1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Code to handle x86 style IRQs plus some generic interrupt stuff. 4 * 5 * Copyright (C) 1992 Linus Torvalds 6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle 7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) 8 * Copyright (C) 1999-2000 Grant Grundler 9 * Copyright (c) 2005 Matthew Wilcox 10 */ 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/seq_file.h> 17 #include <linux/types.h> 18 #include <linux/sched/task_stack.h> 19 #include <asm/io.h> 20 21 #include <asm/softirq_stack.h> 22 #include <asm/smp.h> 23 #include <asm/ldcw.h> 24 25 #undef PARISC_IRQ_CR16_COUNTS 26 27 extern irqreturn_t timer_interrupt(int, void *); 28 extern irqreturn_t ipi_interrupt(int, void *); 29 30 #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq)) 31 32 /* Bits in EIEM correlate with cpu_irq_action[]. 33 ** Numbered *Big Endian*! (ie bit 0 is MSB) 34 */ 35 static volatile unsigned long cpu_eiem = 0; 36 37 /* 38 ** local ACK bitmap ... habitually set to 1, but reset to zero 39 ** between ->ack() and ->end() of the interrupt to prevent 40 ** re-interruption of a processing interrupt. 41 */ 42 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL; 43 44 static void cpu_mask_irq(struct irq_data *d) 45 { 46 unsigned long eirr_bit = EIEM_MASK(d->irq); 47 48 cpu_eiem &= ~eirr_bit; 49 /* Do nothing on the other CPUs. If they get this interrupt, 50 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't 51 * handle it, and the set_eiem() at the bottom will ensure it 52 * then gets disabled */ 53 } 54 55 static void __cpu_unmask_irq(unsigned int irq) 56 { 57 unsigned long eirr_bit = EIEM_MASK(irq); 58 59 cpu_eiem |= eirr_bit; 60 61 /* This is just a simple NOP IPI. But what it does is cause 62 * all the other CPUs to do a set_eiem(cpu_eiem) at the end 63 * of the interrupt handler */ 64 smp_send_all_nop(); 65 } 66 67 static void cpu_unmask_irq(struct irq_data *d) 68 { 69 __cpu_unmask_irq(d->irq); 70 } 71 72 void cpu_ack_irq(struct irq_data *d) 73 { 74 unsigned long mask = EIEM_MASK(d->irq); 75 int cpu = smp_processor_id(); 76 77 /* Clear in EIEM so we can no longer process */ 78 per_cpu(local_ack_eiem, cpu) &= ~mask; 79 80 /* disable the interrupt */ 81 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 82 83 /* and now ack it */ 84 mtctl(mask, 23); 85 } 86 87 void cpu_eoi_irq(struct irq_data *d) 88 { 89 unsigned long mask = EIEM_MASK(d->irq); 90 int cpu = smp_processor_id(); 91 92 /* set it in the eiems---it's no longer in process */ 93 per_cpu(local_ack_eiem, cpu) |= mask; 94 95 /* enable the interrupt */ 96 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 97 } 98 99 #ifdef CONFIG_SMP 100 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest) 101 { 102 int cpu_dest; 103 104 /* timer and ipi have to always be received on all CPUs */ 105 if (irqd_is_per_cpu(d)) 106 return -EINVAL; 107 108 /* whatever mask they set, we just allow one CPU */ 109 cpu_dest = cpumask_next_and(d->irq & (num_online_cpus()-1), 110 dest, cpu_online_mask); 111 if (cpu_dest >= nr_cpu_ids) 112 cpu_dest = cpumask_first_and(dest, cpu_online_mask); 113 114 return cpu_dest; 115 } 116 117 static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest, 118 bool force) 119 { 120 int cpu_dest; 121 122 cpu_dest = cpu_check_affinity(d, dest); 123 if (cpu_dest < 0) 124 return -1; 125 126 cpumask_copy(irq_data_get_affinity_mask(d), dest); 127 128 return 0; 129 } 130 #endif 131 132 static struct irq_chip cpu_interrupt_type = { 133 .name = "CPU", 134 .irq_mask = cpu_mask_irq, 135 .irq_unmask = cpu_unmask_irq, 136 .irq_ack = cpu_ack_irq, 137 .irq_eoi = cpu_eoi_irq, 138 #ifdef CONFIG_SMP 139 .irq_set_affinity = cpu_set_affinity_irq, 140 #endif 141 /* XXX: Needs to be written. We managed without it so far, but 142 * we really ought to write it. 143 */ 144 .irq_retrigger = NULL, 145 }; 146 147 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 148 #define irq_stats(x) (&per_cpu(irq_stat, x)) 149 150 /* 151 * /proc/interrupts printing for arch specific interrupts 152 */ 153 int arch_show_interrupts(struct seq_file *p, int prec) 154 { 155 int j; 156 157 #ifdef CONFIG_DEBUG_STACKOVERFLOW 158 seq_printf(p, "%*s: ", prec, "STK"); 159 for_each_online_cpu(j) 160 seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage); 161 seq_puts(p, " Kernel stack usage\n"); 162 # ifdef CONFIG_IRQSTACKS 163 seq_printf(p, "%*s: ", prec, "IST"); 164 for_each_online_cpu(j) 165 seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage); 166 seq_puts(p, " Interrupt stack usage\n"); 167 # endif 168 #endif 169 #ifdef CONFIG_SMP 170 if (num_online_cpus() > 1) { 171 seq_printf(p, "%*s: ", prec, "RES"); 172 for_each_online_cpu(j) 173 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 174 seq_puts(p, " Rescheduling interrupts\n"); 175 seq_printf(p, "%*s: ", prec, "CAL"); 176 for_each_online_cpu(j) 177 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 178 seq_puts(p, " Function call interrupts\n"); 179 } 180 #endif 181 seq_printf(p, "%*s: ", prec, "UAH"); 182 for_each_online_cpu(j) 183 seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count); 184 seq_puts(p, " Unaligned access handler traps\n"); 185 seq_printf(p, "%*s: ", prec, "FPA"); 186 for_each_online_cpu(j) 187 seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count); 188 seq_puts(p, " Floating point assist traps\n"); 189 seq_printf(p, "%*s: ", prec, "TLB"); 190 for_each_online_cpu(j) 191 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 192 seq_puts(p, " TLB shootdowns\n"); 193 return 0; 194 } 195 196 int show_interrupts(struct seq_file *p, void *v) 197 { 198 int i = *(loff_t *) v, j; 199 unsigned long flags; 200 201 if (i == 0) { 202 seq_puts(p, " "); 203 for_each_online_cpu(j) 204 seq_printf(p, " CPU%d", j); 205 206 #ifdef PARISC_IRQ_CR16_COUNTS 207 seq_printf(p, " [min/avg/max] (CPU cycle counts)"); 208 #endif 209 seq_putc(p, '\n'); 210 } 211 212 if (i < NR_IRQS) { 213 struct irq_desc *desc = irq_to_desc(i); 214 struct irqaction *action; 215 216 raw_spin_lock_irqsave(&desc->lock, flags); 217 action = desc->action; 218 if (!action) 219 goto skip; 220 seq_printf(p, "%3d: ", i); 221 222 for_each_online_cpu(j) 223 seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j)); 224 225 seq_printf(p, " %14s", irq_desc_get_chip(desc)->name); 226 #ifndef PARISC_IRQ_CR16_COUNTS 227 seq_printf(p, " %s", action->name); 228 229 while ((action = action->next)) 230 seq_printf(p, ", %s", action->name); 231 #else 232 for ( ;action; action = action->next) { 233 unsigned int k, avg, min, max; 234 235 min = max = action->cr16_hist[0]; 236 237 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) { 238 int hist = action->cr16_hist[k]; 239 240 if (hist) { 241 avg += hist; 242 } else 243 break; 244 245 if (hist > max) max = hist; 246 if (hist < min) min = hist; 247 } 248 249 avg /= k; 250 seq_printf(p, " %s[%d/%d/%d]", action->name, 251 min,avg,max); 252 } 253 #endif 254 255 seq_putc(p, '\n'); 256 skip: 257 raw_spin_unlock_irqrestore(&desc->lock, flags); 258 } 259 260 if (i == NR_IRQS) 261 arch_show_interrupts(p, 3); 262 263 return 0; 264 } 265 266 267 268 /* 269 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data. 270 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit. 271 ** 272 ** To use txn_XXX() interfaces, get a Virtual IRQ first. 273 ** Then use that to get the Transaction address and data. 274 */ 275 276 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data) 277 { 278 if (irq_has_action(irq)) 279 return -EBUSY; 280 if (irq_get_chip(irq) != &cpu_interrupt_type) 281 return -EBUSY; 282 283 /* for iosapic interrupts */ 284 if (type) { 285 irq_set_chip_and_handler(irq, type, handle_percpu_irq); 286 irq_set_chip_data(irq, data); 287 __cpu_unmask_irq(irq); 288 } 289 return 0; 290 } 291 292 int txn_claim_irq(int irq) 293 { 294 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq; 295 } 296 297 /* 298 * The bits_wide parameter accommodates the limitations of the HW/SW which 299 * use these bits: 300 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register) 301 * V-class (EPIC): 6 bits 302 * N/L/A-class (iosapic): 8 bits 303 * PCI 2.2 MSI: 16 bits 304 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric) 305 * 306 * On the service provider side: 307 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register) 308 * o PA 2.0 wide mode 6-bits (per processor) 309 * o IA64 8-bits (0-256 total) 310 * 311 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported 312 * by the processor...and the N/L-class I/O subsystem supports more bits than 313 * PA2.0 has. The first case is the problem. 314 */ 315 int txn_alloc_irq(unsigned int bits_wide) 316 { 317 int irq; 318 319 /* never return irq 0 cause that's the interval timer */ 320 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) { 321 if (cpu_claim_irq(irq, NULL, NULL) < 0) 322 continue; 323 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide)) 324 continue; 325 return irq; 326 } 327 328 /* unlikely, but be prepared */ 329 return -1; 330 } 331 332 333 unsigned long txn_affinity_addr(unsigned int irq, int cpu) 334 { 335 #ifdef CONFIG_SMP 336 struct irq_data *d = irq_get_irq_data(irq); 337 cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu)); 338 #endif 339 340 return per_cpu(cpu_data, cpu).txn_addr; 341 } 342 343 344 unsigned long txn_alloc_addr(unsigned int virt_irq) 345 { 346 static int next_cpu = -1; 347 348 next_cpu++; /* assign to "next" CPU we want this bugger on */ 349 350 /* validate entry */ 351 while ((next_cpu < nr_cpu_ids) && 352 (!per_cpu(cpu_data, next_cpu).txn_addr || 353 !cpu_online(next_cpu))) 354 next_cpu++; 355 356 if (next_cpu >= nr_cpu_ids) 357 next_cpu = 0; /* nothing else, assign monarch */ 358 359 return txn_affinity_addr(virt_irq, next_cpu); 360 } 361 362 363 unsigned int txn_alloc_data(unsigned int virt_irq) 364 { 365 return virt_irq - CPU_IRQ_BASE; 366 } 367 368 static inline int eirr_to_irq(unsigned long eirr) 369 { 370 int bit = fls_long(eirr); 371 return (BITS_PER_LONG - bit) + TIMER_IRQ; 372 } 373 374 #ifdef CONFIG_IRQSTACKS 375 /* 376 * IRQ STACK - used for irq handler 377 */ 378 #ifdef CONFIG_64BIT 379 #define IRQ_STACK_SIZE (4096 << 4) /* 64k irq stack size */ 380 #else 381 #define IRQ_STACK_SIZE (4096 << 3) /* 32k irq stack size */ 382 #endif 383 384 union irq_stack_union { 385 unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)]; 386 volatile unsigned int slock[4]; 387 volatile unsigned int lock[1]; 388 }; 389 390 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = { 391 .slock = { 1,1,1,1 }, 392 }; 393 #endif 394 395 396 int sysctl_panic_on_stackoverflow = 1; 397 398 static inline void stack_overflow_check(struct pt_regs *regs) 399 { 400 #ifdef CONFIG_DEBUG_STACKOVERFLOW 401 #define STACK_MARGIN (256*6) 402 403 unsigned long stack_start = (unsigned long) task_stack_page(current); 404 unsigned long sp = regs->gr[30]; 405 unsigned long stack_usage; 406 unsigned int *last_usage; 407 int cpu = smp_processor_id(); 408 409 /* if sr7 != 0, we interrupted a userspace process which we do not want 410 * to check for stack overflow. We will only check the kernel stack. */ 411 if (regs->sr[7]) 412 return; 413 414 /* exit if already in panic */ 415 if (sysctl_panic_on_stackoverflow < 0) 416 return; 417 418 /* calculate kernel stack usage */ 419 stack_usage = sp - stack_start; 420 #ifdef CONFIG_IRQSTACKS 421 if (likely(stack_usage <= THREAD_SIZE)) 422 goto check_kernel_stack; /* found kernel stack */ 423 424 /* check irq stack usage */ 425 stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack; 426 stack_usage = sp - stack_start; 427 428 last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu); 429 if (unlikely(stack_usage > *last_usage)) 430 *last_usage = stack_usage; 431 432 if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN))) 433 return; 434 435 pr_emerg("stackcheck: %s will most likely overflow irq stack " 436 "(sp:%lx, stk bottom-top:%lx-%lx)\n", 437 current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE); 438 goto panic_check; 439 440 check_kernel_stack: 441 #endif 442 443 /* check kernel stack usage */ 444 last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu); 445 446 if (unlikely(stack_usage > *last_usage)) 447 *last_usage = stack_usage; 448 449 if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN))) 450 return; 451 452 pr_emerg("stackcheck: %s will most likely overflow kernel stack " 453 "(sp:%lx, stk bottom-top:%lx-%lx)\n", 454 current->comm, sp, stack_start, stack_start + THREAD_SIZE); 455 456 #ifdef CONFIG_IRQSTACKS 457 panic_check: 458 #endif 459 if (sysctl_panic_on_stackoverflow) { 460 sysctl_panic_on_stackoverflow = -1; /* disable further checks */ 461 panic("low stack detected by irq handler - check messages\n"); 462 } 463 #endif 464 } 465 466 #ifdef CONFIG_IRQSTACKS 467 /* in entry.S: */ 468 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack); 469 470 static void execute_on_irq_stack(void *func, unsigned long param1) 471 { 472 union irq_stack_union *union_ptr; 473 unsigned long irq_stack; 474 volatile unsigned int *irq_stack_in_use; 475 476 union_ptr = &per_cpu(irq_stack_union, smp_processor_id()); 477 irq_stack = (unsigned long) &union_ptr->stack; 478 irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock), 479 FRAME_ALIGN); /* align for stack frame usage */ 480 481 /* We may be called recursive. If we are already using the irq stack, 482 * just continue to use it. Use spinlocks to serialize 483 * the irq stack usage. 484 */ 485 irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr); 486 if (!__ldcw(irq_stack_in_use)) { 487 void (*direct_call)(unsigned long p1) = func; 488 489 /* We are using the IRQ stack already. 490 * Do direct call on current stack. */ 491 direct_call(param1); 492 return; 493 } 494 495 /* This is where we switch to the IRQ stack. */ 496 call_on_stack(param1, func, irq_stack); 497 498 /* free up irq stack usage. */ 499 *irq_stack_in_use = 1; 500 } 501 502 void do_softirq_own_stack(void) 503 { 504 execute_on_irq_stack(__do_softirq, 0); 505 } 506 #endif /* CONFIG_IRQSTACKS */ 507 508 /* ONLY called from entry.S:intr_extint() */ 509 void do_cpu_irq_mask(struct pt_regs *regs) 510 { 511 struct pt_regs *old_regs; 512 unsigned long eirr_val; 513 int irq, cpu = smp_processor_id(); 514 struct irq_data *irq_data; 515 #ifdef CONFIG_SMP 516 cpumask_t dest; 517 #endif 518 519 old_regs = set_irq_regs(regs); 520 local_irq_disable(); 521 irq_enter(); 522 523 eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu); 524 if (!eirr_val) 525 goto set_out; 526 irq = eirr_to_irq(eirr_val); 527 528 irq_data = irq_get_irq_data(irq); 529 530 /* Filter out spurious interrupts, mostly from serial port at bootup */ 531 if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data)))) 532 goto set_out; 533 534 #ifdef CONFIG_SMP 535 cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data)); 536 if (irqd_is_per_cpu(irq_data) && 537 !cpumask_test_cpu(smp_processor_id(), &dest)) { 538 int cpu = cpumask_first(&dest); 539 540 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n", 541 irq, smp_processor_id(), cpu); 542 gsc_writel(irq + CPU_IRQ_BASE, 543 per_cpu(cpu_data, cpu).hpa); 544 goto set_out; 545 } 546 #endif 547 stack_overflow_check(regs); 548 549 #ifdef CONFIG_IRQSTACKS 550 execute_on_irq_stack(&generic_handle_irq, irq); 551 #else 552 generic_handle_irq(irq); 553 #endif /* CONFIG_IRQSTACKS */ 554 555 out: 556 irq_exit(); 557 set_irq_regs(old_regs); 558 return; 559 560 set_out: 561 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 562 goto out; 563 } 564 565 static void claim_cpu_irqs(void) 566 { 567 unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL; 568 int i; 569 570 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) { 571 irq_set_chip_and_handler(i, &cpu_interrupt_type, 572 handle_percpu_irq); 573 } 574 575 irq_set_handler(TIMER_IRQ, handle_percpu_irq); 576 if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL)) 577 pr_err("Failed to register timer interrupt\n"); 578 #ifdef CONFIG_SMP 579 irq_set_handler(IPI_IRQ, handle_percpu_irq); 580 if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL)) 581 pr_err("Failed to register IPI interrupt\n"); 582 #endif 583 } 584 585 void __init init_IRQ(void) 586 { 587 local_irq_disable(); /* PARANOID - should already be disabled */ 588 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */ 589 #ifdef CONFIG_SMP 590 if (!cpu_eiem) { 591 claim_cpu_irqs(); 592 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ); 593 } 594 #else 595 claim_cpu_irqs(); 596 cpu_eiem = EIEM_MASK(TIMER_IRQ); 597 #endif 598 set_eiem(cpu_eiem); /* EIEM : enable all external intr */ 599 } 600