC_LTOFF14R: 729 /* L(ltoff(val+addend)) */ 730 /* LT-relative; right 14 bits */ 731 val = get_got(me, val, addend); 732 val = rrsel(val, 0); 733 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n", 734 strtab + sym->st_name, 735 loc, val); 736 *loc = mask(*loc, 14) | reassemble_14(val); 737 break; 738 case R_PARISC_PCREL22F: 739 /* PC-relative; 22 bits */ 740 pr_debug("PCREL22F Symbol %s loc %p val %llx\n", 741 strtab + sym->st_name, 742 loc, val); 743 val += addend; 744 /* can we reach it locally? */ 745 if (in_local(me, (void *)val)) { 746 /* this is the case where the symbol is local 747 * to the module, but in a different section, 748 * so stub the jump in case it's more than 22 749 * bits away */ 750 val = (val - dot - 8)/4; 751 if (!RELOC_REACHABLE(val, 22)) { 752 /* direct distance too far, create 753 * stub entry instead */ 754 val = get_stub(me, sym->st_value, 755 addend, ELF_STUB_DIRECT, 756 loc0, targetsec); 757 } else { 758 /* Ok, we can reach it directly. */ 759 val = sym->st_value; 760 val += addend; 761 } 762 } else { 763 val = sym->st_value; 764 if (strncmp(strtab + sym->st_name, "$$", 2) 765 == 0) 766 val = get_stub(me, val, addend, ELF_STUB_MILLI, 767 loc0, targetsec); 768 else 769 val = get_stub(me, val, addend, ELF_STUB_GOT, 770 loc0, targetsec); 771 } 772 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n", 773 strtab + sym->st_name, loc, sym->st_value, 774 addend, val); 775 val = (val - dot - 8)/4; 776 CHECK_RELOC(val, 22); 777 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val); 778 break; 779 case R_PARISC_PCREL32: 780 /* 32-bit PC relative address */ 781 *loc = val - dot - 8 + addend; 782 break; 783 case R_PARISC_PCREL64: 784 /* 64-bit PC relative address */ 785 *loc64 = val - dot - 8 + addend; 786 break; 787 case R_PARISC_DIR64: 788 /* 64-bit effective address */ 789 *loc64 = val + addend; 790 break; 791 case R_PARISC_SEGREL32: 792 /* 32-bit segment relative address */ 793 /* See note about special handling of SEGREL32 at 794 * the beginning of this file. 795 */ 796 *loc = fsel(val, addend); 797 break; 798 case R_PARISC_SECREL32: 799 /* 32-bit section relative address. */ 800 *loc = fsel(val, addend); 801 break; 802 case R_PARISC_FPTR64: 803 /* 64-bit function address */ 804 if(in_local(me, (void *)(val + addend))) { 805 *loc64 = get_fdesc(me, val+addend); 806 pr_debug("FDESC for %s at %llx points to %llx\n", 807 strtab + sym->st_name, *loc64, 808 ((Elf_Fdesc *)*loc64)->addr); 809 } else { 810 /* if the symbol is not local to this 811 * module then val+addend is a pointer 812 * to the function descriptor */ 813 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n", 814 strtab + sym->st_name, 815 loc, val); 816 *loc64 = val + addend; 817 } 818 break; 819 820 default: 821 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n", 822 me->name, ELF64_R_TYPE(rel[i].r_info)); 823 return -ENOEXEC; 824 } 825 } 826 return 0; 827 } 828 #endif 829 830 static void 831 register_unwind_table(struct module *me, 832 const Elf_Shdr *sechdrs) 833 { 834 unsigned char *table, *end; 835 unsigned long gp; 836 837 if (!me->arch.unwind_section) 838 return; 839 840 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr; 841 end = table + sechdrs[me->arch.unwind_section].sh_size; 842 gp = (Elf_Addr)me->core_layout.base + me->arch.got_offset; 843 844 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n", 845 me->arch.unwind_section, table, end, gp); 846 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end); 847 } 848 849 static void 850 deregister_unwind_table(struct module *me) 851 { 852 if (me->arch.unwind) 853 unwind_table_remove(me->arch.unwind); 854 } 855 856 int module_finalize(const Elf_Ehdr *hdr, 857 const Elf_Shdr *sechdrs, 858 struct module *me) 859 { 860 int i; 861 unsigned long nsyms; 862 const char *strtab = NULL; 863 const Elf_Shdr *s; 864 char *secstrings; 865 int symindex = -1; 866 Elf_Sym *newptr, *oldptr; 867 Elf_Shdr *symhdr = NULL; 868 #ifdef DEBUG 869 Elf_Fdesc *entry; 870 u32 *addr; 871 872 entry = (Elf_Fdesc *)me->init; 873 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry, 874 entry->gp, entry->addr); 875 addr = (u32 *)entry->addr; 876 printk("INSNS: %x %x %x %x\n", 877 addr[0], addr[1], addr[2], addr[3]); 878 printk("got entries used %ld, gots max %ld\n" 879 "fdescs used %ld, fdescs max %ld\n", 880 me->arch.got_count, me->arch.got_max, 881 me->arch.fdesc_count, me->arch.fdesc_max); 882 #endif 883 884 register_unwind_table(me, sechdrs); 885 886 /* haven't filled in me->symtab yet, so have to find it 887 * ourselves */ 888 for (i = 1; i < hdr->e_shnum; i++) { 889 if(sechdrs[i].sh_type == SHT_SYMTAB 890 && (sechdrs[i].sh_flags & SHF_ALLOC)) { 891 int strindex = sechdrs[i].sh_link; 892 symindex = i; 893 /* FIXME: AWFUL HACK 894 * The cast is to drop the const from 895 * the sechdrs pointer */ 896 symhdr = (Elf_Shdr *)&sechdrs[i]; 897 strtab = (char *)sechdrs[strindex].sh_addr; 898 break; 899 } 900 } 901 902 pr_debug("module %s: strtab %p, symhdr %p\n", 903 me->name, strtab, symhdr); 904 905 if(me->arch.got_count > MAX_GOTS) { 906 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n", 907 me->name, me->arch.got_count, MAX_GOTS); 908 return -EINVAL; 909 } 910 911 kfree(me->arch.section); 912 me->arch.section = NULL; 913 914 /* no symbol table */ 915 if(symhdr == NULL) 916 return 0; 917 918 oldptr = (void *)symhdr->sh_addr; 919 newptr = oldptr + 1; /* we start counting at 1 */ 920 nsyms = symhdr->sh_size / sizeof(Elf_Sym); 921 pr_debug("OLD num_symtab %lu\n", nsyms); 922 923 for (i = 1; i < nsyms; i++) { 924 oldptr++; /* note, count starts at 1 so preincrement */ 925 if(strncmp(strtab + oldptr->st_name, 926 ".L", 2) == 0) 927 continue; 928 929 if(newptr != oldptr) 930 *newptr++ = *oldptr; 931 else 932 newptr++; 933 934 } 935 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr; 936 pr_debug("NEW num_symtab %lu\n", nsyms); 937 symhdr->sh_size = nsyms * sizeof(Elf_Sym); 938 939 /* find .altinstructions section */ 940 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 941 for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) { 942 void *aseg = (void *) s->sh_addr; 943 char *secname = secstrings + s->sh_name; 944 945 if (!strcmp(".altinstructions", secname)) 946 /* patch .altinstructions */ 947 apply_alternatives(aseg, aseg + s->sh_size, me->name); 948 949 #ifdef CONFIG_DYNAMIC_FTRACE 950 /* For 32 bit kernels we're compiling modules with 951 * -ffunction-sections so we must relocate the addresses in the 952 * ftrace callsite section. 953 */ 954 if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) { 955 int err; 956 if (s->sh_type == SHT_REL) 957 err = apply_relocate((Elf_Shdr *)sechdrs, 958 strtab, symindex, 959 s - sechdrs, me); 960 else if (s->sh_type == SHT_RELA) 961 err = apply_relocate_add((Elf_Shdr *)sechdrs, 962 strtab, symindex, 963 s - sechdrs, me); 964 if (err) 965 return err; 966 } 967 #endif 968 } 969 return 0; 970 } 971 972 void module_arch_cleanup(struct module *mod) 973 { 974 deregister_unwind_table(mod); 975 } 976 977 #ifdef CONFIG_64BIT 978 void *dereference_module_function_descriptor(struct module *mod, void *ptr) 979 { 980 unsigned long start_opd = (Elf64_Addr)mod->core_layout.base + 981 mod->arch.fdesc_offset; 982 unsigned long end_opd = start_opd + 983 mod->arch.fdesc_count * sizeof(Elf64_Fdesc); 984 985 if (ptr < (void *)start_opd || ptr >= (void *)end_opd) 986 return ptr; 987 988 return dereference_function_descriptor(ptr); 989 } 990 #endif 991