xref: /openbmc/linux/arch/parisc/kernel/irq.c (revision 78c99ba1)
1 /*
2  * Code to handle x86 style IRQs plus some generic interrupt stuff.
3  *
4  * Copyright (C) 1992 Linus Torvalds
5  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7  * Copyright (C) 1999-2000 Grant Grundler
8  * Copyright (c) 2005 Matthew Wilcox
9  *
10  *    This program is free software; you can redistribute it and/or modify
11  *    it under the terms of the GNU General Public License as published by
12  *    the Free Software Foundation; either version 2, or (at your option)
13  *    any later version.
14  *
15  *    This program is distributed in the hope that it will be useful,
16  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *    GNU General Public License for more details.
19  *
20  *    You should have received a copy of the GNU General Public License
21  *    along with this program; if not, write to the Free Software
22  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 #include <linux/bitops.h>
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/seq_file.h>
30 #include <linux/spinlock.h>
31 #include <linux/types.h>
32 #include <asm/io.h>
33 
34 #include <asm/smp.h>
35 
36 #undef PARISC_IRQ_CR16_COUNTS
37 
38 extern irqreturn_t timer_interrupt(int, void *);
39 extern irqreturn_t ipi_interrupt(int, void *);
40 
41 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
42 
43 /* Bits in EIEM correlate with cpu_irq_action[].
44 ** Numbered *Big Endian*! (ie bit 0 is MSB)
45 */
46 static volatile unsigned long cpu_eiem = 0;
47 
48 /*
49 ** local ACK bitmap ... habitually set to 1, but reset to zero
50 ** between ->ack() and ->end() of the interrupt to prevent
51 ** re-interruption of a processing interrupt.
52 */
53 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
54 
55 static void cpu_disable_irq(unsigned int irq)
56 {
57 	unsigned long eirr_bit = EIEM_MASK(irq);
58 
59 	cpu_eiem &= ~eirr_bit;
60 	/* Do nothing on the other CPUs.  If they get this interrupt,
61 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
62 	 * handle it, and the set_eiem() at the bottom will ensure it
63 	 * then gets disabled */
64 }
65 
66 static void cpu_enable_irq(unsigned int irq)
67 {
68 	unsigned long eirr_bit = EIEM_MASK(irq);
69 
70 	cpu_eiem |= eirr_bit;
71 
72 	/* This is just a simple NOP IPI.  But what it does is cause
73 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
74 	 * of the interrupt handler */
75 	smp_send_all_nop();
76 }
77 
78 static unsigned int cpu_startup_irq(unsigned int irq)
79 {
80 	cpu_enable_irq(irq);
81 	return 0;
82 }
83 
84 void no_ack_irq(unsigned int irq) { }
85 void no_end_irq(unsigned int irq) { }
86 
87 void cpu_ack_irq(unsigned int irq)
88 {
89 	unsigned long mask = EIEM_MASK(irq);
90 	int cpu = smp_processor_id();
91 
92 	/* Clear in EIEM so we can no longer process */
93 	per_cpu(local_ack_eiem, cpu) &= ~mask;
94 
95 	/* disable the interrupt */
96 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
97 
98 	/* and now ack it */
99 	mtctl(mask, 23);
100 }
101 
102 void cpu_end_irq(unsigned int irq)
103 {
104 	unsigned long mask = EIEM_MASK(irq);
105 	int cpu = smp_processor_id();
106 
107 	/* set it in the eiems---it's no longer in process */
108 	per_cpu(local_ack_eiem, cpu) |= mask;
109 
110 	/* enable the interrupt */
111 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
112 }
113 
114 #ifdef CONFIG_SMP
115 int cpu_check_affinity(unsigned int irq, const struct cpumask *dest)
116 {
117 	int cpu_dest;
118 
119 	/* timer and ipi have to always be received on all CPUs */
120 	if (CHECK_IRQ_PER_CPU(irq)) {
121 		/* Bad linux design decision.  The mask has already
122 		 * been set; we must reset it */
123 		cpumask_setall(&irq_desc[irq].affinity);
124 		return -EINVAL;
125 	}
126 
127 	/* whatever mask they set, we just allow one CPU */
128 	cpu_dest = first_cpu(*dest);
129 
130 	return cpu_dest;
131 }
132 
133 static int cpu_set_affinity_irq(unsigned int irq, const struct cpumask *dest)
134 {
135 	int cpu_dest;
136 
137 	cpu_dest = cpu_check_affinity(irq, dest);
138 	if (cpu_dest < 0)
139 		return -1;
140 
141 	cpumask_copy(&irq_desc[irq].affinity, dest);
142 
143 	return 0;
144 }
145 #endif
146 
147 static struct hw_interrupt_type cpu_interrupt_type = {
148 	.typename	= "CPU",
149 	.startup	= cpu_startup_irq,
150 	.shutdown	= cpu_disable_irq,
151 	.enable		= cpu_enable_irq,
152 	.disable	= cpu_disable_irq,
153 	.ack		= cpu_ack_irq,
154 	.end		= cpu_end_irq,
155 #ifdef CONFIG_SMP
156 	.set_affinity	= cpu_set_affinity_irq,
157 #endif
158 	/* XXX: Needs to be written.  We managed without it so far, but
159 	 * we really ought to write it.
160 	 */
161 	.retrigger	= NULL,
162 };
163 
164 int show_interrupts(struct seq_file *p, void *v)
165 {
166 	int i = *(loff_t *) v, j;
167 	unsigned long flags;
168 
169 	if (i == 0) {
170 		seq_puts(p, "    ");
171 		for_each_online_cpu(j)
172 			seq_printf(p, "       CPU%d", j);
173 
174 #ifdef PARISC_IRQ_CR16_COUNTS
175 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
176 #endif
177 		seq_putc(p, '\n');
178 	}
179 
180 	if (i < NR_IRQS) {
181 		struct irqaction *action;
182 
183 		spin_lock_irqsave(&irq_desc[i].lock, flags);
184 		action = irq_desc[i].action;
185 		if (!action)
186 			goto skip;
187 		seq_printf(p, "%3d: ", i);
188 #ifdef CONFIG_SMP
189 		for_each_online_cpu(j)
190 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
191 #else
192 		seq_printf(p, "%10u ", kstat_irqs(i));
193 #endif
194 
195 		seq_printf(p, " %14s", irq_desc[i].chip->typename);
196 #ifndef PARISC_IRQ_CR16_COUNTS
197 		seq_printf(p, "  %s", action->name);
198 
199 		while ((action = action->next))
200 			seq_printf(p, ", %s", action->name);
201 #else
202 		for ( ;action; action = action->next) {
203 			unsigned int k, avg, min, max;
204 
205 			min = max = action->cr16_hist[0];
206 
207 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
208 				int hist = action->cr16_hist[k];
209 
210 				if (hist) {
211 					avg += hist;
212 				} else
213 					break;
214 
215 				if (hist > max) max = hist;
216 				if (hist < min) min = hist;
217 			}
218 
219 			avg /= k;
220 			seq_printf(p, " %s[%d/%d/%d]", action->name,
221 					min,avg,max);
222 		}
223 #endif
224 
225 		seq_putc(p, '\n');
226  skip:
227 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
228 	}
229 
230 	return 0;
231 }
232 
233 
234 
235 /*
236 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
237 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
238 **
239 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
240 ** Then use that to get the Transaction address and data.
241 */
242 
243 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
244 {
245 	if (irq_desc[irq].action)
246 		return -EBUSY;
247 	if (irq_desc[irq].chip != &cpu_interrupt_type)
248 		return -EBUSY;
249 
250 	if (type) {
251 		irq_desc[irq].chip = type;
252 		irq_desc[irq].chip_data = data;
253 		cpu_interrupt_type.enable(irq);
254 	}
255 	return 0;
256 }
257 
258 int txn_claim_irq(int irq)
259 {
260 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
261 }
262 
263 /*
264  * The bits_wide parameter accommodates the limitations of the HW/SW which
265  * use these bits:
266  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
267  * V-class (EPIC):          6 bits
268  * N/L/A-class (iosapic):   8 bits
269  * PCI 2.2 MSI:            16 bits
270  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
271  *
272  * On the service provider side:
273  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
274  * o PA 2.0 wide mode                   6-bits (per processor)
275  * o IA64                               8-bits (0-256 total)
276  *
277  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
278  * by the processor...and the N/L-class I/O subsystem supports more bits than
279  * PA2.0 has. The first case is the problem.
280  */
281 int txn_alloc_irq(unsigned int bits_wide)
282 {
283 	int irq;
284 
285 	/* never return irq 0 cause that's the interval timer */
286 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
287 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
288 			continue;
289 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
290 			continue;
291 		return irq;
292 	}
293 
294 	/* unlikely, but be prepared */
295 	return -1;
296 }
297 
298 
299 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
300 {
301 #ifdef CONFIG_SMP
302 	cpumask_copy(&irq_desc[irq].affinity, cpumask_of(cpu));
303 #endif
304 
305 	return per_cpu(cpu_data, cpu).txn_addr;
306 }
307 
308 
309 unsigned long txn_alloc_addr(unsigned int virt_irq)
310 {
311 	static int next_cpu = -1;
312 
313 	next_cpu++; /* assign to "next" CPU we want this bugger on */
314 
315 	/* validate entry */
316 	while ((next_cpu < nr_cpu_ids) &&
317 		(!per_cpu(cpu_data, next_cpu).txn_addr ||
318 		 !cpu_online(next_cpu)))
319 		next_cpu++;
320 
321 	if (next_cpu >= nr_cpu_ids)
322 		next_cpu = 0;	/* nothing else, assign monarch */
323 
324 	return txn_affinity_addr(virt_irq, next_cpu);
325 }
326 
327 
328 unsigned int txn_alloc_data(unsigned int virt_irq)
329 {
330 	return virt_irq - CPU_IRQ_BASE;
331 }
332 
333 static inline int eirr_to_irq(unsigned long eirr)
334 {
335 	int bit = fls_long(eirr);
336 	return (BITS_PER_LONG - bit) + TIMER_IRQ;
337 }
338 
339 /* ONLY called from entry.S:intr_extint() */
340 void do_cpu_irq_mask(struct pt_regs *regs)
341 {
342 	struct pt_regs *old_regs;
343 	unsigned long eirr_val;
344 	int irq, cpu = smp_processor_id();
345 #ifdef CONFIG_SMP
346 	cpumask_t dest;
347 #endif
348 
349 	old_regs = set_irq_regs(regs);
350 	local_irq_disable();
351 	irq_enter();
352 
353 	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
354 	if (!eirr_val)
355 		goto set_out;
356 	irq = eirr_to_irq(eirr_val);
357 
358 #ifdef CONFIG_SMP
359 	cpumask_copy(&dest, &irq_desc[irq].affinity);
360 	if (CHECK_IRQ_PER_CPU(irq_desc[irq].status) &&
361 	    !cpu_isset(smp_processor_id(), dest)) {
362 		int cpu = first_cpu(dest);
363 
364 		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
365 		       irq, smp_processor_id(), cpu);
366 		gsc_writel(irq + CPU_IRQ_BASE,
367 			   per_cpu(cpu_data, cpu).hpa);
368 		goto set_out;
369 	}
370 #endif
371 	__do_IRQ(irq);
372 
373  out:
374 	irq_exit();
375 	set_irq_regs(old_regs);
376 	return;
377 
378  set_out:
379 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
380 	goto out;
381 }
382 
383 static struct irqaction timer_action = {
384 	.handler = timer_interrupt,
385 	.name = "timer",
386 	.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL,
387 };
388 
389 #ifdef CONFIG_SMP
390 static struct irqaction ipi_action = {
391 	.handler = ipi_interrupt,
392 	.name = "IPI",
393 	.flags = IRQF_DISABLED | IRQF_PERCPU,
394 };
395 #endif
396 
397 static void claim_cpu_irqs(void)
398 {
399 	int i;
400 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
401 		irq_desc[i].chip = &cpu_interrupt_type;
402 	}
403 
404 	irq_desc[TIMER_IRQ].action = &timer_action;
405 	irq_desc[TIMER_IRQ].status = IRQ_PER_CPU;
406 #ifdef CONFIG_SMP
407 	irq_desc[IPI_IRQ].action = &ipi_action;
408 	irq_desc[IPI_IRQ].status = IRQ_PER_CPU;
409 #endif
410 }
411 
412 void __init init_IRQ(void)
413 {
414 	local_irq_disable();	/* PARANOID - should already be disabled */
415 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
416 	claim_cpu_irqs();
417 #ifdef CONFIG_SMP
418 	if (!cpu_eiem)
419 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
420 #else
421 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
422 #endif
423         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
424 
425 }
426 
427 void ack_bad_irq(unsigned int irq)
428 {
429 	printk(KERN_WARNING "unexpected IRQ %d\n", irq);
430 }
431