1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch/parisc/kernel/kprobes.c 4 * 5 * PA-RISC kprobes implementation 6 * 7 * Copyright (c) 2019 Sven Schnelle <svens@stackframe.org> 8 * Copyright (c) 2022 Helge Deller <deller@gmx.de> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/kprobes.h> 13 #include <linux/slab.h> 14 #include <asm/cacheflush.h> 15 #include <asm/patch.h> 16 17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 19 20 int __kprobes arch_prepare_kprobe(struct kprobe *p) 21 { 22 if ((unsigned long)p->addr & 3UL) 23 return -EINVAL; 24 25 p->ainsn.insn = get_insn_slot(); 26 if (!p->ainsn.insn) 27 return -ENOMEM; 28 29 /* 30 * Set up new instructions. Second break instruction will 31 * trigger call of parisc_kprobe_ss_handler(). 32 */ 33 p->opcode = *p->addr; 34 p->ainsn.insn[0] = p->opcode; 35 p->ainsn.insn[1] = PARISC_KPROBES_BREAK_INSN2; 36 37 flush_insn_slot(p); 38 return 0; 39 } 40 41 void __kprobes arch_remove_kprobe(struct kprobe *p) 42 { 43 if (!p->ainsn.insn) 44 return; 45 46 free_insn_slot(p->ainsn.insn, 0); 47 p->ainsn.insn = NULL; 48 } 49 50 void __kprobes arch_arm_kprobe(struct kprobe *p) 51 { 52 patch_text(p->addr, PARISC_KPROBES_BREAK_INSN); 53 } 54 55 void __kprobes arch_disarm_kprobe(struct kprobe *p) 56 { 57 patch_text(p->addr, p->opcode); 58 } 59 60 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 61 { 62 kcb->prev_kprobe.kp = kprobe_running(); 63 kcb->prev_kprobe.status = kcb->kprobe_status; 64 } 65 66 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 67 { 68 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 69 kcb->kprobe_status = kcb->prev_kprobe.status; 70 } 71 72 static inline void __kprobes set_current_kprobe(struct kprobe *p) 73 { 74 __this_cpu_write(current_kprobe, p); 75 } 76 77 static void __kprobes setup_singlestep(struct kprobe *p, 78 struct kprobe_ctlblk *kcb, struct pt_regs *regs) 79 { 80 kcb->iaoq[0] = regs->iaoq[0]; 81 kcb->iaoq[1] = regs->iaoq[1]; 82 instruction_pointer_set(regs, (unsigned long)p->ainsn.insn); 83 } 84 85 int __kprobes parisc_kprobe_break_handler(struct pt_regs *regs) 86 { 87 struct kprobe *p; 88 struct kprobe_ctlblk *kcb; 89 90 preempt_disable(); 91 92 kcb = get_kprobe_ctlblk(); 93 p = get_kprobe((unsigned long *)regs->iaoq[0]); 94 95 if (!p) { 96 preempt_enable_no_resched(); 97 return 0; 98 } 99 100 if (kprobe_running()) { 101 /* 102 * We have reentered the kprobe_handler, since another kprobe 103 * was hit while within the handler, we save the original 104 * kprobes and single step on the instruction of the new probe 105 * without calling any user handlers to avoid recursive 106 * kprobes. 107 */ 108 save_previous_kprobe(kcb); 109 set_current_kprobe(p); 110 kprobes_inc_nmissed_count(p); 111 setup_singlestep(p, kcb, regs); 112 kcb->kprobe_status = KPROBE_REENTER; 113 return 1; 114 } 115 116 set_current_kprobe(p); 117 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 118 119 /* If we have no pre-handler or it returned 0, we continue with 120 * normal processing. If we have a pre-handler and it returned 121 * non-zero - which means user handler setup registers to exit 122 * to another instruction, we must skip the single stepping. 123 */ 124 125 if (!p->pre_handler || !p->pre_handler(p, regs)) { 126 setup_singlestep(p, kcb, regs); 127 kcb->kprobe_status = KPROBE_HIT_SS; 128 } else { 129 reset_current_kprobe(); 130 preempt_enable_no_resched(); 131 } 132 return 1; 133 } 134 135 int __kprobes parisc_kprobe_ss_handler(struct pt_regs *regs) 136 { 137 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 138 struct kprobe *p = kprobe_running(); 139 140 if (!p) 141 return 0; 142 143 if (regs->iaoq[0] != (unsigned long)p->ainsn.insn+4) 144 return 0; 145 146 /* restore back original saved kprobe variables and continue */ 147 if (kcb->kprobe_status == KPROBE_REENTER) { 148 restore_previous_kprobe(kcb); 149 return 1; 150 } 151 152 /* for absolute branch instructions we can copy iaoq_b. for relative 153 * branch instructions we need to calculate the new address based on the 154 * difference between iaoq_f and iaoq_b. We cannot use iaoq_b without 155 * modifications because it's based on our ainsn.insn address. 156 */ 157 158 if (p->post_handler) 159 p->post_handler(p, regs, 0); 160 161 switch (regs->iir >> 26) { 162 case 0x38: /* BE */ 163 case 0x39: /* BE,L */ 164 case 0x3a: /* BV */ 165 case 0x3b: /* BVE */ 166 /* for absolute branches, regs->iaoq[1] has already the right 167 * address 168 */ 169 regs->iaoq[0] = kcb->iaoq[1]; 170 break; 171 default: 172 regs->iaoq[0] = kcb->iaoq[1]; 173 regs->iaoq[1] = regs->iaoq[0] + 4; 174 break; 175 } 176 kcb->kprobe_status = KPROBE_HIT_SSDONE; 177 reset_current_kprobe(); 178 return 1; 179 } 180 181 void __kretprobe_trampoline(void) 182 { 183 asm volatile("nop"); 184 asm volatile("nop"); 185 } 186 187 static int __kprobes trampoline_probe_handler(struct kprobe *p, 188 struct pt_regs *regs); 189 190 static struct kprobe trampoline_p = { 191 .pre_handler = trampoline_probe_handler 192 }; 193 194 static int __kprobes trampoline_probe_handler(struct kprobe *p, 195 struct pt_regs *regs) 196 { 197 __kretprobe_trampoline_handler(regs, NULL); 198 199 return 1; 200 } 201 202 void arch_kretprobe_fixup_return(struct pt_regs *regs, 203 kprobe_opcode_t *correct_ret_addr) 204 { 205 regs->gr[2] = (unsigned long)correct_ret_addr; 206 } 207 208 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 209 struct pt_regs *regs) 210 { 211 ri->ret_addr = (kprobe_opcode_t *)regs->gr[2]; 212 ri->fp = NULL; 213 214 /* Replace the return addr with trampoline addr. */ 215 regs->gr[2] = (unsigned long)trampoline_p.addr; 216 } 217 218 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 219 { 220 return p->addr == trampoline_p.addr; 221 } 222 223 int __init arch_init_kprobes(void) 224 { 225 trampoline_p.addr = (kprobe_opcode_t *) 226 dereference_function_descriptor(__kretprobe_trampoline); 227 return register_kprobe(&trampoline_p); 228 } 229