xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision c8dbaa22)
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *	PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22 
23 /*	I think it would be in everyone's best interest to follow this
24  *	guidelines when writing PDC wrappers:
25  *
26  *	 - the name of the pdc wrapper should match one of the macros
27  *	   used for the first two arguments
28  *	 - don't use caps for random parts of the name
29  *	 - use the static PDC result buffers and "copyout" to structs
30  *	   supplied by the caller to encapsulate alignment restrictions
31  *	 - hold pdc_lock while in PDC or using static result buffers
32  *	 - use __pa() to convert virtual (kernel) pointers to physical
33  *	   ones.
34  *	 - the name of the struct used for pdc return values should equal
35  *	   one of the macros used for the first two arguments to the
36  *	   corresponding PDC call
37  *	 - keep the order of arguments
38  *	 - don't be smart (setting trailing NUL bytes for strings, return
39  *	   something useful even if the call failed) unless you are sure
40  *	   it's not going to affect functionality or performance
41  *
42  *	Example:
43  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *	{
45  *		int retval;
46  *
47  *		spin_lock_irq(&pdc_lock);
48  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *		convert_to_wide(pdc_result);
50  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *		spin_unlock_irq(&pdc_lock);
52  *
53  *		return retval;
54  *	}
55  *					prumpf	991016
56  */
57 
58 #include <stdarg.h>
59 
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66 
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>	/* for boot_cpu_data */
71 
72 #if defined(BOOTLOADER)
73 # undef  spin_lock_irqsave
74 # define spin_lock_irqsave(a, b) { b = 1; }
75 # undef  spin_unlock_irqrestore
76 # define spin_unlock_irqrestore(a, b)
77 #else
78 static DEFINE_SPINLOCK(pdc_lock);
79 #endif
80 
81 extern unsigned long pdc_result[NUM_PDC_RESULT];
82 extern unsigned long pdc_result2[NUM_PDC_RESULT];
83 
84 #ifdef CONFIG_64BIT
85 #define WIDE_FIRMWARE 0x1
86 #define NARROW_FIRMWARE 0x2
87 
88 /* Firmware needs to be initially set to narrow to determine the
89  * actual firmware width. */
90 int parisc_narrow_firmware __read_mostly = 1;
91 #endif
92 
93 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
94  * and MEM_PDC calls are always the same width as the OS.
95  * Some PAT boxes may have 64-bit IODC I/O.
96  *
97  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
98  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
99  * This allowed wide kernels to run on Cxxx boxes.
100  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
101  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
102  */
103 
104 #ifdef CONFIG_64BIT
105 long real64_call(unsigned long function, ...);
106 #endif
107 long real32_call(unsigned long function, ...);
108 
109 #ifdef CONFIG_64BIT
110 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
111 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
112 #else
113 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
114 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
115 #endif
116 
117 
118 /**
119  * f_extend - Convert PDC addresses to kernel addresses.
120  * @address: Address returned from PDC.
121  *
122  * This function is used to convert PDC addresses into kernel addresses
123  * when the PDC address size and kernel address size are different.
124  */
125 static unsigned long f_extend(unsigned long address)
126 {
127 #ifdef CONFIG_64BIT
128 	if(unlikely(parisc_narrow_firmware)) {
129 		if((address & 0xff000000) == 0xf0000000)
130 			return 0xf0f0f0f000000000UL | (u32)address;
131 
132 		if((address & 0xf0000000) == 0xf0000000)
133 			return 0xffffffff00000000UL | (u32)address;
134 	}
135 #endif
136 	return address;
137 }
138 
139 /**
140  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
141  * @address: The return buffer from PDC.
142  *
143  * This function is used to convert the return buffer addresses retrieved from PDC
144  * into kernel addresses when the PDC address size and kernel address size are
145  * different.
146  */
147 static void convert_to_wide(unsigned long *addr)
148 {
149 #ifdef CONFIG_64BIT
150 	int i;
151 	unsigned int *p = (unsigned int *)addr;
152 
153 	if (unlikely(parisc_narrow_firmware)) {
154 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
155 			addr[i] = p[i];
156 	}
157 #endif
158 }
159 
160 #ifdef CONFIG_64BIT
161 void set_firmware_width_unlocked(void)
162 {
163 	int ret;
164 
165 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
166 		__pa(pdc_result), 0);
167 	convert_to_wide(pdc_result);
168 	if (pdc_result[0] != NARROW_FIRMWARE)
169 		parisc_narrow_firmware = 0;
170 }
171 
172 /**
173  * set_firmware_width - Determine if the firmware is wide or narrow.
174  *
175  * This function must be called before any pdc_* function that uses the
176  * convert_to_wide function.
177  */
178 void set_firmware_width(void)
179 {
180 	unsigned long flags;
181 	spin_lock_irqsave(&pdc_lock, flags);
182 	set_firmware_width_unlocked();
183 	spin_unlock_irqrestore(&pdc_lock, flags);
184 }
185 #else
186 void set_firmware_width_unlocked(void)
187 {
188 	return;
189 }
190 
191 void set_firmware_width(void)
192 {
193 	return;
194 }
195 #endif /*CONFIG_64BIT*/
196 
197 
198 #if !defined(BOOTLOADER)
199 /**
200  * pdc_emergency_unlock - Unlock the linux pdc lock
201  *
202  * This call unlocks the linux pdc lock in case we need some PDC functions
203  * (like pdc_add_valid) during kernel stack dump.
204  */
205 void pdc_emergency_unlock(void)
206 {
207  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
208         if (spin_is_locked(&pdc_lock))
209 		spin_unlock(&pdc_lock);
210 }
211 
212 
213 /**
214  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
215  * @address: Address to be verified.
216  *
217  * This PDC call attempts to read from the specified address and verifies
218  * if the address is valid.
219  *
220  * The return value is PDC_OK (0) in case accessing this address is valid.
221  */
222 int pdc_add_valid(unsigned long address)
223 {
224         int retval;
225 	unsigned long flags;
226 
227         spin_lock_irqsave(&pdc_lock, flags);
228         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
229         spin_unlock_irqrestore(&pdc_lock, flags);
230 
231         return retval;
232 }
233 EXPORT_SYMBOL(pdc_add_valid);
234 
235 /**
236  * pdc_chassis_info - Return chassis information.
237  * @result: The return buffer.
238  * @chassis_info: The memory buffer address.
239  * @len: The size of the memory buffer address.
240  *
241  * An HVERSION dependent call for returning the chassis information.
242  */
243 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
244 {
245         int retval;
246 	unsigned long flags;
247 
248         spin_lock_irqsave(&pdc_lock, flags);
249         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
250         memcpy(&pdc_result2, led_info, len);
251         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
252                               __pa(pdc_result), __pa(pdc_result2), len);
253         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
254         memcpy(led_info, pdc_result2, len);
255         spin_unlock_irqrestore(&pdc_lock, flags);
256 
257         return retval;
258 }
259 
260 /**
261  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
262  * @retval: -1 on error, 0 on success. Other value are PDC errors
263  *
264  * Must be correctly formatted or expect system crash
265  */
266 #ifdef CONFIG_64BIT
267 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
268 {
269 	int retval = 0;
270 	unsigned long flags;
271 
272 	if (!is_pdc_pat())
273 		return -1;
274 
275 	spin_lock_irqsave(&pdc_lock, flags);
276 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
277 	spin_unlock_irqrestore(&pdc_lock, flags);
278 
279 	return retval;
280 }
281 #endif
282 
283 /**
284  * pdc_chassis_disp - Updates chassis code
285  * @retval: -1 on error, 0 on success
286  */
287 int pdc_chassis_disp(unsigned long disp)
288 {
289 	int retval = 0;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&pdc_lock, flags);
293 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
294 	spin_unlock_irqrestore(&pdc_lock, flags);
295 
296 	return retval;
297 }
298 
299 /**
300  * pdc_chassis_warn - Fetches chassis warnings
301  * @retval: -1 on error, 0 on success
302  */
303 int pdc_chassis_warn(unsigned long *warn)
304 {
305 	int retval = 0;
306 	unsigned long flags;
307 
308 	spin_lock_irqsave(&pdc_lock, flags);
309 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
310 	*warn = pdc_result[0];
311 	spin_unlock_irqrestore(&pdc_lock, flags);
312 
313 	return retval;
314 }
315 
316 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
317 {
318 	int ret;
319 
320 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
321 	convert_to_wide(pdc_result);
322 	pdc_coproc_info->ccr_functional = pdc_result[0];
323 	pdc_coproc_info->ccr_present = pdc_result[1];
324 	pdc_coproc_info->revision = pdc_result[17];
325 	pdc_coproc_info->model = pdc_result[18];
326 
327 	return ret;
328 }
329 
330 /**
331  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
332  * @pdc_coproc_info: Return buffer address.
333  *
334  * This PDC call returns the presence and status of all the coprocessors
335  * attached to the processor.
336  */
337 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
338 {
339 	int ret;
340 	unsigned long flags;
341 
342 	spin_lock_irqsave(&pdc_lock, flags);
343 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
344 	spin_unlock_irqrestore(&pdc_lock, flags);
345 
346 	return ret;
347 }
348 
349 /**
350  * pdc_iodc_read - Read data from the modules IODC.
351  * @actcnt: The actual number of bytes.
352  * @hpa: The HPA of the module for the iodc read.
353  * @index: The iodc entry point.
354  * @iodc_data: A buffer memory for the iodc options.
355  * @iodc_data_size: Size of the memory buffer.
356  *
357  * This PDC call reads from the IODC of the module specified by the hpa
358  * argument.
359  */
360 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
361 		  void *iodc_data, unsigned int iodc_data_size)
362 {
363 	int retval;
364 	unsigned long flags;
365 
366 	spin_lock_irqsave(&pdc_lock, flags);
367 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
368 			      index, __pa(pdc_result2), iodc_data_size);
369 	convert_to_wide(pdc_result);
370 	*actcnt = pdc_result[0];
371 	memcpy(iodc_data, pdc_result2, iodc_data_size);
372 	spin_unlock_irqrestore(&pdc_lock, flags);
373 
374 	return retval;
375 }
376 EXPORT_SYMBOL(pdc_iodc_read);
377 
378 /**
379  * pdc_system_map_find_mods - Locate unarchitected modules.
380  * @pdc_mod_info: Return buffer address.
381  * @mod_path: pointer to dev path structure.
382  * @mod_index: fixed address module index.
383  *
384  * To locate and identify modules which reside at fixed I/O addresses, which
385  * do not self-identify via architected bus walks.
386  */
387 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
388 			     struct pdc_module_path *mod_path, long mod_index)
389 {
390 	int retval;
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(&pdc_lock, flags);
394 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
395 			      __pa(pdc_result2), mod_index);
396 	convert_to_wide(pdc_result);
397 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
398 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
399 	spin_unlock_irqrestore(&pdc_lock, flags);
400 
401 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
402 	return retval;
403 }
404 
405 /**
406  * pdc_system_map_find_addrs - Retrieve additional address ranges.
407  * @pdc_addr_info: Return buffer address.
408  * @mod_index: Fixed address module index.
409  * @addr_index: Address range index.
410  *
411  * Retrieve additional information about subsequent address ranges for modules
412  * with multiple address ranges.
413  */
414 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
415 			      long mod_index, long addr_index)
416 {
417 	int retval;
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(&pdc_lock, flags);
421 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
422 			      mod_index, addr_index);
423 	convert_to_wide(pdc_result);
424 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
425 	spin_unlock_irqrestore(&pdc_lock, flags);
426 
427 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
428 	return retval;
429 }
430 
431 /**
432  * pdc_model_info - Return model information about the processor.
433  * @model: The return buffer.
434  *
435  * Returns the version numbers, identifiers, and capabilities from the processor module.
436  */
437 int pdc_model_info(struct pdc_model *model)
438 {
439 	int retval;
440 	unsigned long flags;
441 
442 	spin_lock_irqsave(&pdc_lock, flags);
443 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
444 	convert_to_wide(pdc_result);
445 	memcpy(model, pdc_result, sizeof(*model));
446 	spin_unlock_irqrestore(&pdc_lock, flags);
447 
448 	return retval;
449 }
450 
451 /**
452  * pdc_model_sysmodel - Get the system model name.
453  * @name: A char array of at least 81 characters.
454  *
455  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
456  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
457  * on HP/UX.
458  */
459 int pdc_model_sysmodel(char *name)
460 {
461         int retval;
462 	unsigned long flags;
463 
464         spin_lock_irqsave(&pdc_lock, flags);
465         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
466                               OS_ID_HPUX, __pa(name));
467         convert_to_wide(pdc_result);
468 
469         if (retval == PDC_OK) {
470                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
471         } else {
472                 name[0] = 0;
473         }
474         spin_unlock_irqrestore(&pdc_lock, flags);
475 
476         return retval;
477 }
478 
479 /**
480  * pdc_model_versions - Identify the version number of each processor.
481  * @cpu_id: The return buffer.
482  * @id: The id of the processor to check.
483  *
484  * Returns the version number for each processor component.
485  *
486  * This comment was here before, but I do not know what it means :( -RB
487  * id: 0 = cpu revision, 1 = boot-rom-version
488  */
489 int pdc_model_versions(unsigned long *versions, int id)
490 {
491         int retval;
492 	unsigned long flags;
493 
494         spin_lock_irqsave(&pdc_lock, flags);
495         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
496         convert_to_wide(pdc_result);
497         *versions = pdc_result[0];
498         spin_unlock_irqrestore(&pdc_lock, flags);
499 
500         return retval;
501 }
502 
503 /**
504  * pdc_model_cpuid - Returns the CPU_ID.
505  * @cpu_id: The return buffer.
506  *
507  * Returns the CPU_ID value which uniquely identifies the cpu portion of
508  * the processor module.
509  */
510 int pdc_model_cpuid(unsigned long *cpu_id)
511 {
512         int retval;
513 	unsigned long flags;
514 
515         spin_lock_irqsave(&pdc_lock, flags);
516         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
517         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
518         convert_to_wide(pdc_result);
519         *cpu_id = pdc_result[0];
520         spin_unlock_irqrestore(&pdc_lock, flags);
521 
522         return retval;
523 }
524 
525 /**
526  * pdc_model_capabilities - Returns the platform capabilities.
527  * @capabilities: The return buffer.
528  *
529  * Returns information about platform support for 32- and/or 64-bit
530  * OSes, IO-PDIR coherency, and virtual aliasing.
531  */
532 int pdc_model_capabilities(unsigned long *capabilities)
533 {
534         int retval;
535 	unsigned long flags;
536 
537         spin_lock_irqsave(&pdc_lock, flags);
538         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
539         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
540         convert_to_wide(pdc_result);
541         if (retval == PDC_OK) {
542                 *capabilities = pdc_result[0];
543         } else {
544                 *capabilities = PDC_MODEL_OS32;
545         }
546         spin_unlock_irqrestore(&pdc_lock, flags);
547 
548         return retval;
549 }
550 
551 /**
552  * pdc_cache_info - Return cache and TLB information.
553  * @cache_info: The return buffer.
554  *
555  * Returns information about the processor's cache and TLB.
556  */
557 int pdc_cache_info(struct pdc_cache_info *cache_info)
558 {
559         int retval;
560 	unsigned long flags;
561 
562         spin_lock_irqsave(&pdc_lock, flags);
563         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
564         convert_to_wide(pdc_result);
565         memcpy(cache_info, pdc_result, sizeof(*cache_info));
566         spin_unlock_irqrestore(&pdc_lock, flags);
567 
568         return retval;
569 }
570 
571 /**
572  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
573  * @space_bits: Should be 0, if not, bad mojo!
574  *
575  * Returns information about Space ID hashing.
576  */
577 int pdc_spaceid_bits(unsigned long *space_bits)
578 {
579 	int retval;
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(&pdc_lock, flags);
583 	pdc_result[0] = 0;
584 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
585 	convert_to_wide(pdc_result);
586 	*space_bits = pdc_result[0];
587 	spin_unlock_irqrestore(&pdc_lock, flags);
588 
589 	return retval;
590 }
591 
592 #ifndef CONFIG_PA20
593 /**
594  * pdc_btlb_info - Return block TLB information.
595  * @btlb: The return buffer.
596  *
597  * Returns information about the hardware Block TLB.
598  */
599 int pdc_btlb_info(struct pdc_btlb_info *btlb)
600 {
601         int retval;
602 	unsigned long flags;
603 
604         spin_lock_irqsave(&pdc_lock, flags);
605         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
606         memcpy(btlb, pdc_result, sizeof(*btlb));
607         spin_unlock_irqrestore(&pdc_lock, flags);
608 
609         if(retval < 0) {
610                 btlb->max_size = 0;
611         }
612         return retval;
613 }
614 
615 /**
616  * pdc_mem_map_hpa - Find fixed module information.
617  * @address: The return buffer
618  * @mod_path: pointer to dev path structure.
619  *
620  * This call was developed for S700 workstations to allow the kernel to find
621  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
622  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
623  * call.
624  *
625  * This call is supported by all existing S700 workstations (up to  Gecko).
626  */
627 int pdc_mem_map_hpa(struct pdc_memory_map *address,
628 		struct pdc_module_path *mod_path)
629 {
630         int retval;
631 	unsigned long flags;
632 
633         spin_lock_irqsave(&pdc_lock, flags);
634         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
635         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
636 				__pa(pdc_result2));
637         memcpy(address, pdc_result, sizeof(*address));
638         spin_unlock_irqrestore(&pdc_lock, flags);
639 
640         return retval;
641 }
642 #endif	/* !CONFIG_PA20 */
643 
644 /**
645  * pdc_lan_station_id - Get the LAN address.
646  * @lan_addr: The return buffer.
647  * @hpa: The network device HPA.
648  *
649  * Get the LAN station address when it is not directly available from the LAN hardware.
650  */
651 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
652 {
653 	int retval;
654 	unsigned long flags;
655 
656 	spin_lock_irqsave(&pdc_lock, flags);
657 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
658 			__pa(pdc_result), hpa);
659 	if (retval < 0) {
660 		/* FIXME: else read MAC from NVRAM */
661 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
662 	} else {
663 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
664 	}
665 	spin_unlock_irqrestore(&pdc_lock, flags);
666 
667 	return retval;
668 }
669 EXPORT_SYMBOL(pdc_lan_station_id);
670 
671 /**
672  * pdc_stable_read - Read data from Stable Storage.
673  * @staddr: Stable Storage address to access.
674  * @memaddr: The memory address where Stable Storage data shall be copied.
675  * @count: number of bytes to transfer. count is multiple of 4.
676  *
677  * This PDC call reads from the Stable Storage address supplied in staddr
678  * and copies count bytes to the memory address memaddr.
679  * The call will fail if staddr+count > PDC_STABLE size.
680  */
681 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
682 {
683        int retval;
684 	unsigned long flags;
685 
686        spin_lock_irqsave(&pdc_lock, flags);
687        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
688                __pa(pdc_result), count);
689        convert_to_wide(pdc_result);
690        memcpy(memaddr, pdc_result, count);
691        spin_unlock_irqrestore(&pdc_lock, flags);
692 
693        return retval;
694 }
695 EXPORT_SYMBOL(pdc_stable_read);
696 
697 /**
698  * pdc_stable_write - Write data to Stable Storage.
699  * @staddr: Stable Storage address to access.
700  * @memaddr: The memory address where Stable Storage data shall be read from.
701  * @count: number of bytes to transfer. count is multiple of 4.
702  *
703  * This PDC call reads count bytes from the supplied memaddr address,
704  * and copies count bytes to the Stable Storage address staddr.
705  * The call will fail if staddr+count > PDC_STABLE size.
706  */
707 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
708 {
709        int retval;
710 	unsigned long flags;
711 
712        spin_lock_irqsave(&pdc_lock, flags);
713        memcpy(pdc_result, memaddr, count);
714        convert_to_wide(pdc_result);
715        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
716                __pa(pdc_result), count);
717        spin_unlock_irqrestore(&pdc_lock, flags);
718 
719        return retval;
720 }
721 EXPORT_SYMBOL(pdc_stable_write);
722 
723 /**
724  * pdc_stable_get_size - Get Stable Storage size in bytes.
725  * @size: pointer where the size will be stored.
726  *
727  * This PDC call returns the number of bytes in the processor's Stable
728  * Storage, which is the number of contiguous bytes implemented in Stable
729  * Storage starting from staddr=0. size in an unsigned 64-bit integer
730  * which is a multiple of four.
731  */
732 int pdc_stable_get_size(unsigned long *size)
733 {
734        int retval;
735 	unsigned long flags;
736 
737        spin_lock_irqsave(&pdc_lock, flags);
738        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
739        *size = pdc_result[0];
740        spin_unlock_irqrestore(&pdc_lock, flags);
741 
742        return retval;
743 }
744 EXPORT_SYMBOL(pdc_stable_get_size);
745 
746 /**
747  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
748  *
749  * This PDC call is meant to be used to check the integrity of the current
750  * contents of Stable Storage.
751  */
752 int pdc_stable_verify_contents(void)
753 {
754        int retval;
755 	unsigned long flags;
756 
757        spin_lock_irqsave(&pdc_lock, flags);
758        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
759        spin_unlock_irqrestore(&pdc_lock, flags);
760 
761        return retval;
762 }
763 EXPORT_SYMBOL(pdc_stable_verify_contents);
764 
765 /**
766  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
767  * the validity indicator.
768  *
769  * This PDC call will erase all contents of Stable Storage. Use with care!
770  */
771 int pdc_stable_initialize(void)
772 {
773        int retval;
774 	unsigned long flags;
775 
776        spin_lock_irqsave(&pdc_lock, flags);
777        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
778        spin_unlock_irqrestore(&pdc_lock, flags);
779 
780        return retval;
781 }
782 EXPORT_SYMBOL(pdc_stable_initialize);
783 
784 /**
785  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
786  * @hwpath: fully bc.mod style path to the device.
787  * @initiator: the array to return the result into
788  *
789  * Get the SCSI operational parameters from PDC.
790  * Needed since HPUX never used BIOS or symbios card NVRAM.
791  * Most ncr/sym cards won't have an entry and just use whatever
792  * capabilities of the card are (eg Ultra, LVD). But there are
793  * several cases where it's useful:
794  *    o set SCSI id for Multi-initiator clusters,
795  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
796  *    o bus width exported is less than what the interface chip supports.
797  */
798 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
799 {
800 	int retval;
801 	unsigned long flags;
802 
803 	spin_lock_irqsave(&pdc_lock, flags);
804 
805 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
806 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
807 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
808 
809 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
810 			      __pa(pdc_result), __pa(hwpath));
811 	if (retval < PDC_OK)
812 		goto out;
813 
814 	if (pdc_result[0] < 16) {
815 		initiator->host_id = pdc_result[0];
816 	} else {
817 		initiator->host_id = -1;
818 	}
819 
820 	/*
821 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
822 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
823 	 */
824 	switch (pdc_result[1]) {
825 		case  1: initiator->factor = 50; break;
826 		case  2: initiator->factor = 25; break;
827 		case  5: initiator->factor = 12; break;
828 		case 25: initiator->factor = 10; break;
829 		case 20: initiator->factor = 12; break;
830 		case 40: initiator->factor = 10; break;
831 		default: initiator->factor = -1; break;
832 	}
833 
834 	if (IS_SPROCKETS()) {
835 		initiator->width = pdc_result[4];
836 		initiator->mode = pdc_result[5];
837 	} else {
838 		initiator->width = -1;
839 		initiator->mode = -1;
840 	}
841 
842  out:
843 	spin_unlock_irqrestore(&pdc_lock, flags);
844 
845 	return (retval >= PDC_OK);
846 }
847 EXPORT_SYMBOL(pdc_get_initiator);
848 
849 
850 /**
851  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
852  * @num_entries: The return value.
853  * @hpa: The HPA for the device.
854  *
855  * This PDC function returns the number of entries in the specified cell's
856  * interrupt table.
857  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
858  */
859 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
860 {
861 	int retval;
862 	unsigned long flags;
863 
864 	spin_lock_irqsave(&pdc_lock, flags);
865 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
866 			      __pa(pdc_result), hpa);
867 	convert_to_wide(pdc_result);
868 	*num_entries = pdc_result[0];
869 	spin_unlock_irqrestore(&pdc_lock, flags);
870 
871 	return retval;
872 }
873 
874 /**
875  * pdc_pci_irt - Get the PCI interrupt routing table.
876  * @num_entries: The number of entries in the table.
877  * @hpa: The Hard Physical Address of the device.
878  * @tbl:
879  *
880  * Get the PCI interrupt routing table for the device at the given HPA.
881  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
882  */
883 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
884 {
885 	int retval;
886 	unsigned long flags;
887 
888 	BUG_ON((unsigned long)tbl & 0x7);
889 
890 	spin_lock_irqsave(&pdc_lock, flags);
891 	pdc_result[0] = num_entries;
892 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
893 			      __pa(pdc_result), hpa, __pa(tbl));
894 	spin_unlock_irqrestore(&pdc_lock, flags);
895 
896 	return retval;
897 }
898 
899 
900 #if 0	/* UNTEST CODE - left here in case someone needs it */
901 
902 /**
903  * pdc_pci_config_read - read PCI config space.
904  * @hpa		token from PDC to indicate which PCI device
905  * @pci_addr	configuration space address to read from
906  *
907  * Read PCI Configuration space *before* linux PCI subsystem is running.
908  */
909 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
910 {
911 	int retval;
912 	unsigned long flags;
913 
914 	spin_lock_irqsave(&pdc_lock, flags);
915 	pdc_result[0] = 0;
916 	pdc_result[1] = 0;
917 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
918 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
919 	spin_unlock_irqrestore(&pdc_lock, flags);
920 
921 	return retval ? ~0 : (unsigned int) pdc_result[0];
922 }
923 
924 
925 /**
926  * pdc_pci_config_write - read PCI config space.
927  * @hpa		token from PDC to indicate which PCI device
928  * @pci_addr	configuration space address to write
929  * @val		value we want in the 32-bit register
930  *
931  * Write PCI Configuration space *before* linux PCI subsystem is running.
932  */
933 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
934 {
935 	int retval;
936 	unsigned long flags;
937 
938 	spin_lock_irqsave(&pdc_lock, flags);
939 	pdc_result[0] = 0;
940 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
941 			      __pa(pdc_result), hpa,
942 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
943 	spin_unlock_irqrestore(&pdc_lock, flags);
944 
945 	return retval;
946 }
947 #endif /* UNTESTED CODE */
948 
949 /**
950  * pdc_tod_read - Read the Time-Of-Day clock.
951  * @tod: The return buffer:
952  *
953  * Read the Time-Of-Day clock
954  */
955 int pdc_tod_read(struct pdc_tod *tod)
956 {
957         int retval;
958 	unsigned long flags;
959 
960         spin_lock_irqsave(&pdc_lock, flags);
961         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
962         convert_to_wide(pdc_result);
963         memcpy(tod, pdc_result, sizeof(*tod));
964         spin_unlock_irqrestore(&pdc_lock, flags);
965 
966         return retval;
967 }
968 EXPORT_SYMBOL(pdc_tod_read);
969 
970 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
971 {
972 	int retval;
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&pdc_lock, flags);
976 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
977 	convert_to_wide(pdc_result);
978 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
979 	spin_unlock_irqrestore(&pdc_lock, flags);
980 
981 	return retval;
982 }
983 
984 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
985 		unsigned long *pdt_entries_ptr)
986 {
987 	int retval;
988 	unsigned long flags;
989 
990 	spin_lock_irqsave(&pdc_lock, flags);
991 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
992 			__pa(pdt_entries_ptr));
993 	if (retval == PDC_OK) {
994 		convert_to_wide(pdc_result);
995 		memcpy(pret, pdc_result, sizeof(*pret));
996 	}
997 	spin_unlock_irqrestore(&pdc_lock, flags);
998 
999 #ifdef CONFIG_64BIT
1000 	/*
1001 	 * 64-bit kernels should not call this PDT function in narrow mode.
1002 	 * The pdt_entries_ptr array above will now contain 32-bit values
1003 	 */
1004 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1005 		return PDC_ERROR;
1006 #endif
1007 
1008 	return retval;
1009 }
1010 
1011 /**
1012  * pdc_tod_set - Set the Time-Of-Day clock.
1013  * @sec: The number of seconds since epoch.
1014  * @usec: The number of micro seconds.
1015  *
1016  * Set the Time-Of-Day clock.
1017  */
1018 int pdc_tod_set(unsigned long sec, unsigned long usec)
1019 {
1020         int retval;
1021 	unsigned long flags;
1022 
1023         spin_lock_irqsave(&pdc_lock, flags);
1024         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1025         spin_unlock_irqrestore(&pdc_lock, flags);
1026 
1027         return retval;
1028 }
1029 EXPORT_SYMBOL(pdc_tod_set);
1030 
1031 #ifdef CONFIG_64BIT
1032 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1033 		struct pdc_memory_table *tbl, unsigned long entries)
1034 {
1035 	int retval;
1036 	unsigned long flags;
1037 
1038 	spin_lock_irqsave(&pdc_lock, flags);
1039 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1040 	convert_to_wide(pdc_result);
1041 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1042 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1043 	spin_unlock_irqrestore(&pdc_lock, flags);
1044 
1045 	return retval;
1046 }
1047 #endif /* CONFIG_64BIT */
1048 
1049 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1050  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1051  * it later. :)
1052  */
1053 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1054 {
1055         int retval;
1056 	unsigned long flags;
1057 
1058         spin_lock_irqsave(&pdc_lock, flags);
1059         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1060                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1061         spin_unlock_irqrestore(&pdc_lock, flags);
1062 
1063         return retval;
1064 }
1065 
1066 /*
1067  * pdc_do_reset - Reset the system.
1068  *
1069  * Reset the system.
1070  */
1071 int pdc_do_reset(void)
1072 {
1073         int retval;
1074 	unsigned long flags;
1075 
1076         spin_lock_irqsave(&pdc_lock, flags);
1077         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1078         spin_unlock_irqrestore(&pdc_lock, flags);
1079 
1080         return retval;
1081 }
1082 
1083 /*
1084  * pdc_soft_power_info - Enable soft power switch.
1085  * @power_reg: address of soft power register
1086  *
1087  * Return the absolute address of the soft power switch register
1088  */
1089 int __init pdc_soft_power_info(unsigned long *power_reg)
1090 {
1091 	int retval;
1092 	unsigned long flags;
1093 
1094 	*power_reg = (unsigned long) (-1);
1095 
1096 	spin_lock_irqsave(&pdc_lock, flags);
1097 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1098 	if (retval == PDC_OK) {
1099                 convert_to_wide(pdc_result);
1100                 *power_reg = f_extend(pdc_result[0]);
1101 	}
1102 	spin_unlock_irqrestore(&pdc_lock, flags);
1103 
1104 	return retval;
1105 }
1106 
1107 /*
1108  * pdc_soft_power_button - Control the soft power button behaviour
1109  * @sw_control: 0 for hardware control, 1 for software control
1110  *
1111  *
1112  * This PDC function places the soft power button under software or
1113  * hardware control.
1114  * Under software control the OS may control to when to allow to shut
1115  * down the system. Under hardware control pressing the power button
1116  * powers off the system immediately.
1117  */
1118 int pdc_soft_power_button(int sw_control)
1119 {
1120 	int retval;
1121 	unsigned long flags;
1122 
1123 	spin_lock_irqsave(&pdc_lock, flags);
1124 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1125 	spin_unlock_irqrestore(&pdc_lock, flags);
1126 
1127 	return retval;
1128 }
1129 
1130 /*
1131  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1132  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1133  * who knows what other platform firmware might do with this OS "hook".
1134  */
1135 void pdc_io_reset(void)
1136 {
1137 	unsigned long flags;
1138 
1139 	spin_lock_irqsave(&pdc_lock, flags);
1140 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1141 	spin_unlock_irqrestore(&pdc_lock, flags);
1142 }
1143 
1144 /*
1145  * pdc_io_reset_devices - Hack to Stop USB controller
1146  *
1147  * If PDC used the usb controller, the usb controller
1148  * is still running and will crash the machines during iommu
1149  * setup, because of still running DMA. This PDC call
1150  * stops the USB controller.
1151  * Normally called after calling pdc_io_reset().
1152  */
1153 void pdc_io_reset_devices(void)
1154 {
1155 	unsigned long flags;
1156 
1157 	spin_lock_irqsave(&pdc_lock, flags);
1158 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1159 	spin_unlock_irqrestore(&pdc_lock, flags);
1160 }
1161 
1162 #endif /* defined(BOOTLOADER) */
1163 
1164 /* locked by pdc_console_lock */
1165 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1166 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1167 
1168 /**
1169  * pdc_iodc_print - Console print using IODC.
1170  * @str: the string to output.
1171  * @count: length of str
1172  *
1173  * Note that only these special chars are architected for console IODC io:
1174  * BEL, BS, CR, and LF. Others are passed through.
1175  * Since the HP console requires CR+LF to perform a 'newline', we translate
1176  * "\n" to "\r\n".
1177  */
1178 int pdc_iodc_print(const unsigned char *str, unsigned count)
1179 {
1180 	unsigned int i;
1181 	unsigned long flags;
1182 
1183 	for (i = 0; i < count;) {
1184 		switch(str[i]) {
1185 		case '\n':
1186 			iodc_dbuf[i+0] = '\r';
1187 			iodc_dbuf[i+1] = '\n';
1188 			i += 2;
1189 			goto print;
1190 		default:
1191 			iodc_dbuf[i] = str[i];
1192 			i++;
1193 			break;
1194 		}
1195 	}
1196 
1197 print:
1198         spin_lock_irqsave(&pdc_lock, flags);
1199         real32_call(PAGE0->mem_cons.iodc_io,
1200                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1201                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1202                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1203         spin_unlock_irqrestore(&pdc_lock, flags);
1204 
1205 	return i;
1206 }
1207 
1208 #if !defined(BOOTLOADER)
1209 /**
1210  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1211  *
1212  * Read a character (non-blocking) from the PDC console, returns -1 if
1213  * key is not present.
1214  */
1215 int pdc_iodc_getc(void)
1216 {
1217 	int ch;
1218 	int status;
1219 	unsigned long flags;
1220 
1221 	/* Bail if no console input device. */
1222 	if (!PAGE0->mem_kbd.iodc_io)
1223 		return 0;
1224 
1225 	/* wait for a keyboard (rs232)-input */
1226 	spin_lock_irqsave(&pdc_lock, flags);
1227 	real32_call(PAGE0->mem_kbd.iodc_io,
1228 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1229 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1230 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1231 
1232 	ch = *iodc_dbuf;
1233 	status = *iodc_retbuf;
1234 	spin_unlock_irqrestore(&pdc_lock, flags);
1235 
1236 	if (status == 0)
1237 	    return -1;
1238 
1239 	return ch;
1240 }
1241 
1242 int pdc_sti_call(unsigned long func, unsigned long flags,
1243                  unsigned long inptr, unsigned long outputr,
1244                  unsigned long glob_cfg)
1245 {
1246         int retval;
1247 	unsigned long irqflags;
1248 
1249         spin_lock_irqsave(&pdc_lock, irqflags);
1250         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1251         spin_unlock_irqrestore(&pdc_lock, irqflags);
1252 
1253         return retval;
1254 }
1255 EXPORT_SYMBOL(pdc_sti_call);
1256 
1257 #ifdef CONFIG_64BIT
1258 /**
1259  * pdc_pat_cell_get_number - Returns the cell number.
1260  * @cell_info: The return buffer.
1261  *
1262  * This PDC call returns the cell number of the cell from which the call
1263  * is made.
1264  */
1265 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1266 {
1267 	int retval;
1268 	unsigned long flags;
1269 
1270 	spin_lock_irqsave(&pdc_lock, flags);
1271 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1272 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1273 	spin_unlock_irqrestore(&pdc_lock, flags);
1274 
1275 	return retval;
1276 }
1277 
1278 /**
1279  * pdc_pat_cell_module - Retrieve the cell's module information.
1280  * @actcnt: The number of bytes written to mem_addr.
1281  * @ploc: The physical location.
1282  * @mod: The module index.
1283  * @view_type: The view of the address type.
1284  * @mem_addr: The return buffer.
1285  *
1286  * This PDC call returns information about each module attached to the cell
1287  * at the specified location.
1288  */
1289 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1290 			unsigned long view_type, void *mem_addr)
1291 {
1292 	int retval;
1293 	unsigned long flags;
1294 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1295 
1296 	spin_lock_irqsave(&pdc_lock, flags);
1297 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1298 			      ploc, mod, view_type, __pa(&result));
1299 	if(!retval) {
1300 		*actcnt = pdc_result[0];
1301 		memcpy(mem_addr, &result, *actcnt);
1302 	}
1303 	spin_unlock_irqrestore(&pdc_lock, flags);
1304 
1305 	return retval;
1306 }
1307 
1308 /**
1309  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1310  * @cpu_info: The return buffer.
1311  * @hpa: The Hard Physical Address of the CPU.
1312  *
1313  * Retrieve the cpu number for the cpu at the specified HPA.
1314  */
1315 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1316 {
1317 	int retval;
1318 	unsigned long flags;
1319 
1320 	spin_lock_irqsave(&pdc_lock, flags);
1321 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1322 			      __pa(&pdc_result), hpa);
1323 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1324 	spin_unlock_irqrestore(&pdc_lock, flags);
1325 
1326 	return retval;
1327 }
1328 
1329 /**
1330  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1331  * @num_entries: The return value.
1332  * @cell_num: The target cell.
1333  *
1334  * This PDC function returns the number of entries in the specified cell's
1335  * interrupt table.
1336  */
1337 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1338 {
1339 	int retval;
1340 	unsigned long flags;
1341 
1342 	spin_lock_irqsave(&pdc_lock, flags);
1343 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1344 			      __pa(pdc_result), cell_num);
1345 	*num_entries = pdc_result[0];
1346 	spin_unlock_irqrestore(&pdc_lock, flags);
1347 
1348 	return retval;
1349 }
1350 
1351 /**
1352  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1353  * @r_addr: The return buffer.
1354  * @cell_num: The target cell.
1355  *
1356  * This PDC function returns the actual interrupt table for the specified cell.
1357  */
1358 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1359 {
1360 	int retval;
1361 	unsigned long flags;
1362 
1363 	spin_lock_irqsave(&pdc_lock, flags);
1364 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1365 			      __pa(r_addr), cell_num);
1366 	spin_unlock_irqrestore(&pdc_lock, flags);
1367 
1368 	return retval;
1369 }
1370 
1371 /**
1372  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1373  * @actlen: The return buffer.
1374  * @mem_addr: Pointer to the memory buffer.
1375  * @count: The number of bytes to read from the buffer.
1376  * @offset: The offset with respect to the beginning of the buffer.
1377  *
1378  */
1379 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1380 			    unsigned long count, unsigned long offset)
1381 {
1382 	int retval;
1383 	unsigned long flags;
1384 
1385 	spin_lock_irqsave(&pdc_lock, flags);
1386 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1387 			      __pa(pdc_result2), count, offset);
1388 	*actual_len = pdc_result[0];
1389 	memcpy(mem_addr, pdc_result2, *actual_len);
1390 	spin_unlock_irqrestore(&pdc_lock, flags);
1391 
1392 	return retval;
1393 }
1394 
1395 /**
1396  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1397  * @pci_addr: PCI configuration space address for which the read request is being made.
1398  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1399  * @mem_addr: Pointer to return memory buffer.
1400  *
1401  */
1402 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1403 {
1404 	int retval;
1405 	unsigned long flags;
1406 
1407 	spin_lock_irqsave(&pdc_lock, flags);
1408 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1409 					__pa(pdc_result), pci_addr, pci_size);
1410 	switch(pci_size) {
1411 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1412 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1413 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1414 	}
1415 	spin_unlock_irqrestore(&pdc_lock, flags);
1416 
1417 	return retval;
1418 }
1419 
1420 /**
1421  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1422  * @pci_addr: PCI configuration space address for which the write  request is being made.
1423  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1424  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1425  *         written to PCI Config space.
1426  *
1427  */
1428 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1429 {
1430 	int retval;
1431 	unsigned long flags;
1432 
1433 	spin_lock_irqsave(&pdc_lock, flags);
1434 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1435 				pci_addr, pci_size, val);
1436 	spin_unlock_irqrestore(&pdc_lock, flags);
1437 
1438 	return retval;
1439 }
1440 
1441 /**
1442  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1443  * @rinfo: memory pdt information
1444  *
1445  */
1446 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1447 {
1448 	int retval;
1449 	unsigned long flags;
1450 
1451 	spin_lock_irqsave(&pdc_lock, flags);
1452 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1453 			__pa(&pdc_result));
1454 	if (retval == PDC_OK)
1455 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1456 	spin_unlock_irqrestore(&pdc_lock, flags);
1457 
1458 	return retval;
1459 }
1460 
1461 /**
1462  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1463  *				table of a cell
1464  * @rinfo: memory pdt information
1465  * @cell: cell number
1466  *
1467  */
1468 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1469 		unsigned long cell)
1470 {
1471 	int retval;
1472 	unsigned long flags;
1473 
1474 	spin_lock_irqsave(&pdc_lock, flags);
1475 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1476 			__pa(&pdc_result), cell);
1477 	if (retval == PDC_OK)
1478 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1479 	spin_unlock_irqrestore(&pdc_lock, flags);
1480 
1481 	return retval;
1482 }
1483 
1484 /**
1485  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1486  * @pret: array of PDT entries
1487  * @pdt_entries_ptr: ptr to hold number of PDT entries
1488  * @max_entries: maximum number of entries to be read
1489  *
1490  */
1491 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1492 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1493 {
1494 	int retval;
1495 	unsigned long flags, entries;
1496 
1497 	spin_lock_irqsave(&pdc_lock, flags);
1498 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1499 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1500 			__pa(&pdc_result), parisc_cell_num,
1501 			__pa(pdt_entries_ptr));
1502 
1503 	if (retval == PDC_OK) {
1504 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1505 		entries = min(pdc_result[0], max_entries);
1506 		pret->pdt_entries = entries;
1507 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1508 	}
1509 
1510 	spin_unlock_irqrestore(&pdc_lock, flags);
1511 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1512 
1513 	return retval;
1514 }
1515 /**
1516  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1517  * @pret: array of PDT entries
1518  * @pdt_entries_ptr: ptr to hold number of PDT entries
1519  * @count: number of bytes to read
1520  * @offset: offset to start (in bytes)
1521  *
1522  */
1523 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1524 		unsigned long *pdt_entries_ptr, unsigned long count,
1525 		unsigned long offset)
1526 {
1527 	int retval;
1528 	unsigned long flags, entries;
1529 
1530 	spin_lock_irqsave(&pdc_lock, flags);
1531 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1532 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1533 		count, offset);
1534 
1535 	if (retval == PDC_OK) {
1536 		entries = min(pdc_result[0], count);
1537 		pret->actual_count_bytes = entries;
1538 		pret->pdt_entries = entries / sizeof(unsigned long);
1539 	}
1540 
1541 	spin_unlock_irqrestore(&pdc_lock, flags);
1542 
1543 	return retval;
1544 }
1545 
1546 /**
1547  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1548  * @pret: ptr to hold returned information
1549  * @phys_addr: physical address to examine
1550  *
1551  */
1552 int pdc_pat_mem_get_dimm_phys_location(
1553 		struct pdc_pat_mem_phys_mem_location *pret,
1554 		unsigned long phys_addr)
1555 {
1556 	int retval;
1557 	unsigned long flags;
1558 
1559 	spin_lock_irqsave(&pdc_lock, flags);
1560 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1561 		__pa(&pdc_result), phys_addr);
1562 
1563 	if (retval == PDC_OK)
1564 		memcpy(pret, &pdc_result, sizeof(*pret));
1565 
1566 	spin_unlock_irqrestore(&pdc_lock, flags);
1567 
1568 	return retval;
1569 }
1570 #endif /* CONFIG_64BIT */
1571 #endif /* defined(BOOTLOADER) */
1572 
1573 
1574 /***************** 32-bit real-mode calls ***********/
1575 /* The struct below is used
1576  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1577  * real32_call_asm() then uses this stack in narrow real mode
1578  */
1579 
1580 struct narrow_stack {
1581 	/* use int, not long which is 64 bits */
1582 	unsigned int arg13;
1583 	unsigned int arg12;
1584 	unsigned int arg11;
1585 	unsigned int arg10;
1586 	unsigned int arg9;
1587 	unsigned int arg8;
1588 	unsigned int arg7;
1589 	unsigned int arg6;
1590 	unsigned int arg5;
1591 	unsigned int arg4;
1592 	unsigned int arg3;
1593 	unsigned int arg2;
1594 	unsigned int arg1;
1595 	unsigned int arg0;
1596 	unsigned int frame_marker[8];
1597 	unsigned int sp;
1598 	/* in reality, there's nearly 8k of stack after this */
1599 };
1600 
1601 long real32_call(unsigned long fn, ...)
1602 {
1603 	va_list args;
1604 	extern struct narrow_stack real_stack;
1605 	extern unsigned long real32_call_asm(unsigned int *,
1606 					     unsigned int *,
1607 					     unsigned int);
1608 
1609 	va_start(args, fn);
1610 	real_stack.arg0 = va_arg(args, unsigned int);
1611 	real_stack.arg1 = va_arg(args, unsigned int);
1612 	real_stack.arg2 = va_arg(args, unsigned int);
1613 	real_stack.arg3 = va_arg(args, unsigned int);
1614 	real_stack.arg4 = va_arg(args, unsigned int);
1615 	real_stack.arg5 = va_arg(args, unsigned int);
1616 	real_stack.arg6 = va_arg(args, unsigned int);
1617 	real_stack.arg7 = va_arg(args, unsigned int);
1618 	real_stack.arg8 = va_arg(args, unsigned int);
1619 	real_stack.arg9 = va_arg(args, unsigned int);
1620 	real_stack.arg10 = va_arg(args, unsigned int);
1621 	real_stack.arg11 = va_arg(args, unsigned int);
1622 	real_stack.arg12 = va_arg(args, unsigned int);
1623 	real_stack.arg13 = va_arg(args, unsigned int);
1624 	va_end(args);
1625 
1626 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1627 }
1628 
1629 #ifdef CONFIG_64BIT
1630 /***************** 64-bit real-mode calls ***********/
1631 
1632 struct wide_stack {
1633 	unsigned long arg0;
1634 	unsigned long arg1;
1635 	unsigned long arg2;
1636 	unsigned long arg3;
1637 	unsigned long arg4;
1638 	unsigned long arg5;
1639 	unsigned long arg6;
1640 	unsigned long arg7;
1641 	unsigned long arg8;
1642 	unsigned long arg9;
1643 	unsigned long arg10;
1644 	unsigned long arg11;
1645 	unsigned long arg12;
1646 	unsigned long arg13;
1647 	unsigned long frame_marker[2];	/* rp, previous sp */
1648 	unsigned long sp;
1649 	/* in reality, there's nearly 8k of stack after this */
1650 };
1651 
1652 long real64_call(unsigned long fn, ...)
1653 {
1654 	va_list args;
1655 	extern struct wide_stack real64_stack;
1656 	extern unsigned long real64_call_asm(unsigned long *,
1657 					     unsigned long *,
1658 					     unsigned long);
1659 
1660 	va_start(args, fn);
1661 	real64_stack.arg0 = va_arg(args, unsigned long);
1662 	real64_stack.arg1 = va_arg(args, unsigned long);
1663 	real64_stack.arg2 = va_arg(args, unsigned long);
1664 	real64_stack.arg3 = va_arg(args, unsigned long);
1665 	real64_stack.arg4 = va_arg(args, unsigned long);
1666 	real64_stack.arg5 = va_arg(args, unsigned long);
1667 	real64_stack.arg6 = va_arg(args, unsigned long);
1668 	real64_stack.arg7 = va_arg(args, unsigned long);
1669 	real64_stack.arg8 = va_arg(args, unsigned long);
1670 	real64_stack.arg9 = va_arg(args, unsigned long);
1671 	real64_stack.arg10 = va_arg(args, unsigned long);
1672 	real64_stack.arg11 = va_arg(args, unsigned long);
1673 	real64_stack.arg12 = va_arg(args, unsigned long);
1674 	real64_stack.arg13 = va_arg(args, unsigned long);
1675 	va_end(args);
1676 
1677 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1678 }
1679 
1680 #endif /* CONFIG_64BIT */
1681