xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision f7c35abe)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>	/* for boot_cpu_data */
71 
72 static DEFINE_SPINLOCK(pdc_lock);
73 extern unsigned long pdc_result[NUM_PDC_RESULT];
74 extern unsigned long pdc_result2[NUM_PDC_RESULT];
75 
76 #ifdef CONFIG_64BIT
77 #define WIDE_FIRMWARE 0x1
78 #define NARROW_FIRMWARE 0x2
79 
80 /* Firmware needs to be initially set to narrow to determine the
81  * actual firmware width. */
82 int parisc_narrow_firmware __read_mostly = 1;
83 #endif
84 
85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86  * and MEM_PDC calls are always the same width as the OS.
87  * Some PAT boxes may have 64-bit IODC I/O.
88  *
89  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91  * This allowed wide kernels to run on Cxxx boxes.
92  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94  */
95 
96 #ifdef CONFIG_64BIT
97 long real64_call(unsigned long function, ...);
98 #endif
99 long real32_call(unsigned long function, ...);
100 
101 #ifdef CONFIG_64BIT
102 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104 #else
105 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
106 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107 #endif
108 
109 
110 /**
111  * f_extend - Convert PDC addresses to kernel addresses.
112  * @address: Address returned from PDC.
113  *
114  * This function is used to convert PDC addresses into kernel addresses
115  * when the PDC address size and kernel address size are different.
116  */
117 static unsigned long f_extend(unsigned long address)
118 {
119 #ifdef CONFIG_64BIT
120 	if(unlikely(parisc_narrow_firmware)) {
121 		if((address & 0xff000000) == 0xf0000000)
122 			return 0xf0f0f0f000000000UL | (u32)address;
123 
124 		if((address & 0xf0000000) == 0xf0000000)
125 			return 0xffffffff00000000UL | (u32)address;
126 	}
127 #endif
128 	return address;
129 }
130 
131 /**
132  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133  * @address: The return buffer from PDC.
134  *
135  * This function is used to convert the return buffer addresses retrieved from PDC
136  * into kernel addresses when the PDC address size and kernel address size are
137  * different.
138  */
139 static void convert_to_wide(unsigned long *addr)
140 {
141 #ifdef CONFIG_64BIT
142 	int i;
143 	unsigned int *p = (unsigned int *)addr;
144 
145 	if(unlikely(parisc_narrow_firmware)) {
146 		for(i = 31; i >= 0; --i)
147 			addr[i] = p[i];
148 	}
149 #endif
150 }
151 
152 #ifdef CONFIG_64BIT
153 void set_firmware_width_unlocked(void)
154 {
155 	int ret;
156 
157 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 		__pa(pdc_result), 0);
159 	convert_to_wide(pdc_result);
160 	if (pdc_result[0] != NARROW_FIRMWARE)
161 		parisc_narrow_firmware = 0;
162 }
163 
164 /**
165  * set_firmware_width - Determine if the firmware is wide or narrow.
166  *
167  * This function must be called before any pdc_* function that uses the
168  * convert_to_wide function.
169  */
170 void set_firmware_width(void)
171 {
172 	unsigned long flags;
173 	spin_lock_irqsave(&pdc_lock, flags);
174 	set_firmware_width_unlocked();
175 	spin_unlock_irqrestore(&pdc_lock, flags);
176 }
177 #else
178 void set_firmware_width_unlocked(void)
179 {
180 	return;
181 }
182 
183 void set_firmware_width(void)
184 {
185 	return;
186 }
187 #endif /*CONFIG_64BIT*/
188 
189 /**
190  * pdc_emergency_unlock - Unlock the linux pdc lock
191  *
192  * This call unlocks the linux pdc lock in case we need some PDC functions
193  * (like pdc_add_valid) during kernel stack dump.
194  */
195 void pdc_emergency_unlock(void)
196 {
197  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
198         if (spin_is_locked(&pdc_lock))
199 		spin_unlock(&pdc_lock);
200 }
201 
202 
203 /**
204  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205  * @address: Address to be verified.
206  *
207  * This PDC call attempts to read from the specified address and verifies
208  * if the address is valid.
209  *
210  * The return value is PDC_OK (0) in case accessing this address is valid.
211  */
212 int pdc_add_valid(unsigned long address)
213 {
214         int retval;
215 	unsigned long flags;
216 
217         spin_lock_irqsave(&pdc_lock, flags);
218         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219         spin_unlock_irqrestore(&pdc_lock, flags);
220 
221         return retval;
222 }
223 EXPORT_SYMBOL(pdc_add_valid);
224 
225 /**
226  * pdc_chassis_info - Return chassis information.
227  * @result: The return buffer.
228  * @chassis_info: The memory buffer address.
229  * @len: The size of the memory buffer address.
230  *
231  * An HVERSION dependent call for returning the chassis information.
232  */
233 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234 {
235         int retval;
236 	unsigned long flags;
237 
238         spin_lock_irqsave(&pdc_lock, flags);
239         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240         memcpy(&pdc_result2, led_info, len);
241         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242                               __pa(pdc_result), __pa(pdc_result2), len);
243         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244         memcpy(led_info, pdc_result2, len);
245         spin_unlock_irqrestore(&pdc_lock, flags);
246 
247         return retval;
248 }
249 
250 /**
251  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252  * @retval: -1 on error, 0 on success. Other value are PDC errors
253  *
254  * Must be correctly formatted or expect system crash
255  */
256 #ifdef CONFIG_64BIT
257 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258 {
259 	int retval = 0;
260 	unsigned long flags;
261 
262 	if (!is_pdc_pat())
263 		return -1;
264 
265 	spin_lock_irqsave(&pdc_lock, flags);
266 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267 	spin_unlock_irqrestore(&pdc_lock, flags);
268 
269 	return retval;
270 }
271 #endif
272 
273 /**
274  * pdc_chassis_disp - Updates chassis code
275  * @retval: -1 on error, 0 on success
276  */
277 int pdc_chassis_disp(unsigned long disp)
278 {
279 	int retval = 0;
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&pdc_lock, flags);
283 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284 	spin_unlock_irqrestore(&pdc_lock, flags);
285 
286 	return retval;
287 }
288 
289 /**
290  * pdc_chassis_warn - Fetches chassis warnings
291  * @retval: -1 on error, 0 on success
292  */
293 int pdc_chassis_warn(unsigned long *warn)
294 {
295 	int retval = 0;
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&pdc_lock, flags);
299 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300 	*warn = pdc_result[0];
301 	spin_unlock_irqrestore(&pdc_lock, flags);
302 
303 	return retval;
304 }
305 
306 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307 {
308 	int ret;
309 
310 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311 	convert_to_wide(pdc_result);
312 	pdc_coproc_info->ccr_functional = pdc_result[0];
313 	pdc_coproc_info->ccr_present = pdc_result[1];
314 	pdc_coproc_info->revision = pdc_result[17];
315 	pdc_coproc_info->model = pdc_result[18];
316 
317 	return ret;
318 }
319 
320 /**
321  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322  * @pdc_coproc_info: Return buffer address.
323  *
324  * This PDC call returns the presence and status of all the coprocessors
325  * attached to the processor.
326  */
327 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&pdc_lock, flags);
333 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334 	spin_unlock_irqrestore(&pdc_lock, flags);
335 
336 	return ret;
337 }
338 
339 /**
340  * pdc_iodc_read - Read data from the modules IODC.
341  * @actcnt: The actual number of bytes.
342  * @hpa: The HPA of the module for the iodc read.
343  * @index: The iodc entry point.
344  * @iodc_data: A buffer memory for the iodc options.
345  * @iodc_data_size: Size of the memory buffer.
346  *
347  * This PDC call reads from the IODC of the module specified by the hpa
348  * argument.
349  */
350 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351 		  void *iodc_data, unsigned int iodc_data_size)
352 {
353 	int retval;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&pdc_lock, flags);
357 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358 			      index, __pa(pdc_result2), iodc_data_size);
359 	convert_to_wide(pdc_result);
360 	*actcnt = pdc_result[0];
361 	memcpy(iodc_data, pdc_result2, iodc_data_size);
362 	spin_unlock_irqrestore(&pdc_lock, flags);
363 
364 	return retval;
365 }
366 EXPORT_SYMBOL(pdc_iodc_read);
367 
368 /**
369  * pdc_system_map_find_mods - Locate unarchitected modules.
370  * @pdc_mod_info: Return buffer address.
371  * @mod_path: pointer to dev path structure.
372  * @mod_index: fixed address module index.
373  *
374  * To locate and identify modules which reside at fixed I/O addresses, which
375  * do not self-identify via architected bus walks.
376  */
377 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378 			     struct pdc_module_path *mod_path, long mod_index)
379 {
380 	int retval;
381 	unsigned long flags;
382 
383 	spin_lock_irqsave(&pdc_lock, flags);
384 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385 			      __pa(pdc_result2), mod_index);
386 	convert_to_wide(pdc_result);
387 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389 	spin_unlock_irqrestore(&pdc_lock, flags);
390 
391 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392 	return retval;
393 }
394 
395 /**
396  * pdc_system_map_find_addrs - Retrieve additional address ranges.
397  * @pdc_addr_info: Return buffer address.
398  * @mod_index: Fixed address module index.
399  * @addr_index: Address range index.
400  *
401  * Retrieve additional information about subsequent address ranges for modules
402  * with multiple address ranges.
403  */
404 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405 			      long mod_index, long addr_index)
406 {
407 	int retval;
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&pdc_lock, flags);
411 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412 			      mod_index, addr_index);
413 	convert_to_wide(pdc_result);
414 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415 	spin_unlock_irqrestore(&pdc_lock, flags);
416 
417 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418 	return retval;
419 }
420 
421 /**
422  * pdc_model_info - Return model information about the processor.
423  * @model: The return buffer.
424  *
425  * Returns the version numbers, identifiers, and capabilities from the processor module.
426  */
427 int pdc_model_info(struct pdc_model *model)
428 {
429 	int retval;
430 	unsigned long flags;
431 
432 	spin_lock_irqsave(&pdc_lock, flags);
433 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434 	convert_to_wide(pdc_result);
435 	memcpy(model, pdc_result, sizeof(*model));
436 	spin_unlock_irqrestore(&pdc_lock, flags);
437 
438 	return retval;
439 }
440 
441 /**
442  * pdc_model_sysmodel - Get the system model name.
443  * @name: A char array of at least 81 characters.
444  *
445  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447  * on HP/UX.
448  */
449 int pdc_model_sysmodel(char *name)
450 {
451         int retval;
452 	unsigned long flags;
453 
454         spin_lock_irqsave(&pdc_lock, flags);
455         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456                               OS_ID_HPUX, __pa(name));
457         convert_to_wide(pdc_result);
458 
459         if (retval == PDC_OK) {
460                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461         } else {
462                 name[0] = 0;
463         }
464         spin_unlock_irqrestore(&pdc_lock, flags);
465 
466         return retval;
467 }
468 
469 /**
470  * pdc_model_versions - Identify the version number of each processor.
471  * @cpu_id: The return buffer.
472  * @id: The id of the processor to check.
473  *
474  * Returns the version number for each processor component.
475  *
476  * This comment was here before, but I do not know what it means :( -RB
477  * id: 0 = cpu revision, 1 = boot-rom-version
478  */
479 int pdc_model_versions(unsigned long *versions, int id)
480 {
481         int retval;
482 	unsigned long flags;
483 
484         spin_lock_irqsave(&pdc_lock, flags);
485         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486         convert_to_wide(pdc_result);
487         *versions = pdc_result[0];
488         spin_unlock_irqrestore(&pdc_lock, flags);
489 
490         return retval;
491 }
492 
493 /**
494  * pdc_model_cpuid - Returns the CPU_ID.
495  * @cpu_id: The return buffer.
496  *
497  * Returns the CPU_ID value which uniquely identifies the cpu portion of
498  * the processor module.
499  */
500 int pdc_model_cpuid(unsigned long *cpu_id)
501 {
502         int retval;
503 	unsigned long flags;
504 
505         spin_lock_irqsave(&pdc_lock, flags);
506         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508         convert_to_wide(pdc_result);
509         *cpu_id = pdc_result[0];
510         spin_unlock_irqrestore(&pdc_lock, flags);
511 
512         return retval;
513 }
514 
515 /**
516  * pdc_model_capabilities - Returns the platform capabilities.
517  * @capabilities: The return buffer.
518  *
519  * Returns information about platform support for 32- and/or 64-bit
520  * OSes, IO-PDIR coherency, and virtual aliasing.
521  */
522 int pdc_model_capabilities(unsigned long *capabilities)
523 {
524         int retval;
525 	unsigned long flags;
526 
527         spin_lock_irqsave(&pdc_lock, flags);
528         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530         convert_to_wide(pdc_result);
531         if (retval == PDC_OK) {
532                 *capabilities = pdc_result[0];
533         } else {
534                 *capabilities = PDC_MODEL_OS32;
535         }
536         spin_unlock_irqrestore(&pdc_lock, flags);
537 
538         return retval;
539 }
540 
541 /**
542  * pdc_cache_info - Return cache and TLB information.
543  * @cache_info: The return buffer.
544  *
545  * Returns information about the processor's cache and TLB.
546  */
547 int pdc_cache_info(struct pdc_cache_info *cache_info)
548 {
549         int retval;
550 	unsigned long flags;
551 
552         spin_lock_irqsave(&pdc_lock, flags);
553         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554         convert_to_wide(pdc_result);
555         memcpy(cache_info, pdc_result, sizeof(*cache_info));
556         spin_unlock_irqrestore(&pdc_lock, flags);
557 
558         return retval;
559 }
560 
561 /**
562  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563  * @space_bits: Should be 0, if not, bad mojo!
564  *
565  * Returns information about Space ID hashing.
566  */
567 int pdc_spaceid_bits(unsigned long *space_bits)
568 {
569 	int retval;
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&pdc_lock, flags);
573 	pdc_result[0] = 0;
574 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575 	convert_to_wide(pdc_result);
576 	*space_bits = pdc_result[0];
577 	spin_unlock_irqrestore(&pdc_lock, flags);
578 
579 	return retval;
580 }
581 
582 #ifndef CONFIG_PA20
583 /**
584  * pdc_btlb_info - Return block TLB information.
585  * @btlb: The return buffer.
586  *
587  * Returns information about the hardware Block TLB.
588  */
589 int pdc_btlb_info(struct pdc_btlb_info *btlb)
590 {
591         int retval;
592 	unsigned long flags;
593 
594         spin_lock_irqsave(&pdc_lock, flags);
595         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596         memcpy(btlb, pdc_result, sizeof(*btlb));
597         spin_unlock_irqrestore(&pdc_lock, flags);
598 
599         if(retval < 0) {
600                 btlb->max_size = 0;
601         }
602         return retval;
603 }
604 
605 /**
606  * pdc_mem_map_hpa - Find fixed module information.
607  * @address: The return buffer
608  * @mod_path: pointer to dev path structure.
609  *
610  * This call was developed for S700 workstations to allow the kernel to find
611  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613  * call.
614  *
615  * This call is supported by all existing S700 workstations (up to  Gecko).
616  */
617 int pdc_mem_map_hpa(struct pdc_memory_map *address,
618 		struct pdc_module_path *mod_path)
619 {
620         int retval;
621 	unsigned long flags;
622 
623         spin_lock_irqsave(&pdc_lock, flags);
624         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626 				__pa(pdc_result2));
627         memcpy(address, pdc_result, sizeof(*address));
628         spin_unlock_irqrestore(&pdc_lock, flags);
629 
630         return retval;
631 }
632 #endif	/* !CONFIG_PA20 */
633 
634 /**
635  * pdc_lan_station_id - Get the LAN address.
636  * @lan_addr: The return buffer.
637  * @hpa: The network device HPA.
638  *
639  * Get the LAN station address when it is not directly available from the LAN hardware.
640  */
641 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642 {
643 	int retval;
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&pdc_lock, flags);
647 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648 			__pa(pdc_result), hpa);
649 	if (retval < 0) {
650 		/* FIXME: else read MAC from NVRAM */
651 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652 	} else {
653 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654 	}
655 	spin_unlock_irqrestore(&pdc_lock, flags);
656 
657 	return retval;
658 }
659 EXPORT_SYMBOL(pdc_lan_station_id);
660 
661 /**
662  * pdc_stable_read - Read data from Stable Storage.
663  * @staddr: Stable Storage address to access.
664  * @memaddr: The memory address where Stable Storage data shall be copied.
665  * @count: number of bytes to transfer. count is multiple of 4.
666  *
667  * This PDC call reads from the Stable Storage address supplied in staddr
668  * and copies count bytes to the memory address memaddr.
669  * The call will fail if staddr+count > PDC_STABLE size.
670  */
671 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672 {
673        int retval;
674 	unsigned long flags;
675 
676        spin_lock_irqsave(&pdc_lock, flags);
677        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678                __pa(pdc_result), count);
679        convert_to_wide(pdc_result);
680        memcpy(memaddr, pdc_result, count);
681        spin_unlock_irqrestore(&pdc_lock, flags);
682 
683        return retval;
684 }
685 EXPORT_SYMBOL(pdc_stable_read);
686 
687 /**
688  * pdc_stable_write - Write data to Stable Storage.
689  * @staddr: Stable Storage address to access.
690  * @memaddr: The memory address where Stable Storage data shall be read from.
691  * @count: number of bytes to transfer. count is multiple of 4.
692  *
693  * This PDC call reads count bytes from the supplied memaddr address,
694  * and copies count bytes to the Stable Storage address staddr.
695  * The call will fail if staddr+count > PDC_STABLE size.
696  */
697 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698 {
699        int retval;
700 	unsigned long flags;
701 
702        spin_lock_irqsave(&pdc_lock, flags);
703        memcpy(pdc_result, memaddr, count);
704        convert_to_wide(pdc_result);
705        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706                __pa(pdc_result), count);
707        spin_unlock_irqrestore(&pdc_lock, flags);
708 
709        return retval;
710 }
711 EXPORT_SYMBOL(pdc_stable_write);
712 
713 /**
714  * pdc_stable_get_size - Get Stable Storage size in bytes.
715  * @size: pointer where the size will be stored.
716  *
717  * This PDC call returns the number of bytes in the processor's Stable
718  * Storage, which is the number of contiguous bytes implemented in Stable
719  * Storage starting from staddr=0. size in an unsigned 64-bit integer
720  * which is a multiple of four.
721  */
722 int pdc_stable_get_size(unsigned long *size)
723 {
724        int retval;
725 	unsigned long flags;
726 
727        spin_lock_irqsave(&pdc_lock, flags);
728        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729        *size = pdc_result[0];
730        spin_unlock_irqrestore(&pdc_lock, flags);
731 
732        return retval;
733 }
734 EXPORT_SYMBOL(pdc_stable_get_size);
735 
736 /**
737  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738  *
739  * This PDC call is meant to be used to check the integrity of the current
740  * contents of Stable Storage.
741  */
742 int pdc_stable_verify_contents(void)
743 {
744        int retval;
745 	unsigned long flags;
746 
747        spin_lock_irqsave(&pdc_lock, flags);
748        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749        spin_unlock_irqrestore(&pdc_lock, flags);
750 
751        return retval;
752 }
753 EXPORT_SYMBOL(pdc_stable_verify_contents);
754 
755 /**
756  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757  * the validity indicator.
758  *
759  * This PDC call will erase all contents of Stable Storage. Use with care!
760  */
761 int pdc_stable_initialize(void)
762 {
763        int retval;
764 	unsigned long flags;
765 
766        spin_lock_irqsave(&pdc_lock, flags);
767        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768        spin_unlock_irqrestore(&pdc_lock, flags);
769 
770        return retval;
771 }
772 EXPORT_SYMBOL(pdc_stable_initialize);
773 
774 /**
775  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776  * @hwpath: fully bc.mod style path to the device.
777  * @initiator: the array to return the result into
778  *
779  * Get the SCSI operational parameters from PDC.
780  * Needed since HPUX never used BIOS or symbios card NVRAM.
781  * Most ncr/sym cards won't have an entry and just use whatever
782  * capabilities of the card are (eg Ultra, LVD). But there are
783  * several cases where it's useful:
784  *    o set SCSI id for Multi-initiator clusters,
785  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
786  *    o bus width exported is less than what the interface chip supports.
787  */
788 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789 {
790 	int retval;
791 	unsigned long flags;
792 
793 	spin_lock_irqsave(&pdc_lock, flags);
794 
795 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798 
799 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800 			      __pa(pdc_result), __pa(hwpath));
801 	if (retval < PDC_OK)
802 		goto out;
803 
804 	if (pdc_result[0] < 16) {
805 		initiator->host_id = pdc_result[0];
806 	} else {
807 		initiator->host_id = -1;
808 	}
809 
810 	/*
811 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
812 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813 	 */
814 	switch (pdc_result[1]) {
815 		case  1: initiator->factor = 50; break;
816 		case  2: initiator->factor = 25; break;
817 		case  5: initiator->factor = 12; break;
818 		case 25: initiator->factor = 10; break;
819 		case 20: initiator->factor = 12; break;
820 		case 40: initiator->factor = 10; break;
821 		default: initiator->factor = -1; break;
822 	}
823 
824 	if (IS_SPROCKETS()) {
825 		initiator->width = pdc_result[4];
826 		initiator->mode = pdc_result[5];
827 	} else {
828 		initiator->width = -1;
829 		initiator->mode = -1;
830 	}
831 
832  out:
833 	spin_unlock_irqrestore(&pdc_lock, flags);
834 
835 	return (retval >= PDC_OK);
836 }
837 EXPORT_SYMBOL(pdc_get_initiator);
838 
839 
840 /**
841  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842  * @num_entries: The return value.
843  * @hpa: The HPA for the device.
844  *
845  * This PDC function returns the number of entries in the specified cell's
846  * interrupt table.
847  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848  */
849 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850 {
851 	int retval;
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(&pdc_lock, flags);
855 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856 			      __pa(pdc_result), hpa);
857 	convert_to_wide(pdc_result);
858 	*num_entries = pdc_result[0];
859 	spin_unlock_irqrestore(&pdc_lock, flags);
860 
861 	return retval;
862 }
863 
864 /**
865  * pdc_pci_irt - Get the PCI interrupt routing table.
866  * @num_entries: The number of entries in the table.
867  * @hpa: The Hard Physical Address of the device.
868  * @tbl:
869  *
870  * Get the PCI interrupt routing table for the device at the given HPA.
871  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872  */
873 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874 {
875 	int retval;
876 	unsigned long flags;
877 
878 	BUG_ON((unsigned long)tbl & 0x7);
879 
880 	spin_lock_irqsave(&pdc_lock, flags);
881 	pdc_result[0] = num_entries;
882 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883 			      __pa(pdc_result), hpa, __pa(tbl));
884 	spin_unlock_irqrestore(&pdc_lock, flags);
885 
886 	return retval;
887 }
888 
889 
890 #if 0	/* UNTEST CODE - left here in case someone needs it */
891 
892 /**
893  * pdc_pci_config_read - read PCI config space.
894  * @hpa		token from PDC to indicate which PCI device
895  * @pci_addr	configuration space address to read from
896  *
897  * Read PCI Configuration space *before* linux PCI subsystem is running.
898  */
899 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900 {
901 	int retval;
902 	unsigned long flags;
903 
904 	spin_lock_irqsave(&pdc_lock, flags);
905 	pdc_result[0] = 0;
906 	pdc_result[1] = 0;
907 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909 	spin_unlock_irqrestore(&pdc_lock, flags);
910 
911 	return retval ? ~0 : (unsigned int) pdc_result[0];
912 }
913 
914 
915 /**
916  * pdc_pci_config_write - read PCI config space.
917  * @hpa		token from PDC to indicate which PCI device
918  * @pci_addr	configuration space address to write
919  * @val		value we want in the 32-bit register
920  *
921  * Write PCI Configuration space *before* linux PCI subsystem is running.
922  */
923 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924 {
925 	int retval;
926 	unsigned long flags;
927 
928 	spin_lock_irqsave(&pdc_lock, flags);
929 	pdc_result[0] = 0;
930 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931 			      __pa(pdc_result), hpa,
932 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
933 	spin_unlock_irqrestore(&pdc_lock, flags);
934 
935 	return retval;
936 }
937 #endif /* UNTESTED CODE */
938 
939 /**
940  * pdc_tod_read - Read the Time-Of-Day clock.
941  * @tod: The return buffer:
942  *
943  * Read the Time-Of-Day clock
944  */
945 int pdc_tod_read(struct pdc_tod *tod)
946 {
947         int retval;
948 	unsigned long flags;
949 
950         spin_lock_irqsave(&pdc_lock, flags);
951         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952         convert_to_wide(pdc_result);
953         memcpy(tod, pdc_result, sizeof(*tod));
954         spin_unlock_irqrestore(&pdc_lock, flags);
955 
956         return retval;
957 }
958 EXPORT_SYMBOL(pdc_tod_read);
959 
960 /**
961  * pdc_tod_set - Set the Time-Of-Day clock.
962  * @sec: The number of seconds since epoch.
963  * @usec: The number of micro seconds.
964  *
965  * Set the Time-Of-Day clock.
966  */
967 int pdc_tod_set(unsigned long sec, unsigned long usec)
968 {
969         int retval;
970 	unsigned long flags;
971 
972         spin_lock_irqsave(&pdc_lock, flags);
973         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
974         spin_unlock_irqrestore(&pdc_lock, flags);
975 
976         return retval;
977 }
978 EXPORT_SYMBOL(pdc_tod_set);
979 
980 #ifdef CONFIG_64BIT
981 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
982 		struct pdc_memory_table *tbl, unsigned long entries)
983 {
984 	int retval;
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&pdc_lock, flags);
988 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
989 	convert_to_wide(pdc_result);
990 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
991 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
992 	spin_unlock_irqrestore(&pdc_lock, flags);
993 
994 	return retval;
995 }
996 #endif /* CONFIG_64BIT */
997 
998 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
999  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000  * it later. :)
1001  */
1002 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003 {
1004         int retval;
1005 	unsigned long flags;
1006 
1007         spin_lock_irqsave(&pdc_lock, flags);
1008         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010         spin_unlock_irqrestore(&pdc_lock, flags);
1011 
1012         return retval;
1013 }
1014 
1015 /*
1016  * pdc_do_reset - Reset the system.
1017  *
1018  * Reset the system.
1019  */
1020 int pdc_do_reset(void)
1021 {
1022         int retval;
1023 	unsigned long flags;
1024 
1025         spin_lock_irqsave(&pdc_lock, flags);
1026         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027         spin_unlock_irqrestore(&pdc_lock, flags);
1028 
1029         return retval;
1030 }
1031 
1032 /*
1033  * pdc_soft_power_info - Enable soft power switch.
1034  * @power_reg: address of soft power register
1035  *
1036  * Return the absolute address of the soft power switch register
1037  */
1038 int __init pdc_soft_power_info(unsigned long *power_reg)
1039 {
1040 	int retval;
1041 	unsigned long flags;
1042 
1043 	*power_reg = (unsigned long) (-1);
1044 
1045 	spin_lock_irqsave(&pdc_lock, flags);
1046 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047 	if (retval == PDC_OK) {
1048                 convert_to_wide(pdc_result);
1049                 *power_reg = f_extend(pdc_result[0]);
1050 	}
1051 	spin_unlock_irqrestore(&pdc_lock, flags);
1052 
1053 	return retval;
1054 }
1055 
1056 /*
1057  * pdc_soft_power_button - Control the soft power button behaviour
1058  * @sw_control: 0 for hardware control, 1 for software control
1059  *
1060  *
1061  * This PDC function places the soft power button under software or
1062  * hardware control.
1063  * Under software control the OS may control to when to allow to shut
1064  * down the system. Under hardware control pressing the power button
1065  * powers off the system immediately.
1066  */
1067 int pdc_soft_power_button(int sw_control)
1068 {
1069 	int retval;
1070 	unsigned long flags;
1071 
1072 	spin_lock_irqsave(&pdc_lock, flags);
1073 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074 	spin_unlock_irqrestore(&pdc_lock, flags);
1075 
1076 	return retval;
1077 }
1078 
1079 /*
1080  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082  * who knows what other platform firmware might do with this OS "hook".
1083  */
1084 void pdc_io_reset(void)
1085 {
1086 	unsigned long flags;
1087 
1088 	spin_lock_irqsave(&pdc_lock, flags);
1089 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090 	spin_unlock_irqrestore(&pdc_lock, flags);
1091 }
1092 
1093 /*
1094  * pdc_io_reset_devices - Hack to Stop USB controller
1095  *
1096  * If PDC used the usb controller, the usb controller
1097  * is still running and will crash the machines during iommu
1098  * setup, because of still running DMA. This PDC call
1099  * stops the USB controller.
1100  * Normally called after calling pdc_io_reset().
1101  */
1102 void pdc_io_reset_devices(void)
1103 {
1104 	unsigned long flags;
1105 
1106 	spin_lock_irqsave(&pdc_lock, flags);
1107 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108 	spin_unlock_irqrestore(&pdc_lock, flags);
1109 }
1110 
1111 /* locked by pdc_console_lock */
1112 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114 
1115 /**
1116  * pdc_iodc_print - Console print using IODC.
1117  * @str: the string to output.
1118  * @count: length of str
1119  *
1120  * Note that only these special chars are architected for console IODC io:
1121  * BEL, BS, CR, and LF. Others are passed through.
1122  * Since the HP console requires CR+LF to perform a 'newline', we translate
1123  * "\n" to "\r\n".
1124  */
1125 int pdc_iodc_print(const unsigned char *str, unsigned count)
1126 {
1127 	unsigned int i;
1128 	unsigned long flags;
1129 
1130 	for (i = 0; i < count;) {
1131 		switch(str[i]) {
1132 		case '\n':
1133 			iodc_dbuf[i+0] = '\r';
1134 			iodc_dbuf[i+1] = '\n';
1135 			i += 2;
1136 			goto print;
1137 		default:
1138 			iodc_dbuf[i] = str[i];
1139 			i++;
1140 			break;
1141 		}
1142 	}
1143 
1144 print:
1145         spin_lock_irqsave(&pdc_lock, flags);
1146         real32_call(PAGE0->mem_cons.iodc_io,
1147                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150         spin_unlock_irqrestore(&pdc_lock, flags);
1151 
1152 	return i;
1153 }
1154 
1155 /**
1156  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157  *
1158  * Read a character (non-blocking) from the PDC console, returns -1 if
1159  * key is not present.
1160  */
1161 int pdc_iodc_getc(void)
1162 {
1163 	int ch;
1164 	int status;
1165 	unsigned long flags;
1166 
1167 	/* Bail if no console input device. */
1168 	if (!PAGE0->mem_kbd.iodc_io)
1169 		return 0;
1170 
1171 	/* wait for a keyboard (rs232)-input */
1172 	spin_lock_irqsave(&pdc_lock, flags);
1173 	real32_call(PAGE0->mem_kbd.iodc_io,
1174 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1176 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177 
1178 	ch = *iodc_dbuf;
1179 	status = *iodc_retbuf;
1180 	spin_unlock_irqrestore(&pdc_lock, flags);
1181 
1182 	if (status == 0)
1183 	    return -1;
1184 
1185 	return ch;
1186 }
1187 
1188 int pdc_sti_call(unsigned long func, unsigned long flags,
1189                  unsigned long inptr, unsigned long outputr,
1190                  unsigned long glob_cfg)
1191 {
1192         int retval;
1193 	unsigned long irqflags;
1194 
1195         spin_lock_irqsave(&pdc_lock, irqflags);
1196         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197         spin_unlock_irqrestore(&pdc_lock, irqflags);
1198 
1199         return retval;
1200 }
1201 EXPORT_SYMBOL(pdc_sti_call);
1202 
1203 #ifdef CONFIG_64BIT
1204 /**
1205  * pdc_pat_cell_get_number - Returns the cell number.
1206  * @cell_info: The return buffer.
1207  *
1208  * This PDC call returns the cell number of the cell from which the call
1209  * is made.
1210  */
1211 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212 {
1213 	int retval;
1214 	unsigned long flags;
1215 
1216 	spin_lock_irqsave(&pdc_lock, flags);
1217 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219 	spin_unlock_irqrestore(&pdc_lock, flags);
1220 
1221 	return retval;
1222 }
1223 
1224 /**
1225  * pdc_pat_cell_module - Retrieve the cell's module information.
1226  * @actcnt: The number of bytes written to mem_addr.
1227  * @ploc: The physical location.
1228  * @mod: The module index.
1229  * @view_type: The view of the address type.
1230  * @mem_addr: The return buffer.
1231  *
1232  * This PDC call returns information about each module attached to the cell
1233  * at the specified location.
1234  */
1235 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236 			unsigned long view_type, void *mem_addr)
1237 {
1238 	int retval;
1239 	unsigned long flags;
1240 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241 
1242 	spin_lock_irqsave(&pdc_lock, flags);
1243 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1244 			      ploc, mod, view_type, __pa(&result));
1245 	if(!retval) {
1246 		*actcnt = pdc_result[0];
1247 		memcpy(mem_addr, &result, *actcnt);
1248 	}
1249 	spin_unlock_irqrestore(&pdc_lock, flags);
1250 
1251 	return retval;
1252 }
1253 
1254 /**
1255  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256  * @cpu_info: The return buffer.
1257  * @hpa: The Hard Physical Address of the CPU.
1258  *
1259  * Retrieve the cpu number for the cpu at the specified HPA.
1260  */
1261 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1262 {
1263 	int retval;
1264 	unsigned long flags;
1265 
1266 	spin_lock_irqsave(&pdc_lock, flags);
1267 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268 			      __pa(&pdc_result), hpa);
1269 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270 	spin_unlock_irqrestore(&pdc_lock, flags);
1271 
1272 	return retval;
1273 }
1274 
1275 /**
1276  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277  * @num_entries: The return value.
1278  * @cell_num: The target cell.
1279  *
1280  * This PDC function returns the number of entries in the specified cell's
1281  * interrupt table.
1282  */
1283 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284 {
1285 	int retval;
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&pdc_lock, flags);
1289 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290 			      __pa(pdc_result), cell_num);
1291 	*num_entries = pdc_result[0];
1292 	spin_unlock_irqrestore(&pdc_lock, flags);
1293 
1294 	return retval;
1295 }
1296 
1297 /**
1298  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299  * @r_addr: The return buffer.
1300  * @cell_num: The target cell.
1301  *
1302  * This PDC function returns the actual interrupt table for the specified cell.
1303  */
1304 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305 {
1306 	int retval;
1307 	unsigned long flags;
1308 
1309 	spin_lock_irqsave(&pdc_lock, flags);
1310 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311 			      __pa(r_addr), cell_num);
1312 	spin_unlock_irqrestore(&pdc_lock, flags);
1313 
1314 	return retval;
1315 }
1316 
1317 /**
1318  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319  * @actlen: The return buffer.
1320  * @mem_addr: Pointer to the memory buffer.
1321  * @count: The number of bytes to read from the buffer.
1322  * @offset: The offset with respect to the beginning of the buffer.
1323  *
1324  */
1325 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1326 			    unsigned long count, unsigned long offset)
1327 {
1328 	int retval;
1329 	unsigned long flags;
1330 
1331 	spin_lock_irqsave(&pdc_lock, flags);
1332 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1333 			      __pa(pdc_result2), count, offset);
1334 	*actual_len = pdc_result[0];
1335 	memcpy(mem_addr, pdc_result2, *actual_len);
1336 	spin_unlock_irqrestore(&pdc_lock, flags);
1337 
1338 	return retval;
1339 }
1340 
1341 /**
1342  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343  * @pci_addr: PCI configuration space address for which the read request is being made.
1344  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1345  * @mem_addr: Pointer to return memory buffer.
1346  *
1347  */
1348 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349 {
1350 	int retval;
1351 	unsigned long flags;
1352 
1353 	spin_lock_irqsave(&pdc_lock, flags);
1354 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355 					__pa(pdc_result), pci_addr, pci_size);
1356 	switch(pci_size) {
1357 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1358 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1359 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1360 	}
1361 	spin_unlock_irqrestore(&pdc_lock, flags);
1362 
1363 	return retval;
1364 }
1365 
1366 /**
1367  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368  * @pci_addr: PCI configuration space address for which the write  request is being made.
1369  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1370  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1371  *         written to PCI Config space.
1372  *
1373  */
1374 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375 {
1376 	int retval;
1377 	unsigned long flags;
1378 
1379 	spin_lock_irqsave(&pdc_lock, flags);
1380 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381 				pci_addr, pci_size, val);
1382 	spin_unlock_irqrestore(&pdc_lock, flags);
1383 
1384 	return retval;
1385 }
1386 #endif /* CONFIG_64BIT */
1387 
1388 
1389 /***************** 32-bit real-mode calls ***********/
1390 /* The struct below is used
1391  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392  * real32_call_asm() then uses this stack in narrow real mode
1393  */
1394 
1395 struct narrow_stack {
1396 	/* use int, not long which is 64 bits */
1397 	unsigned int arg13;
1398 	unsigned int arg12;
1399 	unsigned int arg11;
1400 	unsigned int arg10;
1401 	unsigned int arg9;
1402 	unsigned int arg8;
1403 	unsigned int arg7;
1404 	unsigned int arg6;
1405 	unsigned int arg5;
1406 	unsigned int arg4;
1407 	unsigned int arg3;
1408 	unsigned int arg2;
1409 	unsigned int arg1;
1410 	unsigned int arg0;
1411 	unsigned int frame_marker[8];
1412 	unsigned int sp;
1413 	/* in reality, there's nearly 8k of stack after this */
1414 };
1415 
1416 long real32_call(unsigned long fn, ...)
1417 {
1418 	va_list args;
1419 	extern struct narrow_stack real_stack;
1420 	extern unsigned long real32_call_asm(unsigned int *,
1421 					     unsigned int *,
1422 					     unsigned int);
1423 
1424 	va_start(args, fn);
1425 	real_stack.arg0 = va_arg(args, unsigned int);
1426 	real_stack.arg1 = va_arg(args, unsigned int);
1427 	real_stack.arg2 = va_arg(args, unsigned int);
1428 	real_stack.arg3 = va_arg(args, unsigned int);
1429 	real_stack.arg4 = va_arg(args, unsigned int);
1430 	real_stack.arg5 = va_arg(args, unsigned int);
1431 	real_stack.arg6 = va_arg(args, unsigned int);
1432 	real_stack.arg7 = va_arg(args, unsigned int);
1433 	real_stack.arg8 = va_arg(args, unsigned int);
1434 	real_stack.arg9 = va_arg(args, unsigned int);
1435 	real_stack.arg10 = va_arg(args, unsigned int);
1436 	real_stack.arg11 = va_arg(args, unsigned int);
1437 	real_stack.arg12 = va_arg(args, unsigned int);
1438 	real_stack.arg13 = va_arg(args, unsigned int);
1439 	va_end(args);
1440 
1441 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442 }
1443 
1444 #ifdef CONFIG_64BIT
1445 /***************** 64-bit real-mode calls ***********/
1446 
1447 struct wide_stack {
1448 	unsigned long arg0;
1449 	unsigned long arg1;
1450 	unsigned long arg2;
1451 	unsigned long arg3;
1452 	unsigned long arg4;
1453 	unsigned long arg5;
1454 	unsigned long arg6;
1455 	unsigned long arg7;
1456 	unsigned long arg8;
1457 	unsigned long arg9;
1458 	unsigned long arg10;
1459 	unsigned long arg11;
1460 	unsigned long arg12;
1461 	unsigned long arg13;
1462 	unsigned long frame_marker[2];	/* rp, previous sp */
1463 	unsigned long sp;
1464 	/* in reality, there's nearly 8k of stack after this */
1465 };
1466 
1467 long real64_call(unsigned long fn, ...)
1468 {
1469 	va_list args;
1470 	extern struct wide_stack real64_stack;
1471 	extern unsigned long real64_call_asm(unsigned long *,
1472 					     unsigned long *,
1473 					     unsigned long);
1474 
1475 	va_start(args, fn);
1476 	real64_stack.arg0 = va_arg(args, unsigned long);
1477 	real64_stack.arg1 = va_arg(args, unsigned long);
1478 	real64_stack.arg2 = va_arg(args, unsigned long);
1479 	real64_stack.arg3 = va_arg(args, unsigned long);
1480 	real64_stack.arg4 = va_arg(args, unsigned long);
1481 	real64_stack.arg5 = va_arg(args, unsigned long);
1482 	real64_stack.arg6 = va_arg(args, unsigned long);
1483 	real64_stack.arg7 = va_arg(args, unsigned long);
1484 	real64_stack.arg8 = va_arg(args, unsigned long);
1485 	real64_stack.arg9 = va_arg(args, unsigned long);
1486 	real64_stack.arg10 = va_arg(args, unsigned long);
1487 	real64_stack.arg11 = va_arg(args, unsigned long);
1488 	real64_stack.arg12 = va_arg(args, unsigned long);
1489 	real64_stack.arg13 = va_arg(args, unsigned long);
1490 	va_end(args);
1491 
1492 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493 }
1494 
1495 #endif /* CONFIG_64BIT */
1496 
1497