1 /* 2 * Code to handle x86 style IRQs plus some generic interrupt stuff. 3 * 4 * Copyright (C) 1992 Linus Torvalds 5 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle 6 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org) 7 * Copyright (C) 1999-2000 Grant Grundler 8 * Copyright (c) 2005 Matthew Wilcox 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 #include <linux/bitops.h> 25 #include <linux/errno.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel_stat.h> 29 #include <linux/seq_file.h> 30 #include <linux/types.h> 31 #include <asm/io.h> 32 33 #include <asm/smp.h> 34 #include <asm/ldcw.h> 35 36 #undef PARISC_IRQ_CR16_COUNTS 37 38 extern irqreturn_t timer_interrupt(int, void *); 39 extern irqreturn_t ipi_interrupt(int, void *); 40 41 #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq)) 42 43 /* Bits in EIEM correlate with cpu_irq_action[]. 44 ** Numbered *Big Endian*! (ie bit 0 is MSB) 45 */ 46 static volatile unsigned long cpu_eiem = 0; 47 48 /* 49 ** local ACK bitmap ... habitually set to 1, but reset to zero 50 ** between ->ack() and ->end() of the interrupt to prevent 51 ** re-interruption of a processing interrupt. 52 */ 53 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL; 54 55 static void cpu_mask_irq(struct irq_data *d) 56 { 57 unsigned long eirr_bit = EIEM_MASK(d->irq); 58 59 cpu_eiem &= ~eirr_bit; 60 /* Do nothing on the other CPUs. If they get this interrupt, 61 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't 62 * handle it, and the set_eiem() at the bottom will ensure it 63 * then gets disabled */ 64 } 65 66 static void __cpu_unmask_irq(unsigned int irq) 67 { 68 unsigned long eirr_bit = EIEM_MASK(irq); 69 70 cpu_eiem |= eirr_bit; 71 72 /* This is just a simple NOP IPI. But what it does is cause 73 * all the other CPUs to do a set_eiem(cpu_eiem) at the end 74 * of the interrupt handler */ 75 smp_send_all_nop(); 76 } 77 78 static void cpu_unmask_irq(struct irq_data *d) 79 { 80 __cpu_unmask_irq(d->irq); 81 } 82 83 void cpu_ack_irq(struct irq_data *d) 84 { 85 unsigned long mask = EIEM_MASK(d->irq); 86 int cpu = smp_processor_id(); 87 88 /* Clear in EIEM so we can no longer process */ 89 per_cpu(local_ack_eiem, cpu) &= ~mask; 90 91 /* disable the interrupt */ 92 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 93 94 /* and now ack it */ 95 mtctl(mask, 23); 96 } 97 98 void cpu_eoi_irq(struct irq_data *d) 99 { 100 unsigned long mask = EIEM_MASK(d->irq); 101 int cpu = smp_processor_id(); 102 103 /* set it in the eiems---it's no longer in process */ 104 per_cpu(local_ack_eiem, cpu) |= mask; 105 106 /* enable the interrupt */ 107 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 108 } 109 110 #ifdef CONFIG_SMP 111 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest) 112 { 113 int cpu_dest; 114 115 /* timer and ipi have to always be received on all CPUs */ 116 if (irqd_is_per_cpu(d)) 117 return -EINVAL; 118 119 /* whatever mask they set, we just allow one CPU */ 120 cpu_dest = cpumask_next_and(d->irq & (num_online_cpus()-1), 121 dest, cpu_online_mask); 122 if (cpu_dest >= nr_cpu_ids) 123 cpu_dest = cpumask_first_and(dest, cpu_online_mask); 124 125 return cpu_dest; 126 } 127 128 static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest, 129 bool force) 130 { 131 int cpu_dest; 132 133 cpu_dest = cpu_check_affinity(d, dest); 134 if (cpu_dest < 0) 135 return -1; 136 137 cpumask_copy(irq_data_get_affinity_mask(d), dest); 138 139 return 0; 140 } 141 #endif 142 143 static struct irq_chip cpu_interrupt_type = { 144 .name = "CPU", 145 .irq_mask = cpu_mask_irq, 146 .irq_unmask = cpu_unmask_irq, 147 .irq_ack = cpu_ack_irq, 148 .irq_eoi = cpu_eoi_irq, 149 #ifdef CONFIG_SMP 150 .irq_set_affinity = cpu_set_affinity_irq, 151 #endif 152 /* XXX: Needs to be written. We managed without it so far, but 153 * we really ought to write it. 154 */ 155 .irq_retrigger = NULL, 156 }; 157 158 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 159 #define irq_stats(x) (&per_cpu(irq_stat, x)) 160 161 /* 162 * /proc/interrupts printing for arch specific interrupts 163 */ 164 int arch_show_interrupts(struct seq_file *p, int prec) 165 { 166 int j; 167 168 #ifdef CONFIG_DEBUG_STACKOVERFLOW 169 seq_printf(p, "%*s: ", prec, "STK"); 170 for_each_online_cpu(j) 171 seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage); 172 seq_puts(p, " Kernel stack usage\n"); 173 # ifdef CONFIG_IRQSTACKS 174 seq_printf(p, "%*s: ", prec, "IST"); 175 for_each_online_cpu(j) 176 seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage); 177 seq_puts(p, " Interrupt stack usage\n"); 178 # endif 179 #endif 180 #ifdef CONFIG_SMP 181 if (num_online_cpus() > 1) { 182 seq_printf(p, "%*s: ", prec, "RES"); 183 for_each_online_cpu(j) 184 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 185 seq_puts(p, " Rescheduling interrupts\n"); 186 seq_printf(p, "%*s: ", prec, "CAL"); 187 for_each_online_cpu(j) 188 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); 189 seq_puts(p, " Function call interrupts\n"); 190 } 191 #endif 192 seq_printf(p, "%*s: ", prec, "UAH"); 193 for_each_online_cpu(j) 194 seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count); 195 seq_puts(p, " Unaligned access handler traps\n"); 196 seq_printf(p, "%*s: ", prec, "FPA"); 197 for_each_online_cpu(j) 198 seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count); 199 seq_puts(p, " Floating point assist traps\n"); 200 seq_printf(p, "%*s: ", prec, "TLB"); 201 for_each_online_cpu(j) 202 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 203 seq_puts(p, " TLB shootdowns\n"); 204 return 0; 205 } 206 207 int show_interrupts(struct seq_file *p, void *v) 208 { 209 int i = *(loff_t *) v, j; 210 unsigned long flags; 211 212 if (i == 0) { 213 seq_puts(p, " "); 214 for_each_online_cpu(j) 215 seq_printf(p, " CPU%d", j); 216 217 #ifdef PARISC_IRQ_CR16_COUNTS 218 seq_printf(p, " [min/avg/max] (CPU cycle counts)"); 219 #endif 220 seq_putc(p, '\n'); 221 } 222 223 if (i < NR_IRQS) { 224 struct irq_desc *desc = irq_to_desc(i); 225 struct irqaction *action; 226 227 raw_spin_lock_irqsave(&desc->lock, flags); 228 action = desc->action; 229 if (!action) 230 goto skip; 231 seq_printf(p, "%3d: ", i); 232 #ifdef CONFIG_SMP 233 for_each_online_cpu(j) 234 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); 235 #else 236 seq_printf(p, "%10u ", kstat_irqs(i)); 237 #endif 238 239 seq_printf(p, " %14s", irq_desc_get_chip(desc)->name); 240 #ifndef PARISC_IRQ_CR16_COUNTS 241 seq_printf(p, " %s", action->name); 242 243 while ((action = action->next)) 244 seq_printf(p, ", %s", action->name); 245 #else 246 for ( ;action; action = action->next) { 247 unsigned int k, avg, min, max; 248 249 min = max = action->cr16_hist[0]; 250 251 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) { 252 int hist = action->cr16_hist[k]; 253 254 if (hist) { 255 avg += hist; 256 } else 257 break; 258 259 if (hist > max) max = hist; 260 if (hist < min) min = hist; 261 } 262 263 avg /= k; 264 seq_printf(p, " %s[%d/%d/%d]", action->name, 265 min,avg,max); 266 } 267 #endif 268 269 seq_putc(p, '\n'); 270 skip: 271 raw_spin_unlock_irqrestore(&desc->lock, flags); 272 } 273 274 if (i == NR_IRQS) 275 arch_show_interrupts(p, 3); 276 277 return 0; 278 } 279 280 281 282 /* 283 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data. 284 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit. 285 ** 286 ** To use txn_XXX() interfaces, get a Virtual IRQ first. 287 ** Then use that to get the Transaction address and data. 288 */ 289 290 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data) 291 { 292 if (irq_has_action(irq)) 293 return -EBUSY; 294 if (irq_get_chip(irq) != &cpu_interrupt_type) 295 return -EBUSY; 296 297 /* for iosapic interrupts */ 298 if (type) { 299 irq_set_chip_and_handler(irq, type, handle_percpu_irq); 300 irq_set_chip_data(irq, data); 301 __cpu_unmask_irq(irq); 302 } 303 return 0; 304 } 305 306 int txn_claim_irq(int irq) 307 { 308 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq; 309 } 310 311 /* 312 * The bits_wide parameter accommodates the limitations of the HW/SW which 313 * use these bits: 314 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register) 315 * V-class (EPIC): 6 bits 316 * N/L/A-class (iosapic): 8 bits 317 * PCI 2.2 MSI: 16 bits 318 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric) 319 * 320 * On the service provider side: 321 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register) 322 * o PA 2.0 wide mode 6-bits (per processor) 323 * o IA64 8-bits (0-256 total) 324 * 325 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported 326 * by the processor...and the N/L-class I/O subsystem supports more bits than 327 * PA2.0 has. The first case is the problem. 328 */ 329 int txn_alloc_irq(unsigned int bits_wide) 330 { 331 int irq; 332 333 /* never return irq 0 cause that's the interval timer */ 334 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) { 335 if (cpu_claim_irq(irq, NULL, NULL) < 0) 336 continue; 337 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide)) 338 continue; 339 return irq; 340 } 341 342 /* unlikely, but be prepared */ 343 return -1; 344 } 345 346 347 unsigned long txn_affinity_addr(unsigned int irq, int cpu) 348 { 349 #ifdef CONFIG_SMP 350 struct irq_data *d = irq_get_irq_data(irq); 351 cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu)); 352 #endif 353 354 return per_cpu(cpu_data, cpu).txn_addr; 355 } 356 357 358 unsigned long txn_alloc_addr(unsigned int virt_irq) 359 { 360 static int next_cpu = -1; 361 362 next_cpu++; /* assign to "next" CPU we want this bugger on */ 363 364 /* validate entry */ 365 while ((next_cpu < nr_cpu_ids) && 366 (!per_cpu(cpu_data, next_cpu).txn_addr || 367 !cpu_online(next_cpu))) 368 next_cpu++; 369 370 if (next_cpu >= nr_cpu_ids) 371 next_cpu = 0; /* nothing else, assign monarch */ 372 373 return txn_affinity_addr(virt_irq, next_cpu); 374 } 375 376 377 unsigned int txn_alloc_data(unsigned int virt_irq) 378 { 379 return virt_irq - CPU_IRQ_BASE; 380 } 381 382 static inline int eirr_to_irq(unsigned long eirr) 383 { 384 int bit = fls_long(eirr); 385 return (BITS_PER_LONG - bit) + TIMER_IRQ; 386 } 387 388 #ifdef CONFIG_IRQSTACKS 389 /* 390 * IRQ STACK - used for irq handler 391 */ 392 #define IRQ_STACK_SIZE (4096 << 3) /* 32k irq stack size */ 393 394 union irq_stack_union { 395 unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)]; 396 volatile unsigned int slock[4]; 397 volatile unsigned int lock[1]; 398 }; 399 400 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = { 401 .slock = { 1,1,1,1 }, 402 }; 403 #endif 404 405 406 int sysctl_panic_on_stackoverflow = 1; 407 408 static inline void stack_overflow_check(struct pt_regs *regs) 409 { 410 #ifdef CONFIG_DEBUG_STACKOVERFLOW 411 #define STACK_MARGIN (256*6) 412 413 /* Our stack starts directly behind the thread_info struct. */ 414 unsigned long stack_start = (unsigned long) current_thread_info(); 415 unsigned long sp = regs->gr[30]; 416 unsigned long stack_usage; 417 unsigned int *last_usage; 418 int cpu = smp_processor_id(); 419 420 /* if sr7 != 0, we interrupted a userspace process which we do not want 421 * to check for stack overflow. We will only check the kernel stack. */ 422 if (regs->sr[7]) 423 return; 424 425 /* exit if already in panic */ 426 if (sysctl_panic_on_stackoverflow < 0) 427 return; 428 429 /* calculate kernel stack usage */ 430 stack_usage = sp - stack_start; 431 #ifdef CONFIG_IRQSTACKS 432 if (likely(stack_usage <= THREAD_SIZE)) 433 goto check_kernel_stack; /* found kernel stack */ 434 435 /* check irq stack usage */ 436 stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack; 437 stack_usage = sp - stack_start; 438 439 last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu); 440 if (unlikely(stack_usage > *last_usage)) 441 *last_usage = stack_usage; 442 443 if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN))) 444 return; 445 446 pr_emerg("stackcheck: %s will most likely overflow irq stack " 447 "(sp:%lx, stk bottom-top:%lx-%lx)\n", 448 current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE); 449 goto panic_check; 450 451 check_kernel_stack: 452 #endif 453 454 /* check kernel stack usage */ 455 last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu); 456 457 if (unlikely(stack_usage > *last_usage)) 458 *last_usage = stack_usage; 459 460 if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN))) 461 return; 462 463 pr_emerg("stackcheck: %s will most likely overflow kernel stack " 464 "(sp:%lx, stk bottom-top:%lx-%lx)\n", 465 current->comm, sp, stack_start, stack_start + THREAD_SIZE); 466 467 #ifdef CONFIG_IRQSTACKS 468 panic_check: 469 #endif 470 if (sysctl_panic_on_stackoverflow) { 471 sysctl_panic_on_stackoverflow = -1; /* disable further checks */ 472 panic("low stack detected by irq handler - check messages\n"); 473 } 474 #endif 475 } 476 477 #ifdef CONFIG_IRQSTACKS 478 /* in entry.S: */ 479 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack); 480 481 static void execute_on_irq_stack(void *func, unsigned long param1) 482 { 483 union irq_stack_union *union_ptr; 484 unsigned long irq_stack; 485 volatile unsigned int *irq_stack_in_use; 486 487 union_ptr = &per_cpu(irq_stack_union, smp_processor_id()); 488 irq_stack = (unsigned long) &union_ptr->stack; 489 irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock), 490 64); /* align for stack frame usage */ 491 492 /* We may be called recursive. If we are already using the irq stack, 493 * just continue to use it. Use spinlocks to serialize 494 * the irq stack usage. 495 */ 496 irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr); 497 if (!__ldcw(irq_stack_in_use)) { 498 void (*direct_call)(unsigned long p1) = func; 499 500 /* We are using the IRQ stack already. 501 * Do direct call on current stack. */ 502 direct_call(param1); 503 return; 504 } 505 506 /* This is where we switch to the IRQ stack. */ 507 call_on_stack(param1, func, irq_stack); 508 509 /* free up irq stack usage. */ 510 *irq_stack_in_use = 1; 511 } 512 513 void do_softirq_own_stack(void) 514 { 515 execute_on_irq_stack(__do_softirq, 0); 516 } 517 #endif /* CONFIG_IRQSTACKS */ 518 519 /* ONLY called from entry.S:intr_extint() */ 520 void do_cpu_irq_mask(struct pt_regs *regs) 521 { 522 struct pt_regs *old_regs; 523 unsigned long eirr_val; 524 int irq, cpu = smp_processor_id(); 525 struct irq_data *irq_data; 526 #ifdef CONFIG_SMP 527 cpumask_t dest; 528 #endif 529 530 old_regs = set_irq_regs(regs); 531 local_irq_disable(); 532 irq_enter(); 533 534 eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu); 535 if (!eirr_val) 536 goto set_out; 537 irq = eirr_to_irq(eirr_val); 538 539 irq_data = irq_get_irq_data(irq); 540 541 /* Filter out spurious interrupts, mostly from serial port at bootup */ 542 if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data)))) 543 goto set_out; 544 545 #ifdef CONFIG_SMP 546 cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data)); 547 if (irqd_is_per_cpu(irq_data) && 548 !cpumask_test_cpu(smp_processor_id(), &dest)) { 549 int cpu = cpumask_first(&dest); 550 551 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n", 552 irq, smp_processor_id(), cpu); 553 gsc_writel(irq + CPU_IRQ_BASE, 554 per_cpu(cpu_data, cpu).hpa); 555 goto set_out; 556 } 557 #endif 558 stack_overflow_check(regs); 559 560 #ifdef CONFIG_IRQSTACKS 561 execute_on_irq_stack(&generic_handle_irq, irq); 562 #else 563 generic_handle_irq(irq); 564 #endif /* CONFIG_IRQSTACKS */ 565 566 out: 567 irq_exit(); 568 set_irq_regs(old_regs); 569 return; 570 571 set_out: 572 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu)); 573 goto out; 574 } 575 576 static struct irqaction timer_action = { 577 .handler = timer_interrupt, 578 .name = "timer", 579 .flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL, 580 }; 581 582 #ifdef CONFIG_SMP 583 static struct irqaction ipi_action = { 584 .handler = ipi_interrupt, 585 .name = "IPI", 586 .flags = IRQF_PERCPU, 587 }; 588 #endif 589 590 static void claim_cpu_irqs(void) 591 { 592 int i; 593 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) { 594 irq_set_chip_and_handler(i, &cpu_interrupt_type, 595 handle_percpu_irq); 596 } 597 598 irq_set_handler(TIMER_IRQ, handle_percpu_irq); 599 setup_irq(TIMER_IRQ, &timer_action); 600 #ifdef CONFIG_SMP 601 irq_set_handler(IPI_IRQ, handle_percpu_irq); 602 setup_irq(IPI_IRQ, &ipi_action); 603 #endif 604 } 605 606 void __init init_IRQ(void) 607 { 608 local_irq_disable(); /* PARANOID - should already be disabled */ 609 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */ 610 #ifdef CONFIG_SMP 611 if (!cpu_eiem) { 612 claim_cpu_irqs(); 613 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ); 614 } 615 #else 616 claim_cpu_irqs(); 617 cpu_eiem = EIEM_MASK(TIMER_IRQ); 618 #endif 619 set_eiem(cpu_eiem); /* EIEM : enable all external intr */ 620 } 621