xref: /openbmc/linux/arch/parisc/kernel/irq.c (revision 19c233b7)
1 /*
2  * Code to handle x86 style IRQs plus some generic interrupt stuff.
3  *
4  * Copyright (C) 1992 Linus Torvalds
5  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7  * Copyright (C) 1999-2000 Grant Grundler
8  * Copyright (c) 2005 Matthew Wilcox
9  *
10  *    This program is free software; you can redistribute it and/or modify
11  *    it under the terms of the GNU General Public License as published by
12  *    the Free Software Foundation; either version 2, or (at your option)
13  *    any later version.
14  *
15  *    This program is distributed in the hope that it will be useful,
16  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *    GNU General Public License for more details.
19  *
20  *    You should have received a copy of the GNU General Public License
21  *    along with this program; if not, write to the Free Software
22  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 #include <linux/bitops.h>
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/seq_file.h>
30 #include <linux/types.h>
31 #include <asm/io.h>
32 
33 #include <asm/smp.h>
34 #include <asm/ldcw.h>
35 
36 #undef PARISC_IRQ_CR16_COUNTS
37 
38 extern irqreturn_t timer_interrupt(int, void *);
39 extern irqreturn_t ipi_interrupt(int, void *);
40 
41 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
42 
43 /* Bits in EIEM correlate with cpu_irq_action[].
44 ** Numbered *Big Endian*! (ie bit 0 is MSB)
45 */
46 static volatile unsigned long cpu_eiem = 0;
47 
48 /*
49 ** local ACK bitmap ... habitually set to 1, but reset to zero
50 ** between ->ack() and ->end() of the interrupt to prevent
51 ** re-interruption of a processing interrupt.
52 */
53 static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
54 
55 static void cpu_mask_irq(struct irq_data *d)
56 {
57 	unsigned long eirr_bit = EIEM_MASK(d->irq);
58 
59 	cpu_eiem &= ~eirr_bit;
60 	/* Do nothing on the other CPUs.  If they get this interrupt,
61 	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
62 	 * handle it, and the set_eiem() at the bottom will ensure it
63 	 * then gets disabled */
64 }
65 
66 static void __cpu_unmask_irq(unsigned int irq)
67 {
68 	unsigned long eirr_bit = EIEM_MASK(irq);
69 
70 	cpu_eiem |= eirr_bit;
71 
72 	/* This is just a simple NOP IPI.  But what it does is cause
73 	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
74 	 * of the interrupt handler */
75 	smp_send_all_nop();
76 }
77 
78 static void cpu_unmask_irq(struct irq_data *d)
79 {
80 	__cpu_unmask_irq(d->irq);
81 }
82 
83 void cpu_ack_irq(struct irq_data *d)
84 {
85 	unsigned long mask = EIEM_MASK(d->irq);
86 	int cpu = smp_processor_id();
87 
88 	/* Clear in EIEM so we can no longer process */
89 	per_cpu(local_ack_eiem, cpu) &= ~mask;
90 
91 	/* disable the interrupt */
92 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
93 
94 	/* and now ack it */
95 	mtctl(mask, 23);
96 }
97 
98 void cpu_eoi_irq(struct irq_data *d)
99 {
100 	unsigned long mask = EIEM_MASK(d->irq);
101 	int cpu = smp_processor_id();
102 
103 	/* set it in the eiems---it's no longer in process */
104 	per_cpu(local_ack_eiem, cpu) |= mask;
105 
106 	/* enable the interrupt */
107 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
108 }
109 
110 #ifdef CONFIG_SMP
111 int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
112 {
113 	int cpu_dest;
114 
115 	/* timer and ipi have to always be received on all CPUs */
116 	if (irqd_is_per_cpu(d))
117 		return -EINVAL;
118 
119 	/* whatever mask they set, we just allow one CPU */
120 	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
121 
122 	return cpu_dest;
123 }
124 
125 static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
126 				bool force)
127 {
128 	int cpu_dest;
129 
130 	cpu_dest = cpu_check_affinity(d, dest);
131 	if (cpu_dest < 0)
132 		return -1;
133 
134 	cpumask_copy(d->affinity, dest);
135 
136 	return 0;
137 }
138 #endif
139 
140 static struct irq_chip cpu_interrupt_type = {
141 	.name			= "CPU",
142 	.irq_mask		= cpu_mask_irq,
143 	.irq_unmask		= cpu_unmask_irq,
144 	.irq_ack		= cpu_ack_irq,
145 	.irq_eoi		= cpu_eoi_irq,
146 #ifdef CONFIG_SMP
147 	.irq_set_affinity	= cpu_set_affinity_irq,
148 #endif
149 	/* XXX: Needs to be written.  We managed without it so far, but
150 	 * we really ought to write it.
151 	 */
152 	.irq_retrigger	= NULL,
153 };
154 
155 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
156 #define irq_stats(x)		(&per_cpu(irq_stat, x))
157 
158 /*
159  * /proc/interrupts printing for arch specific interrupts
160  */
161 int arch_show_interrupts(struct seq_file *p, int prec)
162 {
163 	int j;
164 
165 #ifdef CONFIG_DEBUG_STACKOVERFLOW
166 	seq_printf(p, "%*s: ", prec, "STK");
167 	for_each_online_cpu(j)
168 		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
169 	seq_puts(p, "  Kernel stack usage\n");
170 # ifdef CONFIG_IRQSTACKS
171 	seq_printf(p, "%*s: ", prec, "IST");
172 	for_each_online_cpu(j)
173 		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
174 	seq_puts(p, "  Interrupt stack usage\n");
175 # endif
176 #endif
177 #ifdef CONFIG_SMP
178 	seq_printf(p, "%*s: ", prec, "RES");
179 	for_each_online_cpu(j)
180 		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
181 	seq_puts(p, "  Rescheduling interrupts\n");
182 #endif
183 	seq_printf(p, "%*s: ", prec, "UAH");
184 	for_each_online_cpu(j)
185 		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
186 	seq_puts(p, "  Unaligned access handler traps\n");
187 	seq_printf(p, "%*s: ", prec, "FPA");
188 	for_each_online_cpu(j)
189 		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
190 	seq_puts(p, "  Floating point assist traps\n");
191 	seq_printf(p, "%*s: ", prec, "TLB");
192 	for_each_online_cpu(j)
193 		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
194 	seq_puts(p, "  TLB shootdowns\n");
195 	return 0;
196 }
197 
198 int show_interrupts(struct seq_file *p, void *v)
199 {
200 	int i = *(loff_t *) v, j;
201 	unsigned long flags;
202 
203 	if (i == 0) {
204 		seq_puts(p, "    ");
205 		for_each_online_cpu(j)
206 			seq_printf(p, "       CPU%d", j);
207 
208 #ifdef PARISC_IRQ_CR16_COUNTS
209 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
210 #endif
211 		seq_putc(p, '\n');
212 	}
213 
214 	if (i < NR_IRQS) {
215 		struct irq_desc *desc = irq_to_desc(i);
216 		struct irqaction *action;
217 
218 		raw_spin_lock_irqsave(&desc->lock, flags);
219 		action = desc->action;
220 		if (!action)
221 			goto skip;
222 		seq_printf(p, "%3d: ", i);
223 #ifdef CONFIG_SMP
224 		for_each_online_cpu(j)
225 			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
226 #else
227 		seq_printf(p, "%10u ", kstat_irqs(i));
228 #endif
229 
230 		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
231 #ifndef PARISC_IRQ_CR16_COUNTS
232 		seq_printf(p, "  %s", action->name);
233 
234 		while ((action = action->next))
235 			seq_printf(p, ", %s", action->name);
236 #else
237 		for ( ;action; action = action->next) {
238 			unsigned int k, avg, min, max;
239 
240 			min = max = action->cr16_hist[0];
241 
242 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
243 				int hist = action->cr16_hist[k];
244 
245 				if (hist) {
246 					avg += hist;
247 				} else
248 					break;
249 
250 				if (hist > max) max = hist;
251 				if (hist < min) min = hist;
252 			}
253 
254 			avg /= k;
255 			seq_printf(p, " %s[%d/%d/%d]", action->name,
256 					min,avg,max);
257 		}
258 #endif
259 
260 		seq_putc(p, '\n');
261  skip:
262 		raw_spin_unlock_irqrestore(&desc->lock, flags);
263 	}
264 
265 	if (i == NR_IRQS)
266 		arch_show_interrupts(p, 3);
267 
268 	return 0;
269 }
270 
271 
272 
273 /*
274 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
275 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
276 **
277 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
278 ** Then use that to get the Transaction address and data.
279 */
280 
281 int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
282 {
283 	if (irq_has_action(irq))
284 		return -EBUSY;
285 	if (irq_get_chip(irq) != &cpu_interrupt_type)
286 		return -EBUSY;
287 
288 	/* for iosapic interrupts */
289 	if (type) {
290 		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
291 		irq_set_chip_data(irq, data);
292 		__cpu_unmask_irq(irq);
293 	}
294 	return 0;
295 }
296 
297 int txn_claim_irq(int irq)
298 {
299 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
300 }
301 
302 /*
303  * The bits_wide parameter accommodates the limitations of the HW/SW which
304  * use these bits:
305  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
306  * V-class (EPIC):          6 bits
307  * N/L/A-class (iosapic):   8 bits
308  * PCI 2.2 MSI:            16 bits
309  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
310  *
311  * On the service provider side:
312  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
313  * o PA 2.0 wide mode                   6-bits (per processor)
314  * o IA64                               8-bits (0-256 total)
315  *
316  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
317  * by the processor...and the N/L-class I/O subsystem supports more bits than
318  * PA2.0 has. The first case is the problem.
319  */
320 int txn_alloc_irq(unsigned int bits_wide)
321 {
322 	int irq;
323 
324 	/* never return irq 0 cause that's the interval timer */
325 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
326 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
327 			continue;
328 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
329 			continue;
330 		return irq;
331 	}
332 
333 	/* unlikely, but be prepared */
334 	return -1;
335 }
336 
337 
338 unsigned long txn_affinity_addr(unsigned int irq, int cpu)
339 {
340 #ifdef CONFIG_SMP
341 	struct irq_data *d = irq_get_irq_data(irq);
342 	cpumask_copy(d->affinity, cpumask_of(cpu));
343 #endif
344 
345 	return per_cpu(cpu_data, cpu).txn_addr;
346 }
347 
348 
349 unsigned long txn_alloc_addr(unsigned int virt_irq)
350 {
351 	static int next_cpu = -1;
352 
353 	next_cpu++; /* assign to "next" CPU we want this bugger on */
354 
355 	/* validate entry */
356 	while ((next_cpu < nr_cpu_ids) &&
357 		(!per_cpu(cpu_data, next_cpu).txn_addr ||
358 		 !cpu_online(next_cpu)))
359 		next_cpu++;
360 
361 	if (next_cpu >= nr_cpu_ids)
362 		next_cpu = 0;	/* nothing else, assign monarch */
363 
364 	return txn_affinity_addr(virt_irq, next_cpu);
365 }
366 
367 
368 unsigned int txn_alloc_data(unsigned int virt_irq)
369 {
370 	return virt_irq - CPU_IRQ_BASE;
371 }
372 
373 static inline int eirr_to_irq(unsigned long eirr)
374 {
375 	int bit = fls_long(eirr);
376 	return (BITS_PER_LONG - bit) + TIMER_IRQ;
377 }
378 
379 #ifdef CONFIG_IRQSTACKS
380 /*
381  * IRQ STACK - used for irq handler
382  */
383 #define IRQ_STACK_SIZE      (4096 << 2) /* 16k irq stack size */
384 
385 union irq_stack_union {
386 	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
387 	volatile unsigned int slock[4];
388 	volatile unsigned int lock[1];
389 };
390 
391 DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
392 		.slock = { 1,1,1,1 },
393 	};
394 #endif
395 
396 
397 int sysctl_panic_on_stackoverflow = 1;
398 
399 static inline void stack_overflow_check(struct pt_regs *regs)
400 {
401 #ifdef CONFIG_DEBUG_STACKOVERFLOW
402 	#define STACK_MARGIN	(256*6)
403 
404 	/* Our stack starts directly behind the thread_info struct. */
405 	unsigned long stack_start = (unsigned long) current_thread_info();
406 	unsigned long sp = regs->gr[30];
407 	unsigned long stack_usage;
408 	unsigned int *last_usage;
409 	int cpu = smp_processor_id();
410 
411 	/* if sr7 != 0, we interrupted a userspace process which we do not want
412 	 * to check for stack overflow. We will only check the kernel stack. */
413 	if (regs->sr[7])
414 		return;
415 
416 	/* calculate kernel stack usage */
417 	stack_usage = sp - stack_start;
418 #ifdef CONFIG_IRQSTACKS
419 	if (likely(stack_usage <= THREAD_SIZE))
420 		goto check_kernel_stack; /* found kernel stack */
421 
422 	/* check irq stack usage */
423 	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
424 	stack_usage = sp - stack_start;
425 
426 	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
427 	if (unlikely(stack_usage > *last_usage))
428 		*last_usage = stack_usage;
429 
430 	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
431 		return;
432 
433 	pr_emerg("stackcheck: %s will most likely overflow irq stack "
434 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
435 		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
436 	goto panic_check;
437 
438 check_kernel_stack:
439 #endif
440 
441 	/* check kernel stack usage */
442 	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
443 
444 	if (unlikely(stack_usage > *last_usage))
445 		*last_usage = stack_usage;
446 
447 	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
448 		return;
449 
450 	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
451 		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
452 		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
453 
454 #ifdef CONFIG_IRQSTACKS
455 panic_check:
456 #endif
457 	if (sysctl_panic_on_stackoverflow)
458 		panic("low stack detected by irq handler - check messages\n");
459 #endif
460 }
461 
462 #ifdef CONFIG_IRQSTACKS
463 /* in entry.S: */
464 void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
465 
466 static void execute_on_irq_stack(void *func, unsigned long param1)
467 {
468 	union irq_stack_union *union_ptr;
469 	unsigned long irq_stack;
470 	volatile unsigned int *irq_stack_in_use;
471 
472 	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
473 	irq_stack = (unsigned long) &union_ptr->stack;
474 	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
475 			 64); /* align for stack frame usage */
476 
477 	/* We may be called recursive. If we are already using the irq stack,
478 	 * just continue to use it. Use spinlocks to serialize
479 	 * the irq stack usage.
480 	 */
481 	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
482 	if (!__ldcw(irq_stack_in_use)) {
483 		void (*direct_call)(unsigned long p1) = func;
484 
485 		/* We are using the IRQ stack already.
486 		 * Do direct call on current stack. */
487 		direct_call(param1);
488 		return;
489 	}
490 
491 	/* This is where we switch to the IRQ stack. */
492 	call_on_stack(param1, func, irq_stack);
493 
494 	/* free up irq stack usage. */
495 	*irq_stack_in_use = 1;
496 }
497 
498 void do_softirq_own_stack(void)
499 {
500 	execute_on_irq_stack(__do_softirq, 0);
501 }
502 #endif /* CONFIG_IRQSTACKS */
503 
504 /* ONLY called from entry.S:intr_extint() */
505 void do_cpu_irq_mask(struct pt_regs *regs)
506 {
507 	struct pt_regs *old_regs;
508 	unsigned long eirr_val;
509 	int irq, cpu = smp_processor_id();
510 #ifdef CONFIG_SMP
511 	struct irq_desc *desc;
512 	cpumask_t dest;
513 #endif
514 
515 	old_regs = set_irq_regs(regs);
516 	local_irq_disable();
517 	irq_enter();
518 
519 	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
520 	if (!eirr_val)
521 		goto set_out;
522 	irq = eirr_to_irq(eirr_val);
523 
524 #ifdef CONFIG_SMP
525 	desc = irq_to_desc(irq);
526 	cpumask_copy(&dest, desc->irq_data.affinity);
527 	if (irqd_is_per_cpu(&desc->irq_data) &&
528 	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
529 		int cpu = cpumask_first(&dest);
530 
531 		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
532 		       irq, smp_processor_id(), cpu);
533 		gsc_writel(irq + CPU_IRQ_BASE,
534 			   per_cpu(cpu_data, cpu).hpa);
535 		goto set_out;
536 	}
537 #endif
538 	stack_overflow_check(regs);
539 
540 #ifdef CONFIG_IRQSTACKS
541 	execute_on_irq_stack(&generic_handle_irq, irq);
542 #else
543 	generic_handle_irq(irq);
544 #endif /* CONFIG_IRQSTACKS */
545 
546  out:
547 	irq_exit();
548 	set_irq_regs(old_regs);
549 	return;
550 
551  set_out:
552 	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
553 	goto out;
554 }
555 
556 static struct irqaction timer_action = {
557 	.handler = timer_interrupt,
558 	.name = "timer",
559 	.flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL,
560 };
561 
562 #ifdef CONFIG_SMP
563 static struct irqaction ipi_action = {
564 	.handler = ipi_interrupt,
565 	.name = "IPI",
566 	.flags = IRQF_PERCPU,
567 };
568 #endif
569 
570 static void claim_cpu_irqs(void)
571 {
572 	int i;
573 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
574 		irq_set_chip_and_handler(i, &cpu_interrupt_type,
575 					 handle_percpu_irq);
576 	}
577 
578 	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
579 	setup_irq(TIMER_IRQ, &timer_action);
580 #ifdef CONFIG_SMP
581 	irq_set_handler(IPI_IRQ, handle_percpu_irq);
582 	setup_irq(IPI_IRQ, &ipi_action);
583 #endif
584 }
585 
586 void __init init_IRQ(void)
587 {
588 	local_irq_disable();	/* PARANOID - should already be disabled */
589 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
590 #ifdef CONFIG_SMP
591 	if (!cpu_eiem) {
592 		claim_cpu_irqs();
593 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
594 	}
595 #else
596 	claim_cpu_irqs();
597 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
598 #endif
599         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
600 }
601