xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>	/* for boot_cpu_data */
71 
72 #if defined(BOOTLOADER)
73 # undef  spin_lock_irqsave
74 # define spin_lock_irqsave(a, b) { b = 1; }
75 # undef  spin_unlock_irqrestore
76 # define spin_unlock_irqrestore(a, b)
77 #else
78 static DEFINE_SPINLOCK(pdc_lock);
79 #endif
80 
81 extern unsigned long pdc_result[NUM_PDC_RESULT];
82 extern unsigned long pdc_result2[NUM_PDC_RESULT];
83 
84 #ifdef CONFIG_64BIT
85 #define WIDE_FIRMWARE 0x1
86 #define NARROW_FIRMWARE 0x2
87 
88 /* Firmware needs to be initially set to narrow to determine the
89  * actual firmware width. */
90 int parisc_narrow_firmware __ro_after_init = 1;
91 #endif
92 
93 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
94  * and MEM_PDC calls are always the same width as the OS.
95  * Some PAT boxes may have 64-bit IODC I/O.
96  *
97  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
98  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
99  * This allowed wide kernels to run on Cxxx boxes.
100  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
101  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
102  */
103 
104 #ifdef CONFIG_64BIT
105 long real64_call(unsigned long function, ...);
106 #endif
107 long real32_call(unsigned long function, ...);
108 
109 #ifdef CONFIG_64BIT
110 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
111 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
112 #else
113 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
114 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
115 #endif
116 
117 
118 /**
119  * f_extend - Convert PDC addresses to kernel addresses.
120  * @address: Address returned from PDC.
121  *
122  * This function is used to convert PDC addresses into kernel addresses
123  * when the PDC address size and kernel address size are different.
124  */
125 static unsigned long f_extend(unsigned long address)
126 {
127 #ifdef CONFIG_64BIT
128 	if(unlikely(parisc_narrow_firmware)) {
129 		if((address & 0xff000000) == 0xf0000000)
130 			return 0xf0f0f0f000000000UL | (u32)address;
131 
132 		if((address & 0xf0000000) == 0xf0000000)
133 			return 0xffffffff00000000UL | (u32)address;
134 	}
135 #endif
136 	return address;
137 }
138 
139 /**
140  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
141  * @address: The return buffer from PDC.
142  *
143  * This function is used to convert the return buffer addresses retrieved from PDC
144  * into kernel addresses when the PDC address size and kernel address size are
145  * different.
146  */
147 static void convert_to_wide(unsigned long *addr)
148 {
149 #ifdef CONFIG_64BIT
150 	int i;
151 	unsigned int *p = (unsigned int *)addr;
152 
153 	if (unlikely(parisc_narrow_firmware)) {
154 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
155 			addr[i] = p[i];
156 	}
157 #endif
158 }
159 
160 #ifdef CONFIG_64BIT
161 void set_firmware_width_unlocked(void)
162 {
163 	int ret;
164 
165 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
166 		__pa(pdc_result), 0);
167 	convert_to_wide(pdc_result);
168 	if (pdc_result[0] != NARROW_FIRMWARE)
169 		parisc_narrow_firmware = 0;
170 }
171 
172 /**
173  * set_firmware_width - Determine if the firmware is wide or narrow.
174  *
175  * This function must be called before any pdc_* function that uses the
176  * convert_to_wide function.
177  */
178 void set_firmware_width(void)
179 {
180 	unsigned long flags;
181 	spin_lock_irqsave(&pdc_lock, flags);
182 	set_firmware_width_unlocked();
183 	spin_unlock_irqrestore(&pdc_lock, flags);
184 }
185 #else
186 void set_firmware_width_unlocked(void)
187 {
188 	return;
189 }
190 
191 void set_firmware_width(void)
192 {
193 	return;
194 }
195 #endif /*CONFIG_64BIT*/
196 
197 
198 #if !defined(BOOTLOADER)
199 /**
200  * pdc_emergency_unlock - Unlock the linux pdc lock
201  *
202  * This call unlocks the linux pdc lock in case we need some PDC functions
203  * (like pdc_add_valid) during kernel stack dump.
204  */
205 void pdc_emergency_unlock(void)
206 {
207  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
208         if (spin_is_locked(&pdc_lock))
209 		spin_unlock(&pdc_lock);
210 }
211 
212 
213 /**
214  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
215  * @address: Address to be verified.
216  *
217  * This PDC call attempts to read from the specified address and verifies
218  * if the address is valid.
219  *
220  * The return value is PDC_OK (0) in case accessing this address is valid.
221  */
222 int pdc_add_valid(unsigned long address)
223 {
224         int retval;
225 	unsigned long flags;
226 
227         spin_lock_irqsave(&pdc_lock, flags);
228         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
229         spin_unlock_irqrestore(&pdc_lock, flags);
230 
231         return retval;
232 }
233 EXPORT_SYMBOL(pdc_add_valid);
234 
235 /**
236  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
237  * @instr: Pointer to variable which will get instruction opcode.
238  *
239  * The return value is PDC_OK (0) in case call succeeded.
240  */
241 int __init pdc_instr(unsigned int *instr)
242 {
243 	int retval;
244 	unsigned long flags;
245 
246 	spin_lock_irqsave(&pdc_lock, flags);
247 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
248 	convert_to_wide(pdc_result);
249 	*instr = pdc_result[0];
250 	spin_unlock_irqrestore(&pdc_lock, flags);
251 
252 	return retval;
253 }
254 
255 /**
256  * pdc_chassis_info - Return chassis information.
257  * @result: The return buffer.
258  * @chassis_info: The memory buffer address.
259  * @len: The size of the memory buffer address.
260  *
261  * An HVERSION dependent call for returning the chassis information.
262  */
263 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
264 {
265         int retval;
266 	unsigned long flags;
267 
268         spin_lock_irqsave(&pdc_lock, flags);
269         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
270         memcpy(&pdc_result2, led_info, len);
271         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
272                               __pa(pdc_result), __pa(pdc_result2), len);
273         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
274         memcpy(led_info, pdc_result2, len);
275         spin_unlock_irqrestore(&pdc_lock, flags);
276 
277         return retval;
278 }
279 
280 /**
281  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
282  * @retval: -1 on error, 0 on success. Other value are PDC errors
283  *
284  * Must be correctly formatted or expect system crash
285  */
286 #ifdef CONFIG_64BIT
287 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
288 {
289 	int retval = 0;
290 	unsigned long flags;
291 
292 	if (!is_pdc_pat())
293 		return -1;
294 
295 	spin_lock_irqsave(&pdc_lock, flags);
296 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
297 	spin_unlock_irqrestore(&pdc_lock, flags);
298 
299 	return retval;
300 }
301 #endif
302 
303 /**
304  * pdc_chassis_disp - Updates chassis code
305  * @retval: -1 on error, 0 on success
306  */
307 int pdc_chassis_disp(unsigned long disp)
308 {
309 	int retval = 0;
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&pdc_lock, flags);
313 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
314 	spin_unlock_irqrestore(&pdc_lock, flags);
315 
316 	return retval;
317 }
318 
319 /**
320  * pdc_chassis_warn - Fetches chassis warnings
321  * @retval: -1 on error, 0 on success
322  */
323 int pdc_chassis_warn(unsigned long *warn)
324 {
325 	int retval = 0;
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(&pdc_lock, flags);
329 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
330 	*warn = pdc_result[0];
331 	spin_unlock_irqrestore(&pdc_lock, flags);
332 
333 	return retval;
334 }
335 
336 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
337 {
338 	int ret;
339 
340 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
341 	convert_to_wide(pdc_result);
342 	pdc_coproc_info->ccr_functional = pdc_result[0];
343 	pdc_coproc_info->ccr_present = pdc_result[1];
344 	pdc_coproc_info->revision = pdc_result[17];
345 	pdc_coproc_info->model = pdc_result[18];
346 
347 	return ret;
348 }
349 
350 /**
351  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
352  * @pdc_coproc_info: Return buffer address.
353  *
354  * This PDC call returns the presence and status of all the coprocessors
355  * attached to the processor.
356  */
357 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
358 {
359 	int ret;
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(&pdc_lock, flags);
363 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
364 	spin_unlock_irqrestore(&pdc_lock, flags);
365 
366 	return ret;
367 }
368 
369 /**
370  * pdc_iodc_read - Read data from the modules IODC.
371  * @actcnt: The actual number of bytes.
372  * @hpa: The HPA of the module for the iodc read.
373  * @index: The iodc entry point.
374  * @iodc_data: A buffer memory for the iodc options.
375  * @iodc_data_size: Size of the memory buffer.
376  *
377  * This PDC call reads from the IODC of the module specified by the hpa
378  * argument.
379  */
380 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
381 		  void *iodc_data, unsigned int iodc_data_size)
382 {
383 	int retval;
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(&pdc_lock, flags);
387 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
388 			      index, __pa(pdc_result2), iodc_data_size);
389 	convert_to_wide(pdc_result);
390 	*actcnt = pdc_result[0];
391 	memcpy(iodc_data, pdc_result2, iodc_data_size);
392 	spin_unlock_irqrestore(&pdc_lock, flags);
393 
394 	return retval;
395 }
396 EXPORT_SYMBOL(pdc_iodc_read);
397 
398 /**
399  * pdc_system_map_find_mods - Locate unarchitected modules.
400  * @pdc_mod_info: Return buffer address.
401  * @mod_path: pointer to dev path structure.
402  * @mod_index: fixed address module index.
403  *
404  * To locate and identify modules which reside at fixed I/O addresses, which
405  * do not self-identify via architected bus walks.
406  */
407 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
408 			     struct pdc_module_path *mod_path, long mod_index)
409 {
410 	int retval;
411 	unsigned long flags;
412 
413 	spin_lock_irqsave(&pdc_lock, flags);
414 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
415 			      __pa(pdc_result2), mod_index);
416 	convert_to_wide(pdc_result);
417 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
418 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
419 	spin_unlock_irqrestore(&pdc_lock, flags);
420 
421 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
422 	return retval;
423 }
424 
425 /**
426  * pdc_system_map_find_addrs - Retrieve additional address ranges.
427  * @pdc_addr_info: Return buffer address.
428  * @mod_index: Fixed address module index.
429  * @addr_index: Address range index.
430  *
431  * Retrieve additional information about subsequent address ranges for modules
432  * with multiple address ranges.
433  */
434 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
435 			      long mod_index, long addr_index)
436 {
437 	int retval;
438 	unsigned long flags;
439 
440 	spin_lock_irqsave(&pdc_lock, flags);
441 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
442 			      mod_index, addr_index);
443 	convert_to_wide(pdc_result);
444 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
445 	spin_unlock_irqrestore(&pdc_lock, flags);
446 
447 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
448 	return retval;
449 }
450 
451 /**
452  * pdc_model_info - Return model information about the processor.
453  * @model: The return buffer.
454  *
455  * Returns the version numbers, identifiers, and capabilities from the processor module.
456  */
457 int pdc_model_info(struct pdc_model *model)
458 {
459 	int retval;
460 	unsigned long flags;
461 
462 	spin_lock_irqsave(&pdc_lock, flags);
463 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
464 	convert_to_wide(pdc_result);
465 	memcpy(model, pdc_result, sizeof(*model));
466 	spin_unlock_irqrestore(&pdc_lock, flags);
467 
468 	return retval;
469 }
470 
471 /**
472  * pdc_model_sysmodel - Get the system model name.
473  * @name: A char array of at least 81 characters.
474  *
475  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
476  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
477  * on HP/UX.
478  */
479 int pdc_model_sysmodel(char *name)
480 {
481         int retval;
482 	unsigned long flags;
483 
484         spin_lock_irqsave(&pdc_lock, flags);
485         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
486                               OS_ID_HPUX, __pa(name));
487         convert_to_wide(pdc_result);
488 
489         if (retval == PDC_OK) {
490                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
491         } else {
492                 name[0] = 0;
493         }
494         spin_unlock_irqrestore(&pdc_lock, flags);
495 
496         return retval;
497 }
498 
499 /**
500  * pdc_model_versions - Identify the version number of each processor.
501  * @cpu_id: The return buffer.
502  * @id: The id of the processor to check.
503  *
504  * Returns the version number for each processor component.
505  *
506  * This comment was here before, but I do not know what it means :( -RB
507  * id: 0 = cpu revision, 1 = boot-rom-version
508  */
509 int pdc_model_versions(unsigned long *versions, int id)
510 {
511         int retval;
512 	unsigned long flags;
513 
514         spin_lock_irqsave(&pdc_lock, flags);
515         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
516         convert_to_wide(pdc_result);
517         *versions = pdc_result[0];
518         spin_unlock_irqrestore(&pdc_lock, flags);
519 
520         return retval;
521 }
522 
523 /**
524  * pdc_model_cpuid - Returns the CPU_ID.
525  * @cpu_id: The return buffer.
526  *
527  * Returns the CPU_ID value which uniquely identifies the cpu portion of
528  * the processor module.
529  */
530 int pdc_model_cpuid(unsigned long *cpu_id)
531 {
532         int retval;
533 	unsigned long flags;
534 
535         spin_lock_irqsave(&pdc_lock, flags);
536         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
537         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
538         convert_to_wide(pdc_result);
539         *cpu_id = pdc_result[0];
540         spin_unlock_irqrestore(&pdc_lock, flags);
541 
542         return retval;
543 }
544 
545 /**
546  * pdc_model_capabilities - Returns the platform capabilities.
547  * @capabilities: The return buffer.
548  *
549  * Returns information about platform support for 32- and/or 64-bit
550  * OSes, IO-PDIR coherency, and virtual aliasing.
551  */
552 int pdc_model_capabilities(unsigned long *capabilities)
553 {
554         int retval;
555 	unsigned long flags;
556 
557         spin_lock_irqsave(&pdc_lock, flags);
558         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
559         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
560         convert_to_wide(pdc_result);
561         if (retval == PDC_OK) {
562                 *capabilities = pdc_result[0];
563         } else {
564                 *capabilities = PDC_MODEL_OS32;
565         }
566         spin_unlock_irqrestore(&pdc_lock, flags);
567 
568         return retval;
569 }
570 
571 /**
572  * pdc_model_platform_info - Returns machine product and serial number.
573  * @orig_prod_num: Return buffer for original product number.
574  * @current_prod_num: Return buffer for current product number.
575  * @serial_no: Return buffer for serial number.
576  *
577  * Returns strings containing the original and current product numbers and the
578  * serial number of the system.
579  */
580 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
581 		char *serial_no)
582 {
583 	int retval;
584 	unsigned long flags;
585 
586 	spin_lock_irqsave(&pdc_lock, flags);
587 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
588 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
589 	convert_to_wide(pdc_result);
590 	spin_unlock_irqrestore(&pdc_lock, flags);
591 
592 	return retval;
593 }
594 
595 /**
596  * pdc_cache_info - Return cache and TLB information.
597  * @cache_info: The return buffer.
598  *
599  * Returns information about the processor's cache and TLB.
600  */
601 int pdc_cache_info(struct pdc_cache_info *cache_info)
602 {
603         int retval;
604 	unsigned long flags;
605 
606         spin_lock_irqsave(&pdc_lock, flags);
607         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
608         convert_to_wide(pdc_result);
609         memcpy(cache_info, pdc_result, sizeof(*cache_info));
610         spin_unlock_irqrestore(&pdc_lock, flags);
611 
612         return retval;
613 }
614 
615 /**
616  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
617  * @space_bits: Should be 0, if not, bad mojo!
618  *
619  * Returns information about Space ID hashing.
620  */
621 int pdc_spaceid_bits(unsigned long *space_bits)
622 {
623 	int retval;
624 	unsigned long flags;
625 
626 	spin_lock_irqsave(&pdc_lock, flags);
627 	pdc_result[0] = 0;
628 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
629 	convert_to_wide(pdc_result);
630 	*space_bits = pdc_result[0];
631 	spin_unlock_irqrestore(&pdc_lock, flags);
632 
633 	return retval;
634 }
635 
636 #ifndef CONFIG_PA20
637 /**
638  * pdc_btlb_info - Return block TLB information.
639  * @btlb: The return buffer.
640  *
641  * Returns information about the hardware Block TLB.
642  */
643 int pdc_btlb_info(struct pdc_btlb_info *btlb)
644 {
645         int retval;
646 	unsigned long flags;
647 
648         spin_lock_irqsave(&pdc_lock, flags);
649         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
650         memcpy(btlb, pdc_result, sizeof(*btlb));
651         spin_unlock_irqrestore(&pdc_lock, flags);
652 
653         if(retval < 0) {
654                 btlb->max_size = 0;
655         }
656         return retval;
657 }
658 
659 /**
660  * pdc_mem_map_hpa - Find fixed module information.
661  * @address: The return buffer
662  * @mod_path: pointer to dev path structure.
663  *
664  * This call was developed for S700 workstations to allow the kernel to find
665  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
666  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
667  * call.
668  *
669  * This call is supported by all existing S700 workstations (up to  Gecko).
670  */
671 int pdc_mem_map_hpa(struct pdc_memory_map *address,
672 		struct pdc_module_path *mod_path)
673 {
674         int retval;
675 	unsigned long flags;
676 
677         spin_lock_irqsave(&pdc_lock, flags);
678         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
679         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
680 				__pa(pdc_result2));
681         memcpy(address, pdc_result, sizeof(*address));
682         spin_unlock_irqrestore(&pdc_lock, flags);
683 
684         return retval;
685 }
686 #endif	/* !CONFIG_PA20 */
687 
688 /**
689  * pdc_lan_station_id - Get the LAN address.
690  * @lan_addr: The return buffer.
691  * @hpa: The network device HPA.
692  *
693  * Get the LAN station address when it is not directly available from the LAN hardware.
694  */
695 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
696 {
697 	int retval;
698 	unsigned long flags;
699 
700 	spin_lock_irqsave(&pdc_lock, flags);
701 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
702 			__pa(pdc_result), hpa);
703 	if (retval < 0) {
704 		/* FIXME: else read MAC from NVRAM */
705 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
706 	} else {
707 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
708 	}
709 	spin_unlock_irqrestore(&pdc_lock, flags);
710 
711 	return retval;
712 }
713 EXPORT_SYMBOL(pdc_lan_station_id);
714 
715 /**
716  * pdc_stable_read - Read data from Stable Storage.
717  * @staddr: Stable Storage address to access.
718  * @memaddr: The memory address where Stable Storage data shall be copied.
719  * @count: number of bytes to transfer. count is multiple of 4.
720  *
721  * This PDC call reads from the Stable Storage address supplied in staddr
722  * and copies count bytes to the memory address memaddr.
723  * The call will fail if staddr+count > PDC_STABLE size.
724  */
725 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
726 {
727        int retval;
728 	unsigned long flags;
729 
730        spin_lock_irqsave(&pdc_lock, flags);
731        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
732                __pa(pdc_result), count);
733        convert_to_wide(pdc_result);
734        memcpy(memaddr, pdc_result, count);
735        spin_unlock_irqrestore(&pdc_lock, flags);
736 
737        return retval;
738 }
739 EXPORT_SYMBOL(pdc_stable_read);
740 
741 /**
742  * pdc_stable_write - Write data to Stable Storage.
743  * @staddr: Stable Storage address to access.
744  * @memaddr: The memory address where Stable Storage data shall be read from.
745  * @count: number of bytes to transfer. count is multiple of 4.
746  *
747  * This PDC call reads count bytes from the supplied memaddr address,
748  * and copies count bytes to the Stable Storage address staddr.
749  * The call will fail if staddr+count > PDC_STABLE size.
750  */
751 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
752 {
753        int retval;
754 	unsigned long flags;
755 
756        spin_lock_irqsave(&pdc_lock, flags);
757        memcpy(pdc_result, memaddr, count);
758        convert_to_wide(pdc_result);
759        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
760                __pa(pdc_result), count);
761        spin_unlock_irqrestore(&pdc_lock, flags);
762 
763        return retval;
764 }
765 EXPORT_SYMBOL(pdc_stable_write);
766 
767 /**
768  * pdc_stable_get_size - Get Stable Storage size in bytes.
769  * @size: pointer where the size will be stored.
770  *
771  * This PDC call returns the number of bytes in the processor's Stable
772  * Storage, which is the number of contiguous bytes implemented in Stable
773  * Storage starting from staddr=0. size in an unsigned 64-bit integer
774  * which is a multiple of four.
775  */
776 int pdc_stable_get_size(unsigned long *size)
777 {
778        int retval;
779 	unsigned long flags;
780 
781        spin_lock_irqsave(&pdc_lock, flags);
782        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
783        *size = pdc_result[0];
784        spin_unlock_irqrestore(&pdc_lock, flags);
785 
786        return retval;
787 }
788 EXPORT_SYMBOL(pdc_stable_get_size);
789 
790 /**
791  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
792  *
793  * This PDC call is meant to be used to check the integrity of the current
794  * contents of Stable Storage.
795  */
796 int pdc_stable_verify_contents(void)
797 {
798        int retval;
799 	unsigned long flags;
800 
801        spin_lock_irqsave(&pdc_lock, flags);
802        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
803        spin_unlock_irqrestore(&pdc_lock, flags);
804 
805        return retval;
806 }
807 EXPORT_SYMBOL(pdc_stable_verify_contents);
808 
809 /**
810  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
811  * the validity indicator.
812  *
813  * This PDC call will erase all contents of Stable Storage. Use with care!
814  */
815 int pdc_stable_initialize(void)
816 {
817        int retval;
818 	unsigned long flags;
819 
820        spin_lock_irqsave(&pdc_lock, flags);
821        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
822        spin_unlock_irqrestore(&pdc_lock, flags);
823 
824        return retval;
825 }
826 EXPORT_SYMBOL(pdc_stable_initialize);
827 
828 /**
829  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
830  * @hwpath: fully bc.mod style path to the device.
831  * @initiator: the array to return the result into
832  *
833  * Get the SCSI operational parameters from PDC.
834  * Needed since HPUX never used BIOS or symbios card NVRAM.
835  * Most ncr/sym cards won't have an entry and just use whatever
836  * capabilities of the card are (eg Ultra, LVD). But there are
837  * several cases where it's useful:
838  *    o set SCSI id for Multi-initiator clusters,
839  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
840  *    o bus width exported is less than what the interface chip supports.
841  */
842 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
843 {
844 	int retval;
845 	unsigned long flags;
846 
847 	spin_lock_irqsave(&pdc_lock, flags);
848 
849 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
850 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
851 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
852 
853 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
854 			      __pa(pdc_result), __pa(hwpath));
855 	if (retval < PDC_OK)
856 		goto out;
857 
858 	if (pdc_result[0] < 16) {
859 		initiator->host_id = pdc_result[0];
860 	} else {
861 		initiator->host_id = -1;
862 	}
863 
864 	/*
865 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
866 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
867 	 */
868 	switch (pdc_result[1]) {
869 		case  1: initiator->factor = 50; break;
870 		case  2: initiator->factor = 25; break;
871 		case  5: initiator->factor = 12; break;
872 		case 25: initiator->factor = 10; break;
873 		case 20: initiator->factor = 12; break;
874 		case 40: initiator->factor = 10; break;
875 		default: initiator->factor = -1; break;
876 	}
877 
878 	if (IS_SPROCKETS()) {
879 		initiator->width = pdc_result[4];
880 		initiator->mode = pdc_result[5];
881 	} else {
882 		initiator->width = -1;
883 		initiator->mode = -1;
884 	}
885 
886  out:
887 	spin_unlock_irqrestore(&pdc_lock, flags);
888 
889 	return (retval >= PDC_OK);
890 }
891 EXPORT_SYMBOL(pdc_get_initiator);
892 
893 
894 /**
895  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
896  * @num_entries: The return value.
897  * @hpa: The HPA for the device.
898  *
899  * This PDC function returns the number of entries in the specified cell's
900  * interrupt table.
901  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
902  */
903 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
904 {
905 	int retval;
906 	unsigned long flags;
907 
908 	spin_lock_irqsave(&pdc_lock, flags);
909 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
910 			      __pa(pdc_result), hpa);
911 	convert_to_wide(pdc_result);
912 	*num_entries = pdc_result[0];
913 	spin_unlock_irqrestore(&pdc_lock, flags);
914 
915 	return retval;
916 }
917 
918 /**
919  * pdc_pci_irt - Get the PCI interrupt routing table.
920  * @num_entries: The number of entries in the table.
921  * @hpa: The Hard Physical Address of the device.
922  * @tbl:
923  *
924  * Get the PCI interrupt routing table for the device at the given HPA.
925  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
926  */
927 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
928 {
929 	int retval;
930 	unsigned long flags;
931 
932 	BUG_ON((unsigned long)tbl & 0x7);
933 
934 	spin_lock_irqsave(&pdc_lock, flags);
935 	pdc_result[0] = num_entries;
936 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
937 			      __pa(pdc_result), hpa, __pa(tbl));
938 	spin_unlock_irqrestore(&pdc_lock, flags);
939 
940 	return retval;
941 }
942 
943 
944 #if 0	/* UNTEST CODE - left here in case someone needs it */
945 
946 /**
947  * pdc_pci_config_read - read PCI config space.
948  * @hpa		token from PDC to indicate which PCI device
949  * @pci_addr	configuration space address to read from
950  *
951  * Read PCI Configuration space *before* linux PCI subsystem is running.
952  */
953 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
954 {
955 	int retval;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&pdc_lock, flags);
959 	pdc_result[0] = 0;
960 	pdc_result[1] = 0;
961 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
962 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
963 	spin_unlock_irqrestore(&pdc_lock, flags);
964 
965 	return retval ? ~0 : (unsigned int) pdc_result[0];
966 }
967 
968 
969 /**
970  * pdc_pci_config_write - read PCI config space.
971  * @hpa		token from PDC to indicate which PCI device
972  * @pci_addr	configuration space address to write
973  * @val		value we want in the 32-bit register
974  *
975  * Write PCI Configuration space *before* linux PCI subsystem is running.
976  */
977 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
978 {
979 	int retval;
980 	unsigned long flags;
981 
982 	spin_lock_irqsave(&pdc_lock, flags);
983 	pdc_result[0] = 0;
984 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
985 			      __pa(pdc_result), hpa,
986 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
987 	spin_unlock_irqrestore(&pdc_lock, flags);
988 
989 	return retval;
990 }
991 #endif /* UNTESTED CODE */
992 
993 /**
994  * pdc_tod_read - Read the Time-Of-Day clock.
995  * @tod: The return buffer:
996  *
997  * Read the Time-Of-Day clock
998  */
999 int pdc_tod_read(struct pdc_tod *tod)
1000 {
1001         int retval;
1002 	unsigned long flags;
1003 
1004         spin_lock_irqsave(&pdc_lock, flags);
1005         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1006         convert_to_wide(pdc_result);
1007         memcpy(tod, pdc_result, sizeof(*tod));
1008         spin_unlock_irqrestore(&pdc_lock, flags);
1009 
1010         return retval;
1011 }
1012 EXPORT_SYMBOL(pdc_tod_read);
1013 
1014 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1015 {
1016 	int retval;
1017 	unsigned long flags;
1018 
1019 	spin_lock_irqsave(&pdc_lock, flags);
1020 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1021 	convert_to_wide(pdc_result);
1022 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1023 	spin_unlock_irqrestore(&pdc_lock, flags);
1024 
1025 	return retval;
1026 }
1027 
1028 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1029 		unsigned long *pdt_entries_ptr)
1030 {
1031 	int retval;
1032 	unsigned long flags;
1033 
1034 	spin_lock_irqsave(&pdc_lock, flags);
1035 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1036 			__pa(pdt_entries_ptr));
1037 	if (retval == PDC_OK) {
1038 		convert_to_wide(pdc_result);
1039 		memcpy(pret, pdc_result, sizeof(*pret));
1040 	}
1041 	spin_unlock_irqrestore(&pdc_lock, flags);
1042 
1043 #ifdef CONFIG_64BIT
1044 	/*
1045 	 * 64-bit kernels should not call this PDT function in narrow mode.
1046 	 * The pdt_entries_ptr array above will now contain 32-bit values
1047 	 */
1048 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1049 		return PDC_ERROR;
1050 #endif
1051 
1052 	return retval;
1053 }
1054 
1055 /**
1056  * pdc_tod_set - Set the Time-Of-Day clock.
1057  * @sec: The number of seconds since epoch.
1058  * @usec: The number of micro seconds.
1059  *
1060  * Set the Time-Of-Day clock.
1061  */
1062 int pdc_tod_set(unsigned long sec, unsigned long usec)
1063 {
1064         int retval;
1065 	unsigned long flags;
1066 
1067         spin_lock_irqsave(&pdc_lock, flags);
1068         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1069         spin_unlock_irqrestore(&pdc_lock, flags);
1070 
1071         return retval;
1072 }
1073 EXPORT_SYMBOL(pdc_tod_set);
1074 
1075 #ifdef CONFIG_64BIT
1076 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1077 		struct pdc_memory_table *tbl, unsigned long entries)
1078 {
1079 	int retval;
1080 	unsigned long flags;
1081 
1082 	spin_lock_irqsave(&pdc_lock, flags);
1083 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1084 	convert_to_wide(pdc_result);
1085 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1086 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1087 	spin_unlock_irqrestore(&pdc_lock, flags);
1088 
1089 	return retval;
1090 }
1091 #endif /* CONFIG_64BIT */
1092 
1093 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1094  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1095  * it later. :)
1096  */
1097 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1098 {
1099         int retval;
1100 	unsigned long flags;
1101 
1102         spin_lock_irqsave(&pdc_lock, flags);
1103         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1104                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1105         spin_unlock_irqrestore(&pdc_lock, flags);
1106 
1107         return retval;
1108 }
1109 
1110 /*
1111  * pdc_do_reset - Reset the system.
1112  *
1113  * Reset the system.
1114  */
1115 int pdc_do_reset(void)
1116 {
1117         int retval;
1118 	unsigned long flags;
1119 
1120         spin_lock_irqsave(&pdc_lock, flags);
1121         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1122         spin_unlock_irqrestore(&pdc_lock, flags);
1123 
1124         return retval;
1125 }
1126 
1127 /*
1128  * pdc_soft_power_info - Enable soft power switch.
1129  * @power_reg: address of soft power register
1130  *
1131  * Return the absolute address of the soft power switch register
1132  */
1133 int __init pdc_soft_power_info(unsigned long *power_reg)
1134 {
1135 	int retval;
1136 	unsigned long flags;
1137 
1138 	*power_reg = (unsigned long) (-1);
1139 
1140 	spin_lock_irqsave(&pdc_lock, flags);
1141 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1142 	if (retval == PDC_OK) {
1143                 convert_to_wide(pdc_result);
1144                 *power_reg = f_extend(pdc_result[0]);
1145 	}
1146 	spin_unlock_irqrestore(&pdc_lock, flags);
1147 
1148 	return retval;
1149 }
1150 
1151 /*
1152  * pdc_soft_power_button - Control the soft power button behaviour
1153  * @sw_control: 0 for hardware control, 1 for software control
1154  *
1155  *
1156  * This PDC function places the soft power button under software or
1157  * hardware control.
1158  * Under software control the OS may control to when to allow to shut
1159  * down the system. Under hardware control pressing the power button
1160  * powers off the system immediately.
1161  */
1162 int pdc_soft_power_button(int sw_control)
1163 {
1164 	int retval;
1165 	unsigned long flags;
1166 
1167 	spin_lock_irqsave(&pdc_lock, flags);
1168 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1169 	spin_unlock_irqrestore(&pdc_lock, flags);
1170 
1171 	return retval;
1172 }
1173 
1174 /*
1175  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1176  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1177  * who knows what other platform firmware might do with this OS "hook".
1178  */
1179 void pdc_io_reset(void)
1180 {
1181 	unsigned long flags;
1182 
1183 	spin_lock_irqsave(&pdc_lock, flags);
1184 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1185 	spin_unlock_irqrestore(&pdc_lock, flags);
1186 }
1187 
1188 /*
1189  * pdc_io_reset_devices - Hack to Stop USB controller
1190  *
1191  * If PDC used the usb controller, the usb controller
1192  * is still running and will crash the machines during iommu
1193  * setup, because of still running DMA. This PDC call
1194  * stops the USB controller.
1195  * Normally called after calling pdc_io_reset().
1196  */
1197 void pdc_io_reset_devices(void)
1198 {
1199 	unsigned long flags;
1200 
1201 	spin_lock_irqsave(&pdc_lock, flags);
1202 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1203 	spin_unlock_irqrestore(&pdc_lock, flags);
1204 }
1205 
1206 #endif /* defined(BOOTLOADER) */
1207 
1208 /* locked by pdc_console_lock */
1209 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1210 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1211 
1212 /**
1213  * pdc_iodc_print - Console print using IODC.
1214  * @str: the string to output.
1215  * @count: length of str
1216  *
1217  * Note that only these special chars are architected for console IODC io:
1218  * BEL, BS, CR, and LF. Others are passed through.
1219  * Since the HP console requires CR+LF to perform a 'newline', we translate
1220  * "\n" to "\r\n".
1221  */
1222 int pdc_iodc_print(const unsigned char *str, unsigned count)
1223 {
1224 	unsigned int i;
1225 	unsigned long flags;
1226 
1227 	for (i = 0; i < count;) {
1228 		switch(str[i]) {
1229 		case '\n':
1230 			iodc_dbuf[i+0] = '\r';
1231 			iodc_dbuf[i+1] = '\n';
1232 			i += 2;
1233 			goto print;
1234 		default:
1235 			iodc_dbuf[i] = str[i];
1236 			i++;
1237 			break;
1238 		}
1239 	}
1240 
1241 print:
1242         spin_lock_irqsave(&pdc_lock, flags);
1243         real32_call(PAGE0->mem_cons.iodc_io,
1244                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1245                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1246                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1247         spin_unlock_irqrestore(&pdc_lock, flags);
1248 
1249 	return i;
1250 }
1251 
1252 #if !defined(BOOTLOADER)
1253 /**
1254  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1255  *
1256  * Read a character (non-blocking) from the PDC console, returns -1 if
1257  * key is not present.
1258  */
1259 int pdc_iodc_getc(void)
1260 {
1261 	int ch;
1262 	int status;
1263 	unsigned long flags;
1264 
1265 	/* Bail if no console input device. */
1266 	if (!PAGE0->mem_kbd.iodc_io)
1267 		return 0;
1268 
1269 	/* wait for a keyboard (rs232)-input */
1270 	spin_lock_irqsave(&pdc_lock, flags);
1271 	real32_call(PAGE0->mem_kbd.iodc_io,
1272 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1273 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1274 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1275 
1276 	ch = *iodc_dbuf;
1277 	status = *iodc_retbuf;
1278 	spin_unlock_irqrestore(&pdc_lock, flags);
1279 
1280 	if (status == 0)
1281 	    return -1;
1282 
1283 	return ch;
1284 }
1285 
1286 int pdc_sti_call(unsigned long func, unsigned long flags,
1287                  unsigned long inptr, unsigned long outputr,
1288                  unsigned long glob_cfg)
1289 {
1290         int retval;
1291 	unsigned long irqflags;
1292 
1293         spin_lock_irqsave(&pdc_lock, irqflags);
1294         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1295         spin_unlock_irqrestore(&pdc_lock, irqflags);
1296 
1297         return retval;
1298 }
1299 EXPORT_SYMBOL(pdc_sti_call);
1300 
1301 #ifdef CONFIG_64BIT
1302 /**
1303  * pdc_pat_cell_get_number - Returns the cell number.
1304  * @cell_info: The return buffer.
1305  *
1306  * This PDC call returns the cell number of the cell from which the call
1307  * is made.
1308  */
1309 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1310 {
1311 	int retval;
1312 	unsigned long flags;
1313 
1314 	spin_lock_irqsave(&pdc_lock, flags);
1315 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1316 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1317 	spin_unlock_irqrestore(&pdc_lock, flags);
1318 
1319 	return retval;
1320 }
1321 
1322 /**
1323  * pdc_pat_cell_module - Retrieve the cell's module information.
1324  * @actcnt: The number of bytes written to mem_addr.
1325  * @ploc: The physical location.
1326  * @mod: The module index.
1327  * @view_type: The view of the address type.
1328  * @mem_addr: The return buffer.
1329  *
1330  * This PDC call returns information about each module attached to the cell
1331  * at the specified location.
1332  */
1333 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1334 			unsigned long view_type, void *mem_addr)
1335 {
1336 	int retval;
1337 	unsigned long flags;
1338 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1339 
1340 	spin_lock_irqsave(&pdc_lock, flags);
1341 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1342 			      ploc, mod, view_type, __pa(&result));
1343 	if(!retval) {
1344 		*actcnt = pdc_result[0];
1345 		memcpy(mem_addr, &result, *actcnt);
1346 	}
1347 	spin_unlock_irqrestore(&pdc_lock, flags);
1348 
1349 	return retval;
1350 }
1351 
1352 /**
1353  * pdc_pat_cell_info - Retrieve the cell's information.
1354  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1355  * @actcnt: The number of bytes which should be written to info.
1356  * @offset: offset of the structure.
1357  * @cell_number: The cell number which should be asked, or -1 for current cell.
1358  *
1359  * This PDC call returns information about the given cell (or all cells).
1360  */
1361 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1362 		unsigned long *actcnt, unsigned long offset,
1363 		unsigned long cell_number)
1364 {
1365 	int retval;
1366 	unsigned long flags;
1367 	struct pdc_pat_cell_info_rtn_block result;
1368 
1369 	spin_lock_irqsave(&pdc_lock, flags);
1370 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1371 			__pa(pdc_result), __pa(&result), *actcnt,
1372 			offset, cell_number);
1373 	if (!retval) {
1374 		*actcnt = pdc_result[0];
1375 		memcpy(info, &result, *actcnt);
1376 	}
1377 	spin_unlock_irqrestore(&pdc_lock, flags);
1378 
1379 	return retval;
1380 }
1381 
1382 /**
1383  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1384  * @cpu_info: The return buffer.
1385  * @hpa: The Hard Physical Address of the CPU.
1386  *
1387  * Retrieve the cpu number for the cpu at the specified HPA.
1388  */
1389 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1390 {
1391 	int retval;
1392 	unsigned long flags;
1393 
1394 	spin_lock_irqsave(&pdc_lock, flags);
1395 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1396 			      __pa(&pdc_result), hpa);
1397 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1398 	spin_unlock_irqrestore(&pdc_lock, flags);
1399 
1400 	return retval;
1401 }
1402 
1403 /**
1404  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1405  * @num_entries: The return value.
1406  * @cell_num: The target cell.
1407  *
1408  * This PDC function returns the number of entries in the specified cell's
1409  * interrupt table.
1410  */
1411 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1412 {
1413 	int retval;
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&pdc_lock, flags);
1417 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1418 			      __pa(pdc_result), cell_num);
1419 	*num_entries = pdc_result[0];
1420 	spin_unlock_irqrestore(&pdc_lock, flags);
1421 
1422 	return retval;
1423 }
1424 
1425 /**
1426  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1427  * @r_addr: The return buffer.
1428  * @cell_num: The target cell.
1429  *
1430  * This PDC function returns the actual interrupt table for the specified cell.
1431  */
1432 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1433 {
1434 	int retval;
1435 	unsigned long flags;
1436 
1437 	spin_lock_irqsave(&pdc_lock, flags);
1438 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1439 			      __pa(r_addr), cell_num);
1440 	spin_unlock_irqrestore(&pdc_lock, flags);
1441 
1442 	return retval;
1443 }
1444 
1445 /**
1446  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1447  * @actlen: The return buffer.
1448  * @mem_addr: Pointer to the memory buffer.
1449  * @count: The number of bytes to read from the buffer.
1450  * @offset: The offset with respect to the beginning of the buffer.
1451  *
1452  */
1453 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1454 			    unsigned long count, unsigned long offset)
1455 {
1456 	int retval;
1457 	unsigned long flags;
1458 
1459 	spin_lock_irqsave(&pdc_lock, flags);
1460 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1461 			      __pa(pdc_result2), count, offset);
1462 	*actual_len = pdc_result[0];
1463 	memcpy(mem_addr, pdc_result2, *actual_len);
1464 	spin_unlock_irqrestore(&pdc_lock, flags);
1465 
1466 	return retval;
1467 }
1468 
1469 /**
1470  * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1471  * @legacy_rev: The legacy revision.
1472  * @pat_rev: The PAT revision.
1473  * @pdc_cap: The PDC capabilities.
1474  *
1475  */
1476 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1477 		unsigned long *pat_rev, unsigned long *pdc_cap)
1478 {
1479 	int retval;
1480 	unsigned long flags;
1481 
1482 	spin_lock_irqsave(&pdc_lock, flags);
1483 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1484 				__pa(pdc_result));
1485 	if (retval == PDC_OK) {
1486 		*legacy_rev = pdc_result[0];
1487 		*pat_rev = pdc_result[1];
1488 		*pdc_cap = pdc_result[2];
1489 	}
1490 	spin_unlock_irqrestore(&pdc_lock, flags);
1491 
1492 	return retval;
1493 }
1494 
1495 
1496 /**
1497  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1498  * @pci_addr: PCI configuration space address for which the read request is being made.
1499  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1500  * @mem_addr: Pointer to return memory buffer.
1501  *
1502  */
1503 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1504 {
1505 	int retval;
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&pdc_lock, flags);
1509 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1510 					__pa(pdc_result), pci_addr, pci_size);
1511 	switch(pci_size) {
1512 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1513 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1514 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1515 	}
1516 	spin_unlock_irqrestore(&pdc_lock, flags);
1517 
1518 	return retval;
1519 }
1520 
1521 /**
1522  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1523  * @pci_addr: PCI configuration space address for which the write  request is being made.
1524  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1525  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1526  *         written to PCI Config space.
1527  *
1528  */
1529 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1530 {
1531 	int retval;
1532 	unsigned long flags;
1533 
1534 	spin_lock_irqsave(&pdc_lock, flags);
1535 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1536 				pci_addr, pci_size, val);
1537 	spin_unlock_irqrestore(&pdc_lock, flags);
1538 
1539 	return retval;
1540 }
1541 
1542 /**
1543  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1544  * @rinfo: memory pdt information
1545  *
1546  */
1547 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1548 {
1549 	int retval;
1550 	unsigned long flags;
1551 
1552 	spin_lock_irqsave(&pdc_lock, flags);
1553 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1554 			__pa(&pdc_result));
1555 	if (retval == PDC_OK)
1556 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1557 	spin_unlock_irqrestore(&pdc_lock, flags);
1558 
1559 	return retval;
1560 }
1561 
1562 /**
1563  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1564  *				table of a cell
1565  * @rinfo: memory pdt information
1566  * @cell: cell number
1567  *
1568  */
1569 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1570 		unsigned long cell)
1571 {
1572 	int retval;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&pdc_lock, flags);
1576 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1577 			__pa(&pdc_result), cell);
1578 	if (retval == PDC_OK)
1579 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1580 	spin_unlock_irqrestore(&pdc_lock, flags);
1581 
1582 	return retval;
1583 }
1584 
1585 /**
1586  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1587  * @pret: array of PDT entries
1588  * @pdt_entries_ptr: ptr to hold number of PDT entries
1589  * @max_entries: maximum number of entries to be read
1590  *
1591  */
1592 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1593 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1594 {
1595 	int retval;
1596 	unsigned long flags, entries;
1597 
1598 	spin_lock_irqsave(&pdc_lock, flags);
1599 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1600 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1601 			__pa(&pdc_result), parisc_cell_num,
1602 			__pa(pdt_entries_ptr));
1603 
1604 	if (retval == PDC_OK) {
1605 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1606 		entries = min(pdc_result[0], max_entries);
1607 		pret->pdt_entries = entries;
1608 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1609 	}
1610 
1611 	spin_unlock_irqrestore(&pdc_lock, flags);
1612 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1613 
1614 	return retval;
1615 }
1616 /**
1617  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1618  * @pret: array of PDT entries
1619  * @pdt_entries_ptr: ptr to hold number of PDT entries
1620  * @count: number of bytes to read
1621  * @offset: offset to start (in bytes)
1622  *
1623  */
1624 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1625 		unsigned long *pdt_entries_ptr, unsigned long count,
1626 		unsigned long offset)
1627 {
1628 	int retval;
1629 	unsigned long flags, entries;
1630 
1631 	spin_lock_irqsave(&pdc_lock, flags);
1632 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1633 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1634 		count, offset);
1635 
1636 	if (retval == PDC_OK) {
1637 		entries = min(pdc_result[0], count);
1638 		pret->actual_count_bytes = entries;
1639 		pret->pdt_entries = entries / sizeof(unsigned long);
1640 	}
1641 
1642 	spin_unlock_irqrestore(&pdc_lock, flags);
1643 
1644 	return retval;
1645 }
1646 
1647 /**
1648  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1649  * @pret: ptr to hold returned information
1650  * @phys_addr: physical address to examine
1651  *
1652  */
1653 int pdc_pat_mem_get_dimm_phys_location(
1654 		struct pdc_pat_mem_phys_mem_location *pret,
1655 		unsigned long phys_addr)
1656 {
1657 	int retval;
1658 	unsigned long flags;
1659 
1660 	spin_lock_irqsave(&pdc_lock, flags);
1661 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1662 		__pa(&pdc_result), phys_addr);
1663 
1664 	if (retval == PDC_OK)
1665 		memcpy(pret, &pdc_result, sizeof(*pret));
1666 
1667 	spin_unlock_irqrestore(&pdc_lock, flags);
1668 
1669 	return retval;
1670 }
1671 #endif /* CONFIG_64BIT */
1672 #endif /* defined(BOOTLOADER) */
1673 
1674 
1675 /***************** 32-bit real-mode calls ***********/
1676 /* The struct below is used
1677  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1678  * real32_call_asm() then uses this stack in narrow real mode
1679  */
1680 
1681 struct narrow_stack {
1682 	/* use int, not long which is 64 bits */
1683 	unsigned int arg13;
1684 	unsigned int arg12;
1685 	unsigned int arg11;
1686 	unsigned int arg10;
1687 	unsigned int arg9;
1688 	unsigned int arg8;
1689 	unsigned int arg7;
1690 	unsigned int arg6;
1691 	unsigned int arg5;
1692 	unsigned int arg4;
1693 	unsigned int arg3;
1694 	unsigned int arg2;
1695 	unsigned int arg1;
1696 	unsigned int arg0;
1697 	unsigned int frame_marker[8];
1698 	unsigned int sp;
1699 	/* in reality, there's nearly 8k of stack after this */
1700 };
1701 
1702 long real32_call(unsigned long fn, ...)
1703 {
1704 	va_list args;
1705 	extern struct narrow_stack real_stack;
1706 	extern unsigned long real32_call_asm(unsigned int *,
1707 					     unsigned int *,
1708 					     unsigned int);
1709 
1710 	va_start(args, fn);
1711 	real_stack.arg0 = va_arg(args, unsigned int);
1712 	real_stack.arg1 = va_arg(args, unsigned int);
1713 	real_stack.arg2 = va_arg(args, unsigned int);
1714 	real_stack.arg3 = va_arg(args, unsigned int);
1715 	real_stack.arg4 = va_arg(args, unsigned int);
1716 	real_stack.arg5 = va_arg(args, unsigned int);
1717 	real_stack.arg6 = va_arg(args, unsigned int);
1718 	real_stack.arg7 = va_arg(args, unsigned int);
1719 	real_stack.arg8 = va_arg(args, unsigned int);
1720 	real_stack.arg9 = va_arg(args, unsigned int);
1721 	real_stack.arg10 = va_arg(args, unsigned int);
1722 	real_stack.arg11 = va_arg(args, unsigned int);
1723 	real_stack.arg12 = va_arg(args, unsigned int);
1724 	real_stack.arg13 = va_arg(args, unsigned int);
1725 	va_end(args);
1726 
1727 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1728 }
1729 
1730 #ifdef CONFIG_64BIT
1731 /***************** 64-bit real-mode calls ***********/
1732 
1733 struct wide_stack {
1734 	unsigned long arg0;
1735 	unsigned long arg1;
1736 	unsigned long arg2;
1737 	unsigned long arg3;
1738 	unsigned long arg4;
1739 	unsigned long arg5;
1740 	unsigned long arg6;
1741 	unsigned long arg7;
1742 	unsigned long arg8;
1743 	unsigned long arg9;
1744 	unsigned long arg10;
1745 	unsigned long arg11;
1746 	unsigned long arg12;
1747 	unsigned long arg13;
1748 	unsigned long frame_marker[2];	/* rp, previous sp */
1749 	unsigned long sp;
1750 	/* in reality, there's nearly 8k of stack after this */
1751 };
1752 
1753 long real64_call(unsigned long fn, ...)
1754 {
1755 	va_list args;
1756 	extern struct wide_stack real64_stack;
1757 	extern unsigned long real64_call_asm(unsigned long *,
1758 					     unsigned long *,
1759 					     unsigned long);
1760 
1761 	va_start(args, fn);
1762 	real64_stack.arg0 = va_arg(args, unsigned long);
1763 	real64_stack.arg1 = va_arg(args, unsigned long);
1764 	real64_stack.arg2 = va_arg(args, unsigned long);
1765 	real64_stack.arg3 = va_arg(args, unsigned long);
1766 	real64_stack.arg4 = va_arg(args, unsigned long);
1767 	real64_stack.arg5 = va_arg(args, unsigned long);
1768 	real64_stack.arg6 = va_arg(args, unsigned long);
1769 	real64_stack.arg7 = va_arg(args, unsigned long);
1770 	real64_stack.arg8 = va_arg(args, unsigned long);
1771 	real64_stack.arg9 = va_arg(args, unsigned long);
1772 	real64_stack.arg10 = va_arg(args, unsigned long);
1773 	real64_stack.arg11 = va_arg(args, unsigned long);
1774 	real64_stack.arg12 = va_arg(args, unsigned long);
1775 	real64_stack.arg13 = va_arg(args, unsigned long);
1776 	va_end(args);
1777 
1778 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1779 }
1780 
1781 #endif /* CONFIG_64BIT */
1782