xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision e6dec923)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>	/* for boot_cpu_data */
71 
72 static DEFINE_SPINLOCK(pdc_lock);
73 extern unsigned long pdc_result[NUM_PDC_RESULT];
74 extern unsigned long pdc_result2[NUM_PDC_RESULT];
75 
76 #ifdef CONFIG_64BIT
77 #define WIDE_FIRMWARE 0x1
78 #define NARROW_FIRMWARE 0x2
79 
80 /* Firmware needs to be initially set to narrow to determine the
81  * actual firmware width. */
82 int parisc_narrow_firmware __read_mostly = 1;
83 #endif
84 
85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86  * and MEM_PDC calls are always the same width as the OS.
87  * Some PAT boxes may have 64-bit IODC I/O.
88  *
89  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91  * This allowed wide kernels to run on Cxxx boxes.
92  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94  */
95 
96 #ifdef CONFIG_64BIT
97 long real64_call(unsigned long function, ...);
98 #endif
99 long real32_call(unsigned long function, ...);
100 
101 #ifdef CONFIG_64BIT
102 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104 #else
105 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
106 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107 #endif
108 
109 
110 /**
111  * f_extend - Convert PDC addresses to kernel addresses.
112  * @address: Address returned from PDC.
113  *
114  * This function is used to convert PDC addresses into kernel addresses
115  * when the PDC address size and kernel address size are different.
116  */
117 static unsigned long f_extend(unsigned long address)
118 {
119 #ifdef CONFIG_64BIT
120 	if(unlikely(parisc_narrow_firmware)) {
121 		if((address & 0xff000000) == 0xf0000000)
122 			return 0xf0f0f0f000000000UL | (u32)address;
123 
124 		if((address & 0xf0000000) == 0xf0000000)
125 			return 0xffffffff00000000UL | (u32)address;
126 	}
127 #endif
128 	return address;
129 }
130 
131 /**
132  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133  * @address: The return buffer from PDC.
134  *
135  * This function is used to convert the return buffer addresses retrieved from PDC
136  * into kernel addresses when the PDC address size and kernel address size are
137  * different.
138  */
139 static void convert_to_wide(unsigned long *addr)
140 {
141 #ifdef CONFIG_64BIT
142 	int i;
143 	unsigned int *p = (unsigned int *)addr;
144 
145 	if(unlikely(parisc_narrow_firmware)) {
146 		for(i = 31; i >= 0; --i)
147 			addr[i] = p[i];
148 	}
149 #endif
150 }
151 
152 #ifdef CONFIG_64BIT
153 void set_firmware_width_unlocked(void)
154 {
155 	int ret;
156 
157 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 		__pa(pdc_result), 0);
159 	convert_to_wide(pdc_result);
160 	if (pdc_result[0] != NARROW_FIRMWARE)
161 		parisc_narrow_firmware = 0;
162 }
163 
164 /**
165  * set_firmware_width - Determine if the firmware is wide or narrow.
166  *
167  * This function must be called before any pdc_* function that uses the
168  * convert_to_wide function.
169  */
170 void set_firmware_width(void)
171 {
172 	unsigned long flags;
173 	spin_lock_irqsave(&pdc_lock, flags);
174 	set_firmware_width_unlocked();
175 	spin_unlock_irqrestore(&pdc_lock, flags);
176 }
177 #else
178 void set_firmware_width_unlocked(void)
179 {
180 	return;
181 }
182 
183 void set_firmware_width(void)
184 {
185 	return;
186 }
187 #endif /*CONFIG_64BIT*/
188 
189 /**
190  * pdc_emergency_unlock - Unlock the linux pdc lock
191  *
192  * This call unlocks the linux pdc lock in case we need some PDC functions
193  * (like pdc_add_valid) during kernel stack dump.
194  */
195 void pdc_emergency_unlock(void)
196 {
197  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
198         if (spin_is_locked(&pdc_lock))
199 		spin_unlock(&pdc_lock);
200 }
201 
202 
203 /**
204  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205  * @address: Address to be verified.
206  *
207  * This PDC call attempts to read from the specified address and verifies
208  * if the address is valid.
209  *
210  * The return value is PDC_OK (0) in case accessing this address is valid.
211  */
212 int pdc_add_valid(unsigned long address)
213 {
214         int retval;
215 	unsigned long flags;
216 
217         spin_lock_irqsave(&pdc_lock, flags);
218         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219         spin_unlock_irqrestore(&pdc_lock, flags);
220 
221         return retval;
222 }
223 EXPORT_SYMBOL(pdc_add_valid);
224 
225 /**
226  * pdc_chassis_info - Return chassis information.
227  * @result: The return buffer.
228  * @chassis_info: The memory buffer address.
229  * @len: The size of the memory buffer address.
230  *
231  * An HVERSION dependent call for returning the chassis information.
232  */
233 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234 {
235         int retval;
236 	unsigned long flags;
237 
238         spin_lock_irqsave(&pdc_lock, flags);
239         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240         memcpy(&pdc_result2, led_info, len);
241         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242                               __pa(pdc_result), __pa(pdc_result2), len);
243         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244         memcpy(led_info, pdc_result2, len);
245         spin_unlock_irqrestore(&pdc_lock, flags);
246 
247         return retval;
248 }
249 
250 /**
251  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252  * @retval: -1 on error, 0 on success. Other value are PDC errors
253  *
254  * Must be correctly formatted or expect system crash
255  */
256 #ifdef CONFIG_64BIT
257 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258 {
259 	int retval = 0;
260 	unsigned long flags;
261 
262 	if (!is_pdc_pat())
263 		return -1;
264 
265 	spin_lock_irqsave(&pdc_lock, flags);
266 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267 	spin_unlock_irqrestore(&pdc_lock, flags);
268 
269 	return retval;
270 }
271 #endif
272 
273 /**
274  * pdc_chassis_disp - Updates chassis code
275  * @retval: -1 on error, 0 on success
276  */
277 int pdc_chassis_disp(unsigned long disp)
278 {
279 	int retval = 0;
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&pdc_lock, flags);
283 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284 	spin_unlock_irqrestore(&pdc_lock, flags);
285 
286 	return retval;
287 }
288 
289 /**
290  * pdc_chassis_warn - Fetches chassis warnings
291  * @retval: -1 on error, 0 on success
292  */
293 int pdc_chassis_warn(unsigned long *warn)
294 {
295 	int retval = 0;
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&pdc_lock, flags);
299 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300 	*warn = pdc_result[0];
301 	spin_unlock_irqrestore(&pdc_lock, flags);
302 
303 	return retval;
304 }
305 
306 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307 {
308 	int ret;
309 
310 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311 	convert_to_wide(pdc_result);
312 	pdc_coproc_info->ccr_functional = pdc_result[0];
313 	pdc_coproc_info->ccr_present = pdc_result[1];
314 	pdc_coproc_info->revision = pdc_result[17];
315 	pdc_coproc_info->model = pdc_result[18];
316 
317 	return ret;
318 }
319 
320 /**
321  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322  * @pdc_coproc_info: Return buffer address.
323  *
324  * This PDC call returns the presence and status of all the coprocessors
325  * attached to the processor.
326  */
327 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328 {
329 	int ret;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&pdc_lock, flags);
333 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334 	spin_unlock_irqrestore(&pdc_lock, flags);
335 
336 	return ret;
337 }
338 
339 /**
340  * pdc_iodc_read - Read data from the modules IODC.
341  * @actcnt: The actual number of bytes.
342  * @hpa: The HPA of the module for the iodc read.
343  * @index: The iodc entry point.
344  * @iodc_data: A buffer memory for the iodc options.
345  * @iodc_data_size: Size of the memory buffer.
346  *
347  * This PDC call reads from the IODC of the module specified by the hpa
348  * argument.
349  */
350 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351 		  void *iodc_data, unsigned int iodc_data_size)
352 {
353 	int retval;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&pdc_lock, flags);
357 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358 			      index, __pa(pdc_result2), iodc_data_size);
359 	convert_to_wide(pdc_result);
360 	*actcnt = pdc_result[0];
361 	memcpy(iodc_data, pdc_result2, iodc_data_size);
362 	spin_unlock_irqrestore(&pdc_lock, flags);
363 
364 	return retval;
365 }
366 EXPORT_SYMBOL(pdc_iodc_read);
367 
368 /**
369  * pdc_system_map_find_mods - Locate unarchitected modules.
370  * @pdc_mod_info: Return buffer address.
371  * @mod_path: pointer to dev path structure.
372  * @mod_index: fixed address module index.
373  *
374  * To locate and identify modules which reside at fixed I/O addresses, which
375  * do not self-identify via architected bus walks.
376  */
377 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378 			     struct pdc_module_path *mod_path, long mod_index)
379 {
380 	int retval;
381 	unsigned long flags;
382 
383 	spin_lock_irqsave(&pdc_lock, flags);
384 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385 			      __pa(pdc_result2), mod_index);
386 	convert_to_wide(pdc_result);
387 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389 	spin_unlock_irqrestore(&pdc_lock, flags);
390 
391 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392 	return retval;
393 }
394 
395 /**
396  * pdc_system_map_find_addrs - Retrieve additional address ranges.
397  * @pdc_addr_info: Return buffer address.
398  * @mod_index: Fixed address module index.
399  * @addr_index: Address range index.
400  *
401  * Retrieve additional information about subsequent address ranges for modules
402  * with multiple address ranges.
403  */
404 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405 			      long mod_index, long addr_index)
406 {
407 	int retval;
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&pdc_lock, flags);
411 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412 			      mod_index, addr_index);
413 	convert_to_wide(pdc_result);
414 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415 	spin_unlock_irqrestore(&pdc_lock, flags);
416 
417 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418 	return retval;
419 }
420 
421 /**
422  * pdc_model_info - Return model information about the processor.
423  * @model: The return buffer.
424  *
425  * Returns the version numbers, identifiers, and capabilities from the processor module.
426  */
427 int pdc_model_info(struct pdc_model *model)
428 {
429 	int retval;
430 	unsigned long flags;
431 
432 	spin_lock_irqsave(&pdc_lock, flags);
433 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434 	convert_to_wide(pdc_result);
435 	memcpy(model, pdc_result, sizeof(*model));
436 	spin_unlock_irqrestore(&pdc_lock, flags);
437 
438 	return retval;
439 }
440 
441 /**
442  * pdc_model_sysmodel - Get the system model name.
443  * @name: A char array of at least 81 characters.
444  *
445  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447  * on HP/UX.
448  */
449 int pdc_model_sysmodel(char *name)
450 {
451         int retval;
452 	unsigned long flags;
453 
454         spin_lock_irqsave(&pdc_lock, flags);
455         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456                               OS_ID_HPUX, __pa(name));
457         convert_to_wide(pdc_result);
458 
459         if (retval == PDC_OK) {
460                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461         } else {
462                 name[0] = 0;
463         }
464         spin_unlock_irqrestore(&pdc_lock, flags);
465 
466         return retval;
467 }
468 
469 /**
470  * pdc_model_versions - Identify the version number of each processor.
471  * @cpu_id: The return buffer.
472  * @id: The id of the processor to check.
473  *
474  * Returns the version number for each processor component.
475  *
476  * This comment was here before, but I do not know what it means :( -RB
477  * id: 0 = cpu revision, 1 = boot-rom-version
478  */
479 int pdc_model_versions(unsigned long *versions, int id)
480 {
481         int retval;
482 	unsigned long flags;
483 
484         spin_lock_irqsave(&pdc_lock, flags);
485         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486         convert_to_wide(pdc_result);
487         *versions = pdc_result[0];
488         spin_unlock_irqrestore(&pdc_lock, flags);
489 
490         return retval;
491 }
492 
493 /**
494  * pdc_model_cpuid - Returns the CPU_ID.
495  * @cpu_id: The return buffer.
496  *
497  * Returns the CPU_ID value which uniquely identifies the cpu portion of
498  * the processor module.
499  */
500 int pdc_model_cpuid(unsigned long *cpu_id)
501 {
502         int retval;
503 	unsigned long flags;
504 
505         spin_lock_irqsave(&pdc_lock, flags);
506         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508         convert_to_wide(pdc_result);
509         *cpu_id = pdc_result[0];
510         spin_unlock_irqrestore(&pdc_lock, flags);
511 
512         return retval;
513 }
514 
515 /**
516  * pdc_model_capabilities - Returns the platform capabilities.
517  * @capabilities: The return buffer.
518  *
519  * Returns information about platform support for 32- and/or 64-bit
520  * OSes, IO-PDIR coherency, and virtual aliasing.
521  */
522 int pdc_model_capabilities(unsigned long *capabilities)
523 {
524         int retval;
525 	unsigned long flags;
526 
527         spin_lock_irqsave(&pdc_lock, flags);
528         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530         convert_to_wide(pdc_result);
531         if (retval == PDC_OK) {
532                 *capabilities = pdc_result[0];
533         } else {
534                 *capabilities = PDC_MODEL_OS32;
535         }
536         spin_unlock_irqrestore(&pdc_lock, flags);
537 
538         return retval;
539 }
540 
541 /**
542  * pdc_cache_info - Return cache and TLB information.
543  * @cache_info: The return buffer.
544  *
545  * Returns information about the processor's cache and TLB.
546  */
547 int pdc_cache_info(struct pdc_cache_info *cache_info)
548 {
549         int retval;
550 	unsigned long flags;
551 
552         spin_lock_irqsave(&pdc_lock, flags);
553         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554         convert_to_wide(pdc_result);
555         memcpy(cache_info, pdc_result, sizeof(*cache_info));
556         spin_unlock_irqrestore(&pdc_lock, flags);
557 
558         return retval;
559 }
560 
561 /**
562  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563  * @space_bits: Should be 0, if not, bad mojo!
564  *
565  * Returns information about Space ID hashing.
566  */
567 int pdc_spaceid_bits(unsigned long *space_bits)
568 {
569 	int retval;
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&pdc_lock, flags);
573 	pdc_result[0] = 0;
574 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575 	convert_to_wide(pdc_result);
576 	*space_bits = pdc_result[0];
577 	spin_unlock_irqrestore(&pdc_lock, flags);
578 
579 	return retval;
580 }
581 
582 #ifndef CONFIG_PA20
583 /**
584  * pdc_btlb_info - Return block TLB information.
585  * @btlb: The return buffer.
586  *
587  * Returns information about the hardware Block TLB.
588  */
589 int pdc_btlb_info(struct pdc_btlb_info *btlb)
590 {
591         int retval;
592 	unsigned long flags;
593 
594         spin_lock_irqsave(&pdc_lock, flags);
595         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596         memcpy(btlb, pdc_result, sizeof(*btlb));
597         spin_unlock_irqrestore(&pdc_lock, flags);
598 
599         if(retval < 0) {
600                 btlb->max_size = 0;
601         }
602         return retval;
603 }
604 
605 /**
606  * pdc_mem_map_hpa - Find fixed module information.
607  * @address: The return buffer
608  * @mod_path: pointer to dev path structure.
609  *
610  * This call was developed for S700 workstations to allow the kernel to find
611  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613  * call.
614  *
615  * This call is supported by all existing S700 workstations (up to  Gecko).
616  */
617 int pdc_mem_map_hpa(struct pdc_memory_map *address,
618 		struct pdc_module_path *mod_path)
619 {
620         int retval;
621 	unsigned long flags;
622 
623         spin_lock_irqsave(&pdc_lock, flags);
624         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626 				__pa(pdc_result2));
627         memcpy(address, pdc_result, sizeof(*address));
628         spin_unlock_irqrestore(&pdc_lock, flags);
629 
630         return retval;
631 }
632 #endif	/* !CONFIG_PA20 */
633 
634 /**
635  * pdc_lan_station_id - Get the LAN address.
636  * @lan_addr: The return buffer.
637  * @hpa: The network device HPA.
638  *
639  * Get the LAN station address when it is not directly available from the LAN hardware.
640  */
641 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642 {
643 	int retval;
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&pdc_lock, flags);
647 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648 			__pa(pdc_result), hpa);
649 	if (retval < 0) {
650 		/* FIXME: else read MAC from NVRAM */
651 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652 	} else {
653 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654 	}
655 	spin_unlock_irqrestore(&pdc_lock, flags);
656 
657 	return retval;
658 }
659 EXPORT_SYMBOL(pdc_lan_station_id);
660 
661 /**
662  * pdc_stable_read - Read data from Stable Storage.
663  * @staddr: Stable Storage address to access.
664  * @memaddr: The memory address where Stable Storage data shall be copied.
665  * @count: number of bytes to transfer. count is multiple of 4.
666  *
667  * This PDC call reads from the Stable Storage address supplied in staddr
668  * and copies count bytes to the memory address memaddr.
669  * The call will fail if staddr+count > PDC_STABLE size.
670  */
671 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672 {
673        int retval;
674 	unsigned long flags;
675 
676        spin_lock_irqsave(&pdc_lock, flags);
677        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678                __pa(pdc_result), count);
679        convert_to_wide(pdc_result);
680        memcpy(memaddr, pdc_result, count);
681        spin_unlock_irqrestore(&pdc_lock, flags);
682 
683        return retval;
684 }
685 EXPORT_SYMBOL(pdc_stable_read);
686 
687 /**
688  * pdc_stable_write - Write data to Stable Storage.
689  * @staddr: Stable Storage address to access.
690  * @memaddr: The memory address where Stable Storage data shall be read from.
691  * @count: number of bytes to transfer. count is multiple of 4.
692  *
693  * This PDC call reads count bytes from the supplied memaddr address,
694  * and copies count bytes to the Stable Storage address staddr.
695  * The call will fail if staddr+count > PDC_STABLE size.
696  */
697 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698 {
699        int retval;
700 	unsigned long flags;
701 
702        spin_lock_irqsave(&pdc_lock, flags);
703        memcpy(pdc_result, memaddr, count);
704        convert_to_wide(pdc_result);
705        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706                __pa(pdc_result), count);
707        spin_unlock_irqrestore(&pdc_lock, flags);
708 
709        return retval;
710 }
711 EXPORT_SYMBOL(pdc_stable_write);
712 
713 /**
714  * pdc_stable_get_size - Get Stable Storage size in bytes.
715  * @size: pointer where the size will be stored.
716  *
717  * This PDC call returns the number of bytes in the processor's Stable
718  * Storage, which is the number of contiguous bytes implemented in Stable
719  * Storage starting from staddr=0. size in an unsigned 64-bit integer
720  * which is a multiple of four.
721  */
722 int pdc_stable_get_size(unsigned long *size)
723 {
724        int retval;
725 	unsigned long flags;
726 
727        spin_lock_irqsave(&pdc_lock, flags);
728        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729        *size = pdc_result[0];
730        spin_unlock_irqrestore(&pdc_lock, flags);
731 
732        return retval;
733 }
734 EXPORT_SYMBOL(pdc_stable_get_size);
735 
736 /**
737  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738  *
739  * This PDC call is meant to be used to check the integrity of the current
740  * contents of Stable Storage.
741  */
742 int pdc_stable_verify_contents(void)
743 {
744        int retval;
745 	unsigned long flags;
746 
747        spin_lock_irqsave(&pdc_lock, flags);
748        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749        spin_unlock_irqrestore(&pdc_lock, flags);
750 
751        return retval;
752 }
753 EXPORT_SYMBOL(pdc_stable_verify_contents);
754 
755 /**
756  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757  * the validity indicator.
758  *
759  * This PDC call will erase all contents of Stable Storage. Use with care!
760  */
761 int pdc_stable_initialize(void)
762 {
763        int retval;
764 	unsigned long flags;
765 
766        spin_lock_irqsave(&pdc_lock, flags);
767        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768        spin_unlock_irqrestore(&pdc_lock, flags);
769 
770        return retval;
771 }
772 EXPORT_SYMBOL(pdc_stable_initialize);
773 
774 /**
775  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776  * @hwpath: fully bc.mod style path to the device.
777  * @initiator: the array to return the result into
778  *
779  * Get the SCSI operational parameters from PDC.
780  * Needed since HPUX never used BIOS or symbios card NVRAM.
781  * Most ncr/sym cards won't have an entry and just use whatever
782  * capabilities of the card are (eg Ultra, LVD). But there are
783  * several cases where it's useful:
784  *    o set SCSI id for Multi-initiator clusters,
785  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
786  *    o bus width exported is less than what the interface chip supports.
787  */
788 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789 {
790 	int retval;
791 	unsigned long flags;
792 
793 	spin_lock_irqsave(&pdc_lock, flags);
794 
795 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798 
799 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800 			      __pa(pdc_result), __pa(hwpath));
801 	if (retval < PDC_OK)
802 		goto out;
803 
804 	if (pdc_result[0] < 16) {
805 		initiator->host_id = pdc_result[0];
806 	} else {
807 		initiator->host_id = -1;
808 	}
809 
810 	/*
811 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
812 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813 	 */
814 	switch (pdc_result[1]) {
815 		case  1: initiator->factor = 50; break;
816 		case  2: initiator->factor = 25; break;
817 		case  5: initiator->factor = 12; break;
818 		case 25: initiator->factor = 10; break;
819 		case 20: initiator->factor = 12; break;
820 		case 40: initiator->factor = 10; break;
821 		default: initiator->factor = -1; break;
822 	}
823 
824 	if (IS_SPROCKETS()) {
825 		initiator->width = pdc_result[4];
826 		initiator->mode = pdc_result[5];
827 	} else {
828 		initiator->width = -1;
829 		initiator->mode = -1;
830 	}
831 
832  out:
833 	spin_unlock_irqrestore(&pdc_lock, flags);
834 
835 	return (retval >= PDC_OK);
836 }
837 EXPORT_SYMBOL(pdc_get_initiator);
838 
839 
840 /**
841  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842  * @num_entries: The return value.
843  * @hpa: The HPA for the device.
844  *
845  * This PDC function returns the number of entries in the specified cell's
846  * interrupt table.
847  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848  */
849 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850 {
851 	int retval;
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(&pdc_lock, flags);
855 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856 			      __pa(pdc_result), hpa);
857 	convert_to_wide(pdc_result);
858 	*num_entries = pdc_result[0];
859 	spin_unlock_irqrestore(&pdc_lock, flags);
860 
861 	return retval;
862 }
863 
864 /**
865  * pdc_pci_irt - Get the PCI interrupt routing table.
866  * @num_entries: The number of entries in the table.
867  * @hpa: The Hard Physical Address of the device.
868  * @tbl:
869  *
870  * Get the PCI interrupt routing table for the device at the given HPA.
871  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872  */
873 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874 {
875 	int retval;
876 	unsigned long flags;
877 
878 	BUG_ON((unsigned long)tbl & 0x7);
879 
880 	spin_lock_irqsave(&pdc_lock, flags);
881 	pdc_result[0] = num_entries;
882 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883 			      __pa(pdc_result), hpa, __pa(tbl));
884 	spin_unlock_irqrestore(&pdc_lock, flags);
885 
886 	return retval;
887 }
888 
889 
890 #if 0	/* UNTEST CODE - left here in case someone needs it */
891 
892 /**
893  * pdc_pci_config_read - read PCI config space.
894  * @hpa		token from PDC to indicate which PCI device
895  * @pci_addr	configuration space address to read from
896  *
897  * Read PCI Configuration space *before* linux PCI subsystem is running.
898  */
899 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900 {
901 	int retval;
902 	unsigned long flags;
903 
904 	spin_lock_irqsave(&pdc_lock, flags);
905 	pdc_result[0] = 0;
906 	pdc_result[1] = 0;
907 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909 	spin_unlock_irqrestore(&pdc_lock, flags);
910 
911 	return retval ? ~0 : (unsigned int) pdc_result[0];
912 }
913 
914 
915 /**
916  * pdc_pci_config_write - read PCI config space.
917  * @hpa		token from PDC to indicate which PCI device
918  * @pci_addr	configuration space address to write
919  * @val		value we want in the 32-bit register
920  *
921  * Write PCI Configuration space *before* linux PCI subsystem is running.
922  */
923 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924 {
925 	int retval;
926 	unsigned long flags;
927 
928 	spin_lock_irqsave(&pdc_lock, flags);
929 	pdc_result[0] = 0;
930 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931 			      __pa(pdc_result), hpa,
932 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
933 	spin_unlock_irqrestore(&pdc_lock, flags);
934 
935 	return retval;
936 }
937 #endif /* UNTESTED CODE */
938 
939 /**
940  * pdc_tod_read - Read the Time-Of-Day clock.
941  * @tod: The return buffer:
942  *
943  * Read the Time-Of-Day clock
944  */
945 int pdc_tod_read(struct pdc_tod *tod)
946 {
947         int retval;
948 	unsigned long flags;
949 
950         spin_lock_irqsave(&pdc_lock, flags);
951         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952         convert_to_wide(pdc_result);
953         memcpy(tod, pdc_result, sizeof(*tod));
954         spin_unlock_irqrestore(&pdc_lock, flags);
955 
956         return retval;
957 }
958 EXPORT_SYMBOL(pdc_tod_read);
959 
960 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
961 {
962 	int retval;
963 	unsigned long flags;
964 
965 	spin_lock_irqsave(&pdc_lock, flags);
966 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
967 	convert_to_wide(pdc_result);
968 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
969 	spin_unlock_irqrestore(&pdc_lock, flags);
970 
971 	return retval;
972 }
973 
974 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
975 		unsigned long *pdt_entries_ptr)
976 {
977 	int retval;
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&pdc_lock, flags);
981 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
982 			__pa(pdc_result2));
983 	if (retval == PDC_OK) {
984 		convert_to_wide(pdc_result);
985 		memcpy(pret, pdc_result, sizeof(*pret));
986 		convert_to_wide(pdc_result2);
987 		memcpy(pdt_entries_ptr, pdc_result2,
988 			pret->pdt_entries * sizeof(*pdt_entries_ptr));
989 	}
990 	spin_unlock_irqrestore(&pdc_lock, flags);
991 
992 	return retval;
993 }
994 
995 /**
996  * pdc_tod_set - Set the Time-Of-Day clock.
997  * @sec: The number of seconds since epoch.
998  * @usec: The number of micro seconds.
999  *
1000  * Set the Time-Of-Day clock.
1001  */
1002 int pdc_tod_set(unsigned long sec, unsigned long usec)
1003 {
1004         int retval;
1005 	unsigned long flags;
1006 
1007         spin_lock_irqsave(&pdc_lock, flags);
1008         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1009         spin_unlock_irqrestore(&pdc_lock, flags);
1010 
1011         return retval;
1012 }
1013 EXPORT_SYMBOL(pdc_tod_set);
1014 
1015 #ifdef CONFIG_64BIT
1016 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1017 		struct pdc_memory_table *tbl, unsigned long entries)
1018 {
1019 	int retval;
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&pdc_lock, flags);
1023 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1024 	convert_to_wide(pdc_result);
1025 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1026 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1027 	spin_unlock_irqrestore(&pdc_lock, flags);
1028 
1029 	return retval;
1030 }
1031 #endif /* CONFIG_64BIT */
1032 
1033 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1034  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1035  * it later. :)
1036  */
1037 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1038 {
1039         int retval;
1040 	unsigned long flags;
1041 
1042         spin_lock_irqsave(&pdc_lock, flags);
1043         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1044                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1045         spin_unlock_irqrestore(&pdc_lock, flags);
1046 
1047         return retval;
1048 }
1049 
1050 /*
1051  * pdc_do_reset - Reset the system.
1052  *
1053  * Reset the system.
1054  */
1055 int pdc_do_reset(void)
1056 {
1057         int retval;
1058 	unsigned long flags;
1059 
1060         spin_lock_irqsave(&pdc_lock, flags);
1061         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1062         spin_unlock_irqrestore(&pdc_lock, flags);
1063 
1064         return retval;
1065 }
1066 
1067 /*
1068  * pdc_soft_power_info - Enable soft power switch.
1069  * @power_reg: address of soft power register
1070  *
1071  * Return the absolute address of the soft power switch register
1072  */
1073 int __init pdc_soft_power_info(unsigned long *power_reg)
1074 {
1075 	int retval;
1076 	unsigned long flags;
1077 
1078 	*power_reg = (unsigned long) (-1);
1079 
1080 	spin_lock_irqsave(&pdc_lock, flags);
1081 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1082 	if (retval == PDC_OK) {
1083                 convert_to_wide(pdc_result);
1084                 *power_reg = f_extend(pdc_result[0]);
1085 	}
1086 	spin_unlock_irqrestore(&pdc_lock, flags);
1087 
1088 	return retval;
1089 }
1090 
1091 /*
1092  * pdc_soft_power_button - Control the soft power button behaviour
1093  * @sw_control: 0 for hardware control, 1 for software control
1094  *
1095  *
1096  * This PDC function places the soft power button under software or
1097  * hardware control.
1098  * Under software control the OS may control to when to allow to shut
1099  * down the system. Under hardware control pressing the power button
1100  * powers off the system immediately.
1101  */
1102 int pdc_soft_power_button(int sw_control)
1103 {
1104 	int retval;
1105 	unsigned long flags;
1106 
1107 	spin_lock_irqsave(&pdc_lock, flags);
1108 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1109 	spin_unlock_irqrestore(&pdc_lock, flags);
1110 
1111 	return retval;
1112 }
1113 
1114 /*
1115  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1116  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1117  * who knows what other platform firmware might do with this OS "hook".
1118  */
1119 void pdc_io_reset(void)
1120 {
1121 	unsigned long flags;
1122 
1123 	spin_lock_irqsave(&pdc_lock, flags);
1124 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1125 	spin_unlock_irqrestore(&pdc_lock, flags);
1126 }
1127 
1128 /*
1129  * pdc_io_reset_devices - Hack to Stop USB controller
1130  *
1131  * If PDC used the usb controller, the usb controller
1132  * is still running and will crash the machines during iommu
1133  * setup, because of still running DMA. This PDC call
1134  * stops the USB controller.
1135  * Normally called after calling pdc_io_reset().
1136  */
1137 void pdc_io_reset_devices(void)
1138 {
1139 	unsigned long flags;
1140 
1141 	spin_lock_irqsave(&pdc_lock, flags);
1142 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1143 	spin_unlock_irqrestore(&pdc_lock, flags);
1144 }
1145 
1146 /* locked by pdc_console_lock */
1147 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1148 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1149 
1150 /**
1151  * pdc_iodc_print - Console print using IODC.
1152  * @str: the string to output.
1153  * @count: length of str
1154  *
1155  * Note that only these special chars are architected for console IODC io:
1156  * BEL, BS, CR, and LF. Others are passed through.
1157  * Since the HP console requires CR+LF to perform a 'newline', we translate
1158  * "\n" to "\r\n".
1159  */
1160 int pdc_iodc_print(const unsigned char *str, unsigned count)
1161 {
1162 	unsigned int i;
1163 	unsigned long flags;
1164 
1165 	for (i = 0; i < count;) {
1166 		switch(str[i]) {
1167 		case '\n':
1168 			iodc_dbuf[i+0] = '\r';
1169 			iodc_dbuf[i+1] = '\n';
1170 			i += 2;
1171 			goto print;
1172 		default:
1173 			iodc_dbuf[i] = str[i];
1174 			i++;
1175 			break;
1176 		}
1177 	}
1178 
1179 print:
1180         spin_lock_irqsave(&pdc_lock, flags);
1181         real32_call(PAGE0->mem_cons.iodc_io,
1182                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1183                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1184                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1185         spin_unlock_irqrestore(&pdc_lock, flags);
1186 
1187 	return i;
1188 }
1189 
1190 /**
1191  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1192  *
1193  * Read a character (non-blocking) from the PDC console, returns -1 if
1194  * key is not present.
1195  */
1196 int pdc_iodc_getc(void)
1197 {
1198 	int ch;
1199 	int status;
1200 	unsigned long flags;
1201 
1202 	/* Bail if no console input device. */
1203 	if (!PAGE0->mem_kbd.iodc_io)
1204 		return 0;
1205 
1206 	/* wait for a keyboard (rs232)-input */
1207 	spin_lock_irqsave(&pdc_lock, flags);
1208 	real32_call(PAGE0->mem_kbd.iodc_io,
1209 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1210 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1211 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1212 
1213 	ch = *iodc_dbuf;
1214 	status = *iodc_retbuf;
1215 	spin_unlock_irqrestore(&pdc_lock, flags);
1216 
1217 	if (status == 0)
1218 	    return -1;
1219 
1220 	return ch;
1221 }
1222 
1223 int pdc_sti_call(unsigned long func, unsigned long flags,
1224                  unsigned long inptr, unsigned long outputr,
1225                  unsigned long glob_cfg)
1226 {
1227         int retval;
1228 	unsigned long irqflags;
1229 
1230         spin_lock_irqsave(&pdc_lock, irqflags);
1231         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1232         spin_unlock_irqrestore(&pdc_lock, irqflags);
1233 
1234         return retval;
1235 }
1236 EXPORT_SYMBOL(pdc_sti_call);
1237 
1238 #ifdef CONFIG_64BIT
1239 /**
1240  * pdc_pat_cell_get_number - Returns the cell number.
1241  * @cell_info: The return buffer.
1242  *
1243  * This PDC call returns the cell number of the cell from which the call
1244  * is made.
1245  */
1246 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1247 {
1248 	int retval;
1249 	unsigned long flags;
1250 
1251 	spin_lock_irqsave(&pdc_lock, flags);
1252 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1253 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1254 	spin_unlock_irqrestore(&pdc_lock, flags);
1255 
1256 	return retval;
1257 }
1258 
1259 /**
1260  * pdc_pat_cell_module - Retrieve the cell's module information.
1261  * @actcnt: The number of bytes written to mem_addr.
1262  * @ploc: The physical location.
1263  * @mod: The module index.
1264  * @view_type: The view of the address type.
1265  * @mem_addr: The return buffer.
1266  *
1267  * This PDC call returns information about each module attached to the cell
1268  * at the specified location.
1269  */
1270 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1271 			unsigned long view_type, void *mem_addr)
1272 {
1273 	int retval;
1274 	unsigned long flags;
1275 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1276 
1277 	spin_lock_irqsave(&pdc_lock, flags);
1278 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1279 			      ploc, mod, view_type, __pa(&result));
1280 	if(!retval) {
1281 		*actcnt = pdc_result[0];
1282 		memcpy(mem_addr, &result, *actcnt);
1283 	}
1284 	spin_unlock_irqrestore(&pdc_lock, flags);
1285 
1286 	return retval;
1287 }
1288 
1289 /**
1290  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1291  * @cpu_info: The return buffer.
1292  * @hpa: The Hard Physical Address of the CPU.
1293  *
1294  * Retrieve the cpu number for the cpu at the specified HPA.
1295  */
1296 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1297 {
1298 	int retval;
1299 	unsigned long flags;
1300 
1301 	spin_lock_irqsave(&pdc_lock, flags);
1302 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1303 			      __pa(&pdc_result), hpa);
1304 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1305 	spin_unlock_irqrestore(&pdc_lock, flags);
1306 
1307 	return retval;
1308 }
1309 
1310 /**
1311  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1312  * @num_entries: The return value.
1313  * @cell_num: The target cell.
1314  *
1315  * This PDC function returns the number of entries in the specified cell's
1316  * interrupt table.
1317  */
1318 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1319 {
1320 	int retval;
1321 	unsigned long flags;
1322 
1323 	spin_lock_irqsave(&pdc_lock, flags);
1324 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1325 			      __pa(pdc_result), cell_num);
1326 	*num_entries = pdc_result[0];
1327 	spin_unlock_irqrestore(&pdc_lock, flags);
1328 
1329 	return retval;
1330 }
1331 
1332 /**
1333  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1334  * @r_addr: The return buffer.
1335  * @cell_num: The target cell.
1336  *
1337  * This PDC function returns the actual interrupt table for the specified cell.
1338  */
1339 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1340 {
1341 	int retval;
1342 	unsigned long flags;
1343 
1344 	spin_lock_irqsave(&pdc_lock, flags);
1345 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1346 			      __pa(r_addr), cell_num);
1347 	spin_unlock_irqrestore(&pdc_lock, flags);
1348 
1349 	return retval;
1350 }
1351 
1352 /**
1353  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1354  * @actlen: The return buffer.
1355  * @mem_addr: Pointer to the memory buffer.
1356  * @count: The number of bytes to read from the buffer.
1357  * @offset: The offset with respect to the beginning of the buffer.
1358  *
1359  */
1360 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1361 			    unsigned long count, unsigned long offset)
1362 {
1363 	int retval;
1364 	unsigned long flags;
1365 
1366 	spin_lock_irqsave(&pdc_lock, flags);
1367 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1368 			      __pa(pdc_result2), count, offset);
1369 	*actual_len = pdc_result[0];
1370 	memcpy(mem_addr, pdc_result2, *actual_len);
1371 	spin_unlock_irqrestore(&pdc_lock, flags);
1372 
1373 	return retval;
1374 }
1375 
1376 /**
1377  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1378  * @pci_addr: PCI configuration space address for which the read request is being made.
1379  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1380  * @mem_addr: Pointer to return memory buffer.
1381  *
1382  */
1383 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1384 {
1385 	int retval;
1386 	unsigned long flags;
1387 
1388 	spin_lock_irqsave(&pdc_lock, flags);
1389 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1390 					__pa(pdc_result), pci_addr, pci_size);
1391 	switch(pci_size) {
1392 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1393 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1394 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1395 	}
1396 	spin_unlock_irqrestore(&pdc_lock, flags);
1397 
1398 	return retval;
1399 }
1400 
1401 /**
1402  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1403  * @pci_addr: PCI configuration space address for which the write  request is being made.
1404  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1405  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1406  *         written to PCI Config space.
1407  *
1408  */
1409 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1410 {
1411 	int retval;
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&pdc_lock, flags);
1415 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1416 				pci_addr, pci_size, val);
1417 	spin_unlock_irqrestore(&pdc_lock, flags);
1418 
1419 	return retval;
1420 }
1421 
1422 /**
1423  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1424  * @rinfo: memory pdt information
1425  *
1426  */
1427 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1428 {
1429 	int retval;
1430 	unsigned long flags;
1431 
1432 	spin_lock_irqsave(&pdc_lock, flags);
1433 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1434 			__pa(&pdc_result));
1435 	if (retval == PDC_OK)
1436 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1437 	spin_unlock_irqrestore(&pdc_lock, flags);
1438 
1439 	return retval;
1440 }
1441 
1442 /**
1443  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1444  * @pret: array of PDT entries
1445  * @pdt_entries_ptr: ptr to hold number of PDT entries
1446  * @max_entries: maximum number of entries to be read
1447  *
1448  */
1449 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1450 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1451 {
1452 	int retval;
1453 	unsigned long flags, entries;
1454 
1455 	spin_lock_irqsave(&pdc_lock, flags);
1456 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1457 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1458 			__pa(&pdc_result), parisc_cell_num, __pa(&pdc_result2));
1459 
1460 	if (retval == PDC_OK) {
1461 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1462 		entries = min(pdc_result[0], max_entries);
1463 		pret->pdt_entries = entries;
1464 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1465 		memcpy(pdt_entries_ptr, &pdc_result2, pret->actual_count_bytes);
1466 	}
1467 
1468 	spin_unlock_irqrestore(&pdc_lock, flags);
1469 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1470 
1471 	return retval;
1472 }
1473 /**
1474  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1475  * @pret: array of PDT entries
1476  * @pdt_entries_ptr: ptr to hold number of PDT entries
1477  *
1478  */
1479 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1480 		unsigned long *pdt_entries_ptr, unsigned long count,
1481 		unsigned long offset)
1482 {
1483 	int retval;
1484 	unsigned long flags;
1485 
1486 	spin_lock_irqsave(&pdc_lock, flags);
1487 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1488 		__pa(&pret), __pa(pdt_entries_ptr),
1489 		count, offset);
1490 	spin_unlock_irqrestore(&pdc_lock, flags);
1491 
1492 	return retval;
1493 }
1494 #endif /* CONFIG_64BIT */
1495 
1496 
1497 /***************** 32-bit real-mode calls ***********/
1498 /* The struct below is used
1499  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1500  * real32_call_asm() then uses this stack in narrow real mode
1501  */
1502 
1503 struct narrow_stack {
1504 	/* use int, not long which is 64 bits */
1505 	unsigned int arg13;
1506 	unsigned int arg12;
1507 	unsigned int arg11;
1508 	unsigned int arg10;
1509 	unsigned int arg9;
1510 	unsigned int arg8;
1511 	unsigned int arg7;
1512 	unsigned int arg6;
1513 	unsigned int arg5;
1514 	unsigned int arg4;
1515 	unsigned int arg3;
1516 	unsigned int arg2;
1517 	unsigned int arg1;
1518 	unsigned int arg0;
1519 	unsigned int frame_marker[8];
1520 	unsigned int sp;
1521 	/* in reality, there's nearly 8k of stack after this */
1522 };
1523 
1524 long real32_call(unsigned long fn, ...)
1525 {
1526 	va_list args;
1527 	extern struct narrow_stack real_stack;
1528 	extern unsigned long real32_call_asm(unsigned int *,
1529 					     unsigned int *,
1530 					     unsigned int);
1531 
1532 	va_start(args, fn);
1533 	real_stack.arg0 = va_arg(args, unsigned int);
1534 	real_stack.arg1 = va_arg(args, unsigned int);
1535 	real_stack.arg2 = va_arg(args, unsigned int);
1536 	real_stack.arg3 = va_arg(args, unsigned int);
1537 	real_stack.arg4 = va_arg(args, unsigned int);
1538 	real_stack.arg5 = va_arg(args, unsigned int);
1539 	real_stack.arg6 = va_arg(args, unsigned int);
1540 	real_stack.arg7 = va_arg(args, unsigned int);
1541 	real_stack.arg8 = va_arg(args, unsigned int);
1542 	real_stack.arg9 = va_arg(args, unsigned int);
1543 	real_stack.arg10 = va_arg(args, unsigned int);
1544 	real_stack.arg11 = va_arg(args, unsigned int);
1545 	real_stack.arg12 = va_arg(args, unsigned int);
1546 	real_stack.arg13 = va_arg(args, unsigned int);
1547 	va_end(args);
1548 
1549 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1550 }
1551 
1552 #ifdef CONFIG_64BIT
1553 /***************** 64-bit real-mode calls ***********/
1554 
1555 struct wide_stack {
1556 	unsigned long arg0;
1557 	unsigned long arg1;
1558 	unsigned long arg2;
1559 	unsigned long arg3;
1560 	unsigned long arg4;
1561 	unsigned long arg5;
1562 	unsigned long arg6;
1563 	unsigned long arg7;
1564 	unsigned long arg8;
1565 	unsigned long arg9;
1566 	unsigned long arg10;
1567 	unsigned long arg11;
1568 	unsigned long arg12;
1569 	unsigned long arg13;
1570 	unsigned long frame_marker[2];	/* rp, previous sp */
1571 	unsigned long sp;
1572 	/* in reality, there's nearly 8k of stack after this */
1573 };
1574 
1575 long real64_call(unsigned long fn, ...)
1576 {
1577 	va_list args;
1578 	extern struct wide_stack real64_stack;
1579 	extern unsigned long real64_call_asm(unsigned long *,
1580 					     unsigned long *,
1581 					     unsigned long);
1582 
1583 	va_start(args, fn);
1584 	real64_stack.arg0 = va_arg(args, unsigned long);
1585 	real64_stack.arg1 = va_arg(args, unsigned long);
1586 	real64_stack.arg2 = va_arg(args, unsigned long);
1587 	real64_stack.arg3 = va_arg(args, unsigned long);
1588 	real64_stack.arg4 = va_arg(args, unsigned long);
1589 	real64_stack.arg5 = va_arg(args, unsigned long);
1590 	real64_stack.arg6 = va_arg(args, unsigned long);
1591 	real64_stack.arg7 = va_arg(args, unsigned long);
1592 	real64_stack.arg8 = va_arg(args, unsigned long);
1593 	real64_stack.arg9 = va_arg(args, unsigned long);
1594 	real64_stack.arg10 = va_arg(args, unsigned long);
1595 	real64_stack.arg11 = va_arg(args, unsigned long);
1596 	real64_stack.arg12 = va_arg(args, unsigned long);
1597 	real64_stack.arg13 = va_arg(args, unsigned long);
1598 	va_end(args);
1599 
1600 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1601 }
1602 
1603 #endif /* CONFIG_64BIT */
1604 
1605