xref: /openbmc/linux/arch/parisc/kernel/firmware.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
4  *
5  *	PDC == Processor Dependent Code
6  *
7  * See PDC documentation at
8  * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9  * for documentation describing the entry points and calling
10  * conventions defined below.
11  *
12  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17  */
18 
19 /*	I think it would be in everyone's best interest to follow this
20  *	guidelines when writing PDC wrappers:
21  *
22  *	 - the name of the pdc wrapper should match one of the macros
23  *	   used for the first two arguments
24  *	 - don't use caps for random parts of the name
25  *	 - use the static PDC result buffers and "copyout" to structs
26  *	   supplied by the caller to encapsulate alignment restrictions
27  *	 - hold pdc_lock while in PDC or using static result buffers
28  *	 - use __pa() to convert virtual (kernel) pointers to physical
29  *	   ones.
30  *	 - the name of the struct used for pdc return values should equal
31  *	   one of the macros used for the first two arguments to the
32  *	   corresponding PDC call
33  *	 - keep the order of arguments
34  *	 - don't be smart (setting trailing NUL bytes for strings, return
35  *	   something useful even if the call failed) unless you are sure
36  *	   it's not going to affect functionality or performance
37  *
38  *	Example:
39  *	int pdc_cache_info(struct pdc_cache_info *cache_info )
40  *	{
41  *		int retval;
42  *
43  *		spin_lock_irq(&pdc_lock);
44  *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45  *		convert_to_wide(pdc_result);
46  *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
47  *		spin_unlock_irq(&pdc_lock);
48  *
49  *		return retval;
50  *	}
51  *					prumpf	991016
52  */
53 
54 #include <linux/stdarg.h>
55 
56 #include <linux/delay.h>
57 #include <linux/init.h>
58 #include <linux/kernel.h>
59 #include <linux/module.h>
60 #include <linux/string.h>
61 #include <linux/spinlock.h>
62 
63 #include <asm/page.h>
64 #include <asm/pdc.h>
65 #include <asm/pdcpat.h>
66 #include <asm/processor.h>	/* for boot_cpu_data */
67 
68 #if defined(BOOTLOADER)
69 # undef  spin_lock_irqsave
70 # define spin_lock_irqsave(a, b) { b = 1; }
71 # undef  spin_unlock_irqrestore
72 # define spin_unlock_irqrestore(a, b)
73 #else
74 static DEFINE_SPINLOCK(pdc_lock);
75 #endif
76 
77 extern unsigned long pdc_result[NUM_PDC_RESULT];
78 extern unsigned long pdc_result2[NUM_PDC_RESULT];
79 
80 #ifdef CONFIG_64BIT
81 #define WIDE_FIRMWARE 0x1
82 #define NARROW_FIRMWARE 0x2
83 
84 /* Firmware needs to be initially set to narrow to determine the
85  * actual firmware width. */
86 int parisc_narrow_firmware __ro_after_init = 1;
87 #endif
88 
89 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90  * and MEM_PDC calls are always the same width as the OS.
91  * Some PAT boxes may have 64-bit IODC I/O.
92  *
93  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95  * This allowed wide kernels to run on Cxxx boxes.
96  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98  */
99 
100 #ifdef CONFIG_64BIT
101 long real64_call(unsigned long function, ...);
102 #endif
103 long real32_call(unsigned long function, ...);
104 
105 #ifdef CONFIG_64BIT
106 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108 #else
109 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
110 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111 #endif
112 
113 
114 /**
115  * f_extend - Convert PDC addresses to kernel addresses.
116  * @address: Address returned from PDC.
117  *
118  * This function is used to convert PDC addresses into kernel addresses
119  * when the PDC address size and kernel address size are different.
120  */
121 static unsigned long f_extend(unsigned long address)
122 {
123 #ifdef CONFIG_64BIT
124 	if(unlikely(parisc_narrow_firmware)) {
125 		if((address & 0xff000000) == 0xf0000000)
126 			return 0xf0f0f0f000000000UL | (u32)address;
127 
128 		if((address & 0xf0000000) == 0xf0000000)
129 			return 0xffffffff00000000UL | (u32)address;
130 	}
131 #endif
132 	return address;
133 }
134 
135 /**
136  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137  * @address: The return buffer from PDC.
138  *
139  * This function is used to convert the return buffer addresses retrieved from PDC
140  * into kernel addresses when the PDC address size and kernel address size are
141  * different.
142  */
143 static void convert_to_wide(unsigned long *addr)
144 {
145 #ifdef CONFIG_64BIT
146 	int i;
147 	unsigned int *p = (unsigned int *)addr;
148 
149 	if (unlikely(parisc_narrow_firmware)) {
150 		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 			addr[i] = p[i];
152 	}
153 #endif
154 }
155 
156 #ifdef CONFIG_64BIT
157 void set_firmware_width_unlocked(void)
158 {
159 	int ret;
160 
161 	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 		__pa(pdc_result), 0);
163 	convert_to_wide(pdc_result);
164 	if (pdc_result[0] != NARROW_FIRMWARE)
165 		parisc_narrow_firmware = 0;
166 }
167 
168 /**
169  * set_firmware_width - Determine if the firmware is wide or narrow.
170  *
171  * This function must be called before any pdc_* function that uses the
172  * convert_to_wide function.
173  */
174 void set_firmware_width(void)
175 {
176 	unsigned long flags;
177 	spin_lock_irqsave(&pdc_lock, flags);
178 	set_firmware_width_unlocked();
179 	spin_unlock_irqrestore(&pdc_lock, flags);
180 }
181 #else
182 void set_firmware_width_unlocked(void)
183 {
184 	return;
185 }
186 
187 void set_firmware_width(void)
188 {
189 	return;
190 }
191 #endif /*CONFIG_64BIT*/
192 
193 
194 #if !defined(BOOTLOADER)
195 /**
196  * pdc_emergency_unlock - Unlock the linux pdc lock
197  *
198  * This call unlocks the linux pdc lock in case we need some PDC functions
199  * (like pdc_add_valid) during kernel stack dump.
200  */
201 void pdc_emergency_unlock(void)
202 {
203  	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
204         if (spin_is_locked(&pdc_lock))
205 		spin_unlock(&pdc_lock);
206 }
207 
208 
209 /**
210  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
211  * @address: Address to be verified.
212  *
213  * This PDC call attempts to read from the specified address and verifies
214  * if the address is valid.
215  *
216  * The return value is PDC_OK (0) in case accessing this address is valid.
217  */
218 int pdc_add_valid(unsigned long address)
219 {
220         int retval;
221 	unsigned long flags;
222 
223         spin_lock_irqsave(&pdc_lock, flags);
224         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
225         spin_unlock_irqrestore(&pdc_lock, flags);
226 
227         return retval;
228 }
229 EXPORT_SYMBOL(pdc_add_valid);
230 
231 /**
232  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
233  * @instr: Pointer to variable which will get instruction opcode.
234  *
235  * The return value is PDC_OK (0) in case call succeeded.
236  */
237 int __init pdc_instr(unsigned int *instr)
238 {
239 	int retval;
240 	unsigned long flags;
241 
242 	spin_lock_irqsave(&pdc_lock, flags);
243 	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
244 	convert_to_wide(pdc_result);
245 	*instr = pdc_result[0];
246 	spin_unlock_irqrestore(&pdc_lock, flags);
247 
248 	return retval;
249 }
250 
251 /**
252  * pdc_chassis_info - Return chassis information.
253  * @result: The return buffer.
254  * @chassis_info: The memory buffer address.
255  * @len: The size of the memory buffer address.
256  *
257  * An HVERSION dependent call for returning the chassis information.
258  */
259 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
260 {
261         int retval;
262 	unsigned long flags;
263 
264         spin_lock_irqsave(&pdc_lock, flags);
265         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
266         memcpy(&pdc_result2, led_info, len);
267         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
268                               __pa(pdc_result), __pa(pdc_result2), len);
269         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
270         memcpy(led_info, pdc_result2, len);
271         spin_unlock_irqrestore(&pdc_lock, flags);
272 
273         return retval;
274 }
275 
276 /**
277  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
278  * @retval: -1 on error, 0 on success. Other value are PDC errors
279  *
280  * Must be correctly formatted or expect system crash
281  */
282 #ifdef CONFIG_64BIT
283 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
284 {
285 	int retval = 0;
286 	unsigned long flags;
287 
288 	if (!is_pdc_pat())
289 		return -1;
290 
291 	spin_lock_irqsave(&pdc_lock, flags);
292 	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
293 	spin_unlock_irqrestore(&pdc_lock, flags);
294 
295 	return retval;
296 }
297 #endif
298 
299 /**
300  * pdc_chassis_disp - Updates chassis code
301  * @retval: -1 on error, 0 on success
302  */
303 int pdc_chassis_disp(unsigned long disp)
304 {
305 	int retval = 0;
306 	unsigned long flags;
307 
308 	spin_lock_irqsave(&pdc_lock, flags);
309 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
310 	spin_unlock_irqrestore(&pdc_lock, flags);
311 
312 	return retval;
313 }
314 
315 /**
316  * pdc_cpu_rendenzvous - Stop currently executing CPU
317  * @retval: -1 on error, 0 on success
318  */
319 int __pdc_cpu_rendezvous(void)
320 {
321 	if (is_pdc_pat())
322 		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
323 	else
324 		return mem_pdc_call(PDC_PROC, 1, 0);
325 }
326 
327 
328 /**
329  * pdc_chassis_warn - Fetches chassis warnings
330  * @retval: -1 on error, 0 on success
331  */
332 int pdc_chassis_warn(unsigned long *warn)
333 {
334 	int retval = 0;
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(&pdc_lock, flags);
338 	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
339 	*warn = pdc_result[0];
340 	spin_unlock_irqrestore(&pdc_lock, flags);
341 
342 	return retval;
343 }
344 
345 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
346 {
347 	int ret;
348 
349 	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
350 	convert_to_wide(pdc_result);
351 	pdc_coproc_info->ccr_functional = pdc_result[0];
352 	pdc_coproc_info->ccr_present = pdc_result[1];
353 	pdc_coproc_info->revision = pdc_result[17];
354 	pdc_coproc_info->model = pdc_result[18];
355 
356 	return ret;
357 }
358 
359 /**
360  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
361  * @pdc_coproc_info: Return buffer address.
362  *
363  * This PDC call returns the presence and status of all the coprocessors
364  * attached to the processor.
365  */
366 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
367 {
368 	int ret;
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&pdc_lock, flags);
372 	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
373 	spin_unlock_irqrestore(&pdc_lock, flags);
374 
375 	return ret;
376 }
377 
378 /**
379  * pdc_iodc_read - Read data from the modules IODC.
380  * @actcnt: The actual number of bytes.
381  * @hpa: The HPA of the module for the iodc read.
382  * @index: The iodc entry point.
383  * @iodc_data: A buffer memory for the iodc options.
384  * @iodc_data_size: Size of the memory buffer.
385  *
386  * This PDC call reads from the IODC of the module specified by the hpa
387  * argument.
388  */
389 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
390 		  void *iodc_data, unsigned int iodc_data_size)
391 {
392 	int retval;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&pdc_lock, flags);
396 	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
397 			      index, __pa(pdc_result2), iodc_data_size);
398 	convert_to_wide(pdc_result);
399 	*actcnt = pdc_result[0];
400 	memcpy(iodc_data, pdc_result2, iodc_data_size);
401 	spin_unlock_irqrestore(&pdc_lock, flags);
402 
403 	return retval;
404 }
405 EXPORT_SYMBOL(pdc_iodc_read);
406 
407 /**
408  * pdc_system_map_find_mods - Locate unarchitected modules.
409  * @pdc_mod_info: Return buffer address.
410  * @mod_path: pointer to dev path structure.
411  * @mod_index: fixed address module index.
412  *
413  * To locate and identify modules which reside at fixed I/O addresses, which
414  * do not self-identify via architected bus walks.
415  */
416 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
417 			     struct pdc_module_path *mod_path, long mod_index)
418 {
419 	int retval;
420 	unsigned long flags;
421 
422 	spin_lock_irqsave(&pdc_lock, flags);
423 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
424 			      __pa(pdc_result2), mod_index);
425 	convert_to_wide(pdc_result);
426 	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
427 	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
428 	spin_unlock_irqrestore(&pdc_lock, flags);
429 
430 	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
431 	return retval;
432 }
433 
434 /**
435  * pdc_system_map_find_addrs - Retrieve additional address ranges.
436  * @pdc_addr_info: Return buffer address.
437  * @mod_index: Fixed address module index.
438  * @addr_index: Address range index.
439  *
440  * Retrieve additional information about subsequent address ranges for modules
441  * with multiple address ranges.
442  */
443 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
444 			      long mod_index, long addr_index)
445 {
446 	int retval;
447 	unsigned long flags;
448 
449 	spin_lock_irqsave(&pdc_lock, flags);
450 	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
451 			      mod_index, addr_index);
452 	convert_to_wide(pdc_result);
453 	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
454 	spin_unlock_irqrestore(&pdc_lock, flags);
455 
456 	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
457 	return retval;
458 }
459 
460 /**
461  * pdc_model_info - Return model information about the processor.
462  * @model: The return buffer.
463  *
464  * Returns the version numbers, identifiers, and capabilities from the processor module.
465  */
466 int pdc_model_info(struct pdc_model *model)
467 {
468 	int retval;
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&pdc_lock, flags);
472 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
473 	convert_to_wide(pdc_result);
474 	memcpy(model, pdc_result, sizeof(*model));
475 	spin_unlock_irqrestore(&pdc_lock, flags);
476 
477 	return retval;
478 }
479 
480 /**
481  * pdc_model_sysmodel - Get the system model name.
482  * @name: A char array of at least 81 characters.
483  *
484  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
485  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
486  * on HP/UX.
487  */
488 int pdc_model_sysmodel(char *name)
489 {
490         int retval;
491 	unsigned long flags;
492 
493         spin_lock_irqsave(&pdc_lock, flags);
494         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
495                               OS_ID_HPUX, __pa(name));
496         convert_to_wide(pdc_result);
497 
498         if (retval == PDC_OK) {
499                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
500         } else {
501                 name[0] = 0;
502         }
503         spin_unlock_irqrestore(&pdc_lock, flags);
504 
505         return retval;
506 }
507 
508 /**
509  * pdc_model_versions - Identify the version number of each processor.
510  * @cpu_id: The return buffer.
511  * @id: The id of the processor to check.
512  *
513  * Returns the version number for each processor component.
514  *
515  * This comment was here before, but I do not know what it means :( -RB
516  * id: 0 = cpu revision, 1 = boot-rom-version
517  */
518 int pdc_model_versions(unsigned long *versions, int id)
519 {
520         int retval;
521 	unsigned long flags;
522 
523         spin_lock_irqsave(&pdc_lock, flags);
524         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
525         convert_to_wide(pdc_result);
526         *versions = pdc_result[0];
527         spin_unlock_irqrestore(&pdc_lock, flags);
528 
529         return retval;
530 }
531 
532 /**
533  * pdc_model_cpuid - Returns the CPU_ID.
534  * @cpu_id: The return buffer.
535  *
536  * Returns the CPU_ID value which uniquely identifies the cpu portion of
537  * the processor module.
538  */
539 int pdc_model_cpuid(unsigned long *cpu_id)
540 {
541         int retval;
542 	unsigned long flags;
543 
544         spin_lock_irqsave(&pdc_lock, flags);
545         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
546         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
547         convert_to_wide(pdc_result);
548         *cpu_id = pdc_result[0];
549         spin_unlock_irqrestore(&pdc_lock, flags);
550 
551         return retval;
552 }
553 
554 /**
555  * pdc_model_capabilities - Returns the platform capabilities.
556  * @capabilities: The return buffer.
557  *
558  * Returns information about platform support for 32- and/or 64-bit
559  * OSes, IO-PDIR coherency, and virtual aliasing.
560  */
561 int pdc_model_capabilities(unsigned long *capabilities)
562 {
563         int retval;
564 	unsigned long flags;
565 
566         spin_lock_irqsave(&pdc_lock, flags);
567         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
568         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
569         convert_to_wide(pdc_result);
570         if (retval == PDC_OK) {
571                 *capabilities = pdc_result[0];
572         } else {
573                 *capabilities = PDC_MODEL_OS32;
574         }
575         spin_unlock_irqrestore(&pdc_lock, flags);
576 
577         return retval;
578 }
579 
580 /**
581  * pdc_model_platform_info - Returns machine product and serial number.
582  * @orig_prod_num: Return buffer for original product number.
583  * @current_prod_num: Return buffer for current product number.
584  * @serial_no: Return buffer for serial number.
585  *
586  * Returns strings containing the original and current product numbers and the
587  * serial number of the system.
588  */
589 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
590 		char *serial_no)
591 {
592 	int retval;
593 	unsigned long flags;
594 
595 	spin_lock_irqsave(&pdc_lock, flags);
596 	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
597 		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
598 	convert_to_wide(pdc_result);
599 	spin_unlock_irqrestore(&pdc_lock, flags);
600 
601 	return retval;
602 }
603 
604 /**
605  * pdc_cache_info - Return cache and TLB information.
606  * @cache_info: The return buffer.
607  *
608  * Returns information about the processor's cache and TLB.
609  */
610 int pdc_cache_info(struct pdc_cache_info *cache_info)
611 {
612         int retval;
613 	unsigned long flags;
614 
615         spin_lock_irqsave(&pdc_lock, flags);
616         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
617         convert_to_wide(pdc_result);
618         memcpy(cache_info, pdc_result, sizeof(*cache_info));
619         spin_unlock_irqrestore(&pdc_lock, flags);
620 
621         return retval;
622 }
623 
624 /**
625  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
626  * @space_bits: Should be 0, if not, bad mojo!
627  *
628  * Returns information about Space ID hashing.
629  */
630 int pdc_spaceid_bits(unsigned long *space_bits)
631 {
632 	int retval;
633 	unsigned long flags;
634 
635 	spin_lock_irqsave(&pdc_lock, flags);
636 	pdc_result[0] = 0;
637 	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
638 	convert_to_wide(pdc_result);
639 	*space_bits = pdc_result[0];
640 	spin_unlock_irqrestore(&pdc_lock, flags);
641 
642 	return retval;
643 }
644 
645 #ifndef CONFIG_PA20
646 /**
647  * pdc_btlb_info - Return block TLB information.
648  * @btlb: The return buffer.
649  *
650  * Returns information about the hardware Block TLB.
651  */
652 int pdc_btlb_info(struct pdc_btlb_info *btlb)
653 {
654         int retval;
655 	unsigned long flags;
656 
657         spin_lock_irqsave(&pdc_lock, flags);
658         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
659         memcpy(btlb, pdc_result, sizeof(*btlb));
660         spin_unlock_irqrestore(&pdc_lock, flags);
661 
662         if(retval < 0) {
663                 btlb->max_size = 0;
664         }
665         return retval;
666 }
667 
668 /**
669  * pdc_mem_map_hpa - Find fixed module information.
670  * @address: The return buffer
671  * @mod_path: pointer to dev path structure.
672  *
673  * This call was developed for S700 workstations to allow the kernel to find
674  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
675  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
676  * call.
677  *
678  * This call is supported by all existing S700 workstations (up to  Gecko).
679  */
680 int pdc_mem_map_hpa(struct pdc_memory_map *address,
681 		struct pdc_module_path *mod_path)
682 {
683         int retval;
684 	unsigned long flags;
685 
686         spin_lock_irqsave(&pdc_lock, flags);
687         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
688         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
689 				__pa(pdc_result2));
690         memcpy(address, pdc_result, sizeof(*address));
691         spin_unlock_irqrestore(&pdc_lock, flags);
692 
693         return retval;
694 }
695 #endif	/* !CONFIG_PA20 */
696 
697 /**
698  * pdc_lan_station_id - Get the LAN address.
699  * @lan_addr: The return buffer.
700  * @hpa: The network device HPA.
701  *
702  * Get the LAN station address when it is not directly available from the LAN hardware.
703  */
704 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
705 {
706 	int retval;
707 	unsigned long flags;
708 
709 	spin_lock_irqsave(&pdc_lock, flags);
710 	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
711 			__pa(pdc_result), hpa);
712 	if (retval < 0) {
713 		/* FIXME: else read MAC from NVRAM */
714 		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
715 	} else {
716 		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
717 	}
718 	spin_unlock_irqrestore(&pdc_lock, flags);
719 
720 	return retval;
721 }
722 EXPORT_SYMBOL(pdc_lan_station_id);
723 
724 /**
725  * pdc_stable_read - Read data from Stable Storage.
726  * @staddr: Stable Storage address to access.
727  * @memaddr: The memory address where Stable Storage data shall be copied.
728  * @count: number of bytes to transfer. count is multiple of 4.
729  *
730  * This PDC call reads from the Stable Storage address supplied in staddr
731  * and copies count bytes to the memory address memaddr.
732  * The call will fail if staddr+count > PDC_STABLE size.
733  */
734 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
735 {
736        int retval;
737 	unsigned long flags;
738 
739        spin_lock_irqsave(&pdc_lock, flags);
740        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
741                __pa(pdc_result), count);
742        convert_to_wide(pdc_result);
743        memcpy(memaddr, pdc_result, count);
744        spin_unlock_irqrestore(&pdc_lock, flags);
745 
746        return retval;
747 }
748 EXPORT_SYMBOL(pdc_stable_read);
749 
750 /**
751  * pdc_stable_write - Write data to Stable Storage.
752  * @staddr: Stable Storage address to access.
753  * @memaddr: The memory address where Stable Storage data shall be read from.
754  * @count: number of bytes to transfer. count is multiple of 4.
755  *
756  * This PDC call reads count bytes from the supplied memaddr address,
757  * and copies count bytes to the Stable Storage address staddr.
758  * The call will fail if staddr+count > PDC_STABLE size.
759  */
760 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
761 {
762        int retval;
763 	unsigned long flags;
764 
765        spin_lock_irqsave(&pdc_lock, flags);
766        memcpy(pdc_result, memaddr, count);
767        convert_to_wide(pdc_result);
768        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
769                __pa(pdc_result), count);
770        spin_unlock_irqrestore(&pdc_lock, flags);
771 
772        return retval;
773 }
774 EXPORT_SYMBOL(pdc_stable_write);
775 
776 /**
777  * pdc_stable_get_size - Get Stable Storage size in bytes.
778  * @size: pointer where the size will be stored.
779  *
780  * This PDC call returns the number of bytes in the processor's Stable
781  * Storage, which is the number of contiguous bytes implemented in Stable
782  * Storage starting from staddr=0. size in an unsigned 64-bit integer
783  * which is a multiple of four.
784  */
785 int pdc_stable_get_size(unsigned long *size)
786 {
787        int retval;
788 	unsigned long flags;
789 
790        spin_lock_irqsave(&pdc_lock, flags);
791        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
792        *size = pdc_result[0];
793        spin_unlock_irqrestore(&pdc_lock, flags);
794 
795        return retval;
796 }
797 EXPORT_SYMBOL(pdc_stable_get_size);
798 
799 /**
800  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
801  *
802  * This PDC call is meant to be used to check the integrity of the current
803  * contents of Stable Storage.
804  */
805 int pdc_stable_verify_contents(void)
806 {
807        int retval;
808 	unsigned long flags;
809 
810        spin_lock_irqsave(&pdc_lock, flags);
811        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
812        spin_unlock_irqrestore(&pdc_lock, flags);
813 
814        return retval;
815 }
816 EXPORT_SYMBOL(pdc_stable_verify_contents);
817 
818 /**
819  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
820  * the validity indicator.
821  *
822  * This PDC call will erase all contents of Stable Storage. Use with care!
823  */
824 int pdc_stable_initialize(void)
825 {
826        int retval;
827 	unsigned long flags;
828 
829        spin_lock_irqsave(&pdc_lock, flags);
830        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
831        spin_unlock_irqrestore(&pdc_lock, flags);
832 
833        return retval;
834 }
835 EXPORT_SYMBOL(pdc_stable_initialize);
836 
837 /**
838  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
839  * @hwpath: fully bc.mod style path to the device.
840  * @initiator: the array to return the result into
841  *
842  * Get the SCSI operational parameters from PDC.
843  * Needed since HPUX never used BIOS or symbios card NVRAM.
844  * Most ncr/sym cards won't have an entry and just use whatever
845  * capabilities of the card are (eg Ultra, LVD). But there are
846  * several cases where it's useful:
847  *    o set SCSI id for Multi-initiator clusters,
848  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
849  *    o bus width exported is less than what the interface chip supports.
850  */
851 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
852 {
853 	int retval;
854 	unsigned long flags;
855 
856 	spin_lock_irqsave(&pdc_lock, flags);
857 
858 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
859 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
860 	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
861 
862 	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
863 			      __pa(pdc_result), __pa(hwpath));
864 	if (retval < PDC_OK)
865 		goto out;
866 
867 	if (pdc_result[0] < 16) {
868 		initiator->host_id = pdc_result[0];
869 	} else {
870 		initiator->host_id = -1;
871 	}
872 
873 	/*
874 	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
875 	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
876 	 */
877 	switch (pdc_result[1]) {
878 		case  1: initiator->factor = 50; break;
879 		case  2: initiator->factor = 25; break;
880 		case  5: initiator->factor = 12; break;
881 		case 25: initiator->factor = 10; break;
882 		case 20: initiator->factor = 12; break;
883 		case 40: initiator->factor = 10; break;
884 		default: initiator->factor = -1; break;
885 	}
886 
887 	if (IS_SPROCKETS()) {
888 		initiator->width = pdc_result[4];
889 		initiator->mode = pdc_result[5];
890 	} else {
891 		initiator->width = -1;
892 		initiator->mode = -1;
893 	}
894 
895  out:
896 	spin_unlock_irqrestore(&pdc_lock, flags);
897 
898 	return (retval >= PDC_OK);
899 }
900 EXPORT_SYMBOL(pdc_get_initiator);
901 
902 
903 /**
904  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
905  * @num_entries: The return value.
906  * @hpa: The HPA for the device.
907  *
908  * This PDC function returns the number of entries in the specified cell's
909  * interrupt table.
910  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
911  */
912 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
913 {
914 	int retval;
915 	unsigned long flags;
916 
917 	spin_lock_irqsave(&pdc_lock, flags);
918 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
919 			      __pa(pdc_result), hpa);
920 	convert_to_wide(pdc_result);
921 	*num_entries = pdc_result[0];
922 	spin_unlock_irqrestore(&pdc_lock, flags);
923 
924 	return retval;
925 }
926 
927 /**
928  * pdc_pci_irt - Get the PCI interrupt routing table.
929  * @num_entries: The number of entries in the table.
930  * @hpa: The Hard Physical Address of the device.
931  * @tbl:
932  *
933  * Get the PCI interrupt routing table for the device at the given HPA.
934  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
935  */
936 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
937 {
938 	int retval;
939 	unsigned long flags;
940 
941 	BUG_ON((unsigned long)tbl & 0x7);
942 
943 	spin_lock_irqsave(&pdc_lock, flags);
944 	pdc_result[0] = num_entries;
945 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
946 			      __pa(pdc_result), hpa, __pa(tbl));
947 	spin_unlock_irqrestore(&pdc_lock, flags);
948 
949 	return retval;
950 }
951 
952 
953 #if 0	/* UNTEST CODE - left here in case someone needs it */
954 
955 /**
956  * pdc_pci_config_read - read PCI config space.
957  * @hpa		token from PDC to indicate which PCI device
958  * @pci_addr	configuration space address to read from
959  *
960  * Read PCI Configuration space *before* linux PCI subsystem is running.
961  */
962 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
963 {
964 	int retval;
965 	unsigned long flags;
966 
967 	spin_lock_irqsave(&pdc_lock, flags);
968 	pdc_result[0] = 0;
969 	pdc_result[1] = 0;
970 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
971 			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
972 	spin_unlock_irqrestore(&pdc_lock, flags);
973 
974 	return retval ? ~0 : (unsigned int) pdc_result[0];
975 }
976 
977 
978 /**
979  * pdc_pci_config_write - read PCI config space.
980  * @hpa		token from PDC to indicate which PCI device
981  * @pci_addr	configuration space address to write
982  * @val		value we want in the 32-bit register
983  *
984  * Write PCI Configuration space *before* linux PCI subsystem is running.
985  */
986 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
987 {
988 	int retval;
989 	unsigned long flags;
990 
991 	spin_lock_irqsave(&pdc_lock, flags);
992 	pdc_result[0] = 0;
993 	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
994 			      __pa(pdc_result), hpa,
995 			      cfg_addr&~3UL, 4UL, (unsigned long) val);
996 	spin_unlock_irqrestore(&pdc_lock, flags);
997 
998 	return retval;
999 }
1000 #endif /* UNTESTED CODE */
1001 
1002 /**
1003  * pdc_tod_read - Read the Time-Of-Day clock.
1004  * @tod: The return buffer:
1005  *
1006  * Read the Time-Of-Day clock
1007  */
1008 int pdc_tod_read(struct pdc_tod *tod)
1009 {
1010         int retval;
1011 	unsigned long flags;
1012 
1013         spin_lock_irqsave(&pdc_lock, flags);
1014         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1015         convert_to_wide(pdc_result);
1016         memcpy(tod, pdc_result, sizeof(*tod));
1017         spin_unlock_irqrestore(&pdc_lock, flags);
1018 
1019         return retval;
1020 }
1021 EXPORT_SYMBOL(pdc_tod_read);
1022 
1023 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1024 {
1025 	int retval;
1026 	unsigned long flags;
1027 
1028 	spin_lock_irqsave(&pdc_lock, flags);
1029 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1030 	convert_to_wide(pdc_result);
1031 	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1032 	spin_unlock_irqrestore(&pdc_lock, flags);
1033 
1034 	return retval;
1035 }
1036 
1037 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1038 		unsigned long *pdt_entries_ptr)
1039 {
1040 	int retval;
1041 	unsigned long flags;
1042 
1043 	spin_lock_irqsave(&pdc_lock, flags);
1044 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1045 			__pa(pdt_entries_ptr));
1046 	if (retval == PDC_OK) {
1047 		convert_to_wide(pdc_result);
1048 		memcpy(pret, pdc_result, sizeof(*pret));
1049 	}
1050 	spin_unlock_irqrestore(&pdc_lock, flags);
1051 
1052 #ifdef CONFIG_64BIT
1053 	/*
1054 	 * 64-bit kernels should not call this PDT function in narrow mode.
1055 	 * The pdt_entries_ptr array above will now contain 32-bit values
1056 	 */
1057 	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1058 		return PDC_ERROR;
1059 #endif
1060 
1061 	return retval;
1062 }
1063 
1064 /**
1065  * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1066  * @ret: pointer to return buffer
1067  */
1068 int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1069 {
1070 	int retval;
1071 	unsigned long flags;
1072 
1073 	spin_lock_irqsave(&pdc_lock, flags);
1074 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1075 			      __pa(ret), sizeof(*ret));
1076 	spin_unlock_irqrestore(&pdc_lock, flags);
1077 	return retval;
1078 }
1079 
1080 /**
1081  * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1082  * @ret: pointer to return buffer
1083  */
1084 int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1085 {
1086 	int retval;
1087 	unsigned long flags;
1088 
1089 	spin_lock_irqsave(&pdc_lock, flags);
1090 	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1091 			      __pa(ret), sizeof(*ret));
1092 	spin_unlock_irqrestore(&pdc_lock, flags);
1093 	return retval;
1094 }
1095 
1096 /**
1097  * pdc_tod_set - Set the Time-Of-Day clock.
1098  * @sec: The number of seconds since epoch.
1099  * @usec: The number of micro seconds.
1100  *
1101  * Set the Time-Of-Day clock.
1102  */
1103 int pdc_tod_set(unsigned long sec, unsigned long usec)
1104 {
1105         int retval;
1106 	unsigned long flags;
1107 
1108         spin_lock_irqsave(&pdc_lock, flags);
1109         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1110         spin_unlock_irqrestore(&pdc_lock, flags);
1111 
1112         return retval;
1113 }
1114 EXPORT_SYMBOL(pdc_tod_set);
1115 
1116 #ifdef CONFIG_64BIT
1117 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1118 		struct pdc_memory_table *tbl, unsigned long entries)
1119 {
1120 	int retval;
1121 	unsigned long flags;
1122 
1123 	spin_lock_irqsave(&pdc_lock, flags);
1124 	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1125 	convert_to_wide(pdc_result);
1126 	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1127 	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1128 	spin_unlock_irqrestore(&pdc_lock, flags);
1129 
1130 	return retval;
1131 }
1132 #endif /* CONFIG_64BIT */
1133 
1134 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1135  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1136  * it later. :)
1137  */
1138 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1139 {
1140         int retval;
1141 	unsigned long flags;
1142 
1143         spin_lock_irqsave(&pdc_lock, flags);
1144         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1145                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1146         spin_unlock_irqrestore(&pdc_lock, flags);
1147 
1148         return retval;
1149 }
1150 
1151 /*
1152  * pdc_do_reset - Reset the system.
1153  *
1154  * Reset the system.
1155  */
1156 int pdc_do_reset(void)
1157 {
1158         int retval;
1159 	unsigned long flags;
1160 
1161         spin_lock_irqsave(&pdc_lock, flags);
1162         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1163         spin_unlock_irqrestore(&pdc_lock, flags);
1164 
1165         return retval;
1166 }
1167 
1168 /*
1169  * pdc_soft_power_info - Enable soft power switch.
1170  * @power_reg: address of soft power register
1171  *
1172  * Return the absolute address of the soft power switch register
1173  */
1174 int __init pdc_soft_power_info(unsigned long *power_reg)
1175 {
1176 	int retval;
1177 	unsigned long flags;
1178 
1179 	*power_reg = (unsigned long) (-1);
1180 
1181 	spin_lock_irqsave(&pdc_lock, flags);
1182 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1183 	if (retval == PDC_OK) {
1184                 convert_to_wide(pdc_result);
1185                 *power_reg = f_extend(pdc_result[0]);
1186 	}
1187 	spin_unlock_irqrestore(&pdc_lock, flags);
1188 
1189 	return retval;
1190 }
1191 
1192 /*
1193  * pdc_soft_power_button - Control the soft power button behaviour
1194  * @sw_control: 0 for hardware control, 1 for software control
1195  *
1196  *
1197  * This PDC function places the soft power button under software or
1198  * hardware control.
1199  * Under software control the OS may control to when to allow to shut
1200  * down the system. Under hardware control pressing the power button
1201  * powers off the system immediately.
1202  */
1203 int pdc_soft_power_button(int sw_control)
1204 {
1205 	int retval;
1206 	unsigned long flags;
1207 
1208 	spin_lock_irqsave(&pdc_lock, flags);
1209 	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1210 	spin_unlock_irqrestore(&pdc_lock, flags);
1211 
1212 	return retval;
1213 }
1214 
1215 /*
1216  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1217  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1218  * who knows what other platform firmware might do with this OS "hook".
1219  */
1220 void pdc_io_reset(void)
1221 {
1222 	unsigned long flags;
1223 
1224 	spin_lock_irqsave(&pdc_lock, flags);
1225 	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1226 	spin_unlock_irqrestore(&pdc_lock, flags);
1227 }
1228 
1229 /*
1230  * pdc_io_reset_devices - Hack to Stop USB controller
1231  *
1232  * If PDC used the usb controller, the usb controller
1233  * is still running and will crash the machines during iommu
1234  * setup, because of still running DMA. This PDC call
1235  * stops the USB controller.
1236  * Normally called after calling pdc_io_reset().
1237  */
1238 void pdc_io_reset_devices(void)
1239 {
1240 	unsigned long flags;
1241 
1242 	spin_lock_irqsave(&pdc_lock, flags);
1243 	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1244 	spin_unlock_irqrestore(&pdc_lock, flags);
1245 }
1246 
1247 #endif /* defined(BOOTLOADER) */
1248 
1249 /* locked by pdc_console_lock */
1250 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1251 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1252 
1253 /**
1254  * pdc_iodc_print - Console print using IODC.
1255  * @str: the string to output.
1256  * @count: length of str
1257  *
1258  * Note that only these special chars are architected for console IODC io:
1259  * BEL, BS, CR, and LF. Others are passed through.
1260  * Since the HP console requires CR+LF to perform a 'newline', we translate
1261  * "\n" to "\r\n".
1262  */
1263 int pdc_iodc_print(const unsigned char *str, unsigned count)
1264 {
1265 	unsigned int i;
1266 	unsigned long flags;
1267 
1268 	for (i = 0; i < count;) {
1269 		switch(str[i]) {
1270 		case '\n':
1271 			iodc_dbuf[i+0] = '\r';
1272 			iodc_dbuf[i+1] = '\n';
1273 			i += 2;
1274 			goto print;
1275 		default:
1276 			iodc_dbuf[i] = str[i];
1277 			i++;
1278 			break;
1279 		}
1280 	}
1281 
1282 print:
1283         spin_lock_irqsave(&pdc_lock, flags);
1284         real32_call(PAGE0->mem_cons.iodc_io,
1285                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1286                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1287                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1288         spin_unlock_irqrestore(&pdc_lock, flags);
1289 
1290 	return i;
1291 }
1292 
1293 #if !defined(BOOTLOADER)
1294 /**
1295  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1296  *
1297  * Read a character (non-blocking) from the PDC console, returns -1 if
1298  * key is not present.
1299  */
1300 int pdc_iodc_getc(void)
1301 {
1302 	int ch;
1303 	int status;
1304 	unsigned long flags;
1305 
1306 	/* Bail if no console input device. */
1307 	if (!PAGE0->mem_kbd.iodc_io)
1308 		return 0;
1309 
1310 	/* wait for a keyboard (rs232)-input */
1311 	spin_lock_irqsave(&pdc_lock, flags);
1312 	real32_call(PAGE0->mem_kbd.iodc_io,
1313 		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1314 		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1315 		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1316 
1317 	ch = *iodc_dbuf;
1318 	status = *iodc_retbuf;
1319 	spin_unlock_irqrestore(&pdc_lock, flags);
1320 
1321 	if (status == 0)
1322 	    return -1;
1323 
1324 	return ch;
1325 }
1326 
1327 int pdc_sti_call(unsigned long func, unsigned long flags,
1328                  unsigned long inptr, unsigned long outputr,
1329                  unsigned long glob_cfg)
1330 {
1331         int retval;
1332 	unsigned long irqflags;
1333 
1334         spin_lock_irqsave(&pdc_lock, irqflags);
1335         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1336         spin_unlock_irqrestore(&pdc_lock, irqflags);
1337 
1338         return retval;
1339 }
1340 EXPORT_SYMBOL(pdc_sti_call);
1341 
1342 #ifdef CONFIG_64BIT
1343 /**
1344  * pdc_pat_cell_get_number - Returns the cell number.
1345  * @cell_info: The return buffer.
1346  *
1347  * This PDC call returns the cell number of the cell from which the call
1348  * is made.
1349  */
1350 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1351 {
1352 	int retval;
1353 	unsigned long flags;
1354 
1355 	spin_lock_irqsave(&pdc_lock, flags);
1356 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1357 	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1358 	spin_unlock_irqrestore(&pdc_lock, flags);
1359 
1360 	return retval;
1361 }
1362 
1363 /**
1364  * pdc_pat_cell_module - Retrieve the cell's module information.
1365  * @actcnt: The number of bytes written to mem_addr.
1366  * @ploc: The physical location.
1367  * @mod: The module index.
1368  * @view_type: The view of the address type.
1369  * @mem_addr: The return buffer.
1370  *
1371  * This PDC call returns information about each module attached to the cell
1372  * at the specified location.
1373  */
1374 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1375 			unsigned long view_type, void *mem_addr)
1376 {
1377 	int retval;
1378 	unsigned long flags;
1379 	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1380 
1381 	spin_lock_irqsave(&pdc_lock, flags);
1382 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1383 			      ploc, mod, view_type, __pa(&result));
1384 	if(!retval) {
1385 		*actcnt = pdc_result[0];
1386 		memcpy(mem_addr, &result, *actcnt);
1387 	}
1388 	spin_unlock_irqrestore(&pdc_lock, flags);
1389 
1390 	return retval;
1391 }
1392 
1393 /**
1394  * pdc_pat_cell_info - Retrieve the cell's information.
1395  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1396  * @actcnt: The number of bytes which should be written to info.
1397  * @offset: offset of the structure.
1398  * @cell_number: The cell number which should be asked, or -1 for current cell.
1399  *
1400  * This PDC call returns information about the given cell (or all cells).
1401  */
1402 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1403 		unsigned long *actcnt, unsigned long offset,
1404 		unsigned long cell_number)
1405 {
1406 	int retval;
1407 	unsigned long flags;
1408 	struct pdc_pat_cell_info_rtn_block result;
1409 
1410 	spin_lock_irqsave(&pdc_lock, flags);
1411 	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1412 			__pa(pdc_result), __pa(&result), *actcnt,
1413 			offset, cell_number);
1414 	if (!retval) {
1415 		*actcnt = pdc_result[0];
1416 		memcpy(info, &result, *actcnt);
1417 	}
1418 	spin_unlock_irqrestore(&pdc_lock, flags);
1419 
1420 	return retval;
1421 }
1422 
1423 /**
1424  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1425  * @cpu_info: The return buffer.
1426  * @hpa: The Hard Physical Address of the CPU.
1427  *
1428  * Retrieve the cpu number for the cpu at the specified HPA.
1429  */
1430 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1431 {
1432 	int retval;
1433 	unsigned long flags;
1434 
1435 	spin_lock_irqsave(&pdc_lock, flags);
1436 	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1437 			      __pa(&pdc_result), hpa);
1438 	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1439 	spin_unlock_irqrestore(&pdc_lock, flags);
1440 
1441 	return retval;
1442 }
1443 
1444 /**
1445  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1446  * @num_entries: The return value.
1447  * @cell_num: The target cell.
1448  *
1449  * This PDC function returns the number of entries in the specified cell's
1450  * interrupt table.
1451  */
1452 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1453 {
1454 	int retval;
1455 	unsigned long flags;
1456 
1457 	spin_lock_irqsave(&pdc_lock, flags);
1458 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1459 			      __pa(pdc_result), cell_num);
1460 	*num_entries = pdc_result[0];
1461 	spin_unlock_irqrestore(&pdc_lock, flags);
1462 
1463 	return retval;
1464 }
1465 
1466 /**
1467  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1468  * @r_addr: The return buffer.
1469  * @cell_num: The target cell.
1470  *
1471  * This PDC function returns the actual interrupt table for the specified cell.
1472  */
1473 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1474 {
1475 	int retval;
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&pdc_lock, flags);
1479 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1480 			      __pa(r_addr), cell_num);
1481 	spin_unlock_irqrestore(&pdc_lock, flags);
1482 
1483 	return retval;
1484 }
1485 
1486 /**
1487  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1488  * @actlen: The return buffer.
1489  * @mem_addr: Pointer to the memory buffer.
1490  * @count: The number of bytes to read from the buffer.
1491  * @offset: The offset with respect to the beginning of the buffer.
1492  *
1493  */
1494 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1495 			    unsigned long count, unsigned long offset)
1496 {
1497 	int retval;
1498 	unsigned long flags;
1499 
1500 	spin_lock_irqsave(&pdc_lock, flags);
1501 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1502 			      __pa(pdc_result2), count, offset);
1503 	*actual_len = pdc_result[0];
1504 	memcpy(mem_addr, pdc_result2, *actual_len);
1505 	spin_unlock_irqrestore(&pdc_lock, flags);
1506 
1507 	return retval;
1508 }
1509 
1510 /**
1511  * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1512  * @legacy_rev: The legacy revision.
1513  * @pat_rev: The PAT revision.
1514  * @pdc_cap: The PDC capabilities.
1515  *
1516  */
1517 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1518 		unsigned long *pat_rev, unsigned long *pdc_cap)
1519 {
1520 	int retval;
1521 	unsigned long flags;
1522 
1523 	spin_lock_irqsave(&pdc_lock, flags);
1524 	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1525 				__pa(pdc_result));
1526 	if (retval == PDC_OK) {
1527 		*legacy_rev = pdc_result[0];
1528 		*pat_rev = pdc_result[1];
1529 		*pdc_cap = pdc_result[2];
1530 	}
1531 	spin_unlock_irqrestore(&pdc_lock, flags);
1532 
1533 	return retval;
1534 }
1535 
1536 
1537 /**
1538  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1539  * @pci_addr: PCI configuration space address for which the read request is being made.
1540  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1541  * @mem_addr: Pointer to return memory buffer.
1542  *
1543  */
1544 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1545 {
1546 	int retval;
1547 	unsigned long flags;
1548 
1549 	spin_lock_irqsave(&pdc_lock, flags);
1550 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1551 					__pa(pdc_result), pci_addr, pci_size);
1552 	switch(pci_size) {
1553 		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1554 		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1555 		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1556 	}
1557 	spin_unlock_irqrestore(&pdc_lock, flags);
1558 
1559 	return retval;
1560 }
1561 
1562 /**
1563  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1564  * @pci_addr: PCI configuration space address for which the write  request is being made.
1565  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1566  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1567  *         written to PCI Config space.
1568  *
1569  */
1570 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1571 {
1572 	int retval;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&pdc_lock, flags);
1576 	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1577 				pci_addr, pci_size, val);
1578 	spin_unlock_irqrestore(&pdc_lock, flags);
1579 
1580 	return retval;
1581 }
1582 
1583 /**
1584  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1585  * @rinfo: memory pdt information
1586  *
1587  */
1588 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1589 {
1590 	int retval;
1591 	unsigned long flags;
1592 
1593 	spin_lock_irqsave(&pdc_lock, flags);
1594 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1595 			__pa(&pdc_result));
1596 	if (retval == PDC_OK)
1597 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1598 	spin_unlock_irqrestore(&pdc_lock, flags);
1599 
1600 	return retval;
1601 }
1602 
1603 /**
1604  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1605  *				table of a cell
1606  * @rinfo: memory pdt information
1607  * @cell: cell number
1608  *
1609  */
1610 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1611 		unsigned long cell)
1612 {
1613 	int retval;
1614 	unsigned long flags;
1615 
1616 	spin_lock_irqsave(&pdc_lock, flags);
1617 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1618 			__pa(&pdc_result), cell);
1619 	if (retval == PDC_OK)
1620 		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1621 	spin_unlock_irqrestore(&pdc_lock, flags);
1622 
1623 	return retval;
1624 }
1625 
1626 /**
1627  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1628  * @pret: array of PDT entries
1629  * @pdt_entries_ptr: ptr to hold number of PDT entries
1630  * @max_entries: maximum number of entries to be read
1631  *
1632  */
1633 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1634 		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1635 {
1636 	int retval;
1637 	unsigned long flags, entries;
1638 
1639 	spin_lock_irqsave(&pdc_lock, flags);
1640 	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1641 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1642 			__pa(&pdc_result), parisc_cell_num,
1643 			__pa(pdt_entries_ptr));
1644 
1645 	if (retval == PDC_OK) {
1646 		/* build up return value as for PDC_PAT_MEM_PD_READ */
1647 		entries = min(pdc_result[0], max_entries);
1648 		pret->pdt_entries = entries;
1649 		pret->actual_count_bytes = entries * sizeof(unsigned long);
1650 	}
1651 
1652 	spin_unlock_irqrestore(&pdc_lock, flags);
1653 	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1654 
1655 	return retval;
1656 }
1657 /**
1658  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1659  * @pret: array of PDT entries
1660  * @pdt_entries_ptr: ptr to hold number of PDT entries
1661  * @count: number of bytes to read
1662  * @offset: offset to start (in bytes)
1663  *
1664  */
1665 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1666 		unsigned long *pdt_entries_ptr, unsigned long count,
1667 		unsigned long offset)
1668 {
1669 	int retval;
1670 	unsigned long flags, entries;
1671 
1672 	spin_lock_irqsave(&pdc_lock, flags);
1673 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1674 		__pa(&pdc_result), __pa(pdt_entries_ptr),
1675 		count, offset);
1676 
1677 	if (retval == PDC_OK) {
1678 		entries = min(pdc_result[0], count);
1679 		pret->actual_count_bytes = entries;
1680 		pret->pdt_entries = entries / sizeof(unsigned long);
1681 	}
1682 
1683 	spin_unlock_irqrestore(&pdc_lock, flags);
1684 
1685 	return retval;
1686 }
1687 
1688 /**
1689  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1690  * @pret: ptr to hold returned information
1691  * @phys_addr: physical address to examine
1692  *
1693  */
1694 int pdc_pat_mem_get_dimm_phys_location(
1695 		struct pdc_pat_mem_phys_mem_location *pret,
1696 		unsigned long phys_addr)
1697 {
1698 	int retval;
1699 	unsigned long flags;
1700 
1701 	spin_lock_irqsave(&pdc_lock, flags);
1702 	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1703 		__pa(&pdc_result), phys_addr);
1704 
1705 	if (retval == PDC_OK)
1706 		memcpy(pret, &pdc_result, sizeof(*pret));
1707 
1708 	spin_unlock_irqrestore(&pdc_lock, flags);
1709 
1710 	return retval;
1711 }
1712 #endif /* CONFIG_64BIT */
1713 #endif /* defined(BOOTLOADER) */
1714 
1715 
1716 /***************** 32-bit real-mode calls ***********/
1717 /* The struct below is used
1718  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1719  * real32_call_asm() then uses this stack in narrow real mode
1720  */
1721 
1722 struct narrow_stack {
1723 	/* use int, not long which is 64 bits */
1724 	unsigned int arg13;
1725 	unsigned int arg12;
1726 	unsigned int arg11;
1727 	unsigned int arg10;
1728 	unsigned int arg9;
1729 	unsigned int arg8;
1730 	unsigned int arg7;
1731 	unsigned int arg6;
1732 	unsigned int arg5;
1733 	unsigned int arg4;
1734 	unsigned int arg3;
1735 	unsigned int arg2;
1736 	unsigned int arg1;
1737 	unsigned int arg0;
1738 	unsigned int frame_marker[8];
1739 	unsigned int sp;
1740 	/* in reality, there's nearly 8k of stack after this */
1741 };
1742 
1743 long real32_call(unsigned long fn, ...)
1744 {
1745 	va_list args;
1746 	extern struct narrow_stack real_stack;
1747 	extern unsigned long real32_call_asm(unsigned int *,
1748 					     unsigned int *,
1749 					     unsigned int);
1750 
1751 	va_start(args, fn);
1752 	real_stack.arg0 = va_arg(args, unsigned int);
1753 	real_stack.arg1 = va_arg(args, unsigned int);
1754 	real_stack.arg2 = va_arg(args, unsigned int);
1755 	real_stack.arg3 = va_arg(args, unsigned int);
1756 	real_stack.arg4 = va_arg(args, unsigned int);
1757 	real_stack.arg5 = va_arg(args, unsigned int);
1758 	real_stack.arg6 = va_arg(args, unsigned int);
1759 	real_stack.arg7 = va_arg(args, unsigned int);
1760 	real_stack.arg8 = va_arg(args, unsigned int);
1761 	real_stack.arg9 = va_arg(args, unsigned int);
1762 	real_stack.arg10 = va_arg(args, unsigned int);
1763 	real_stack.arg11 = va_arg(args, unsigned int);
1764 	real_stack.arg12 = va_arg(args, unsigned int);
1765 	real_stack.arg13 = va_arg(args, unsigned int);
1766 	va_end(args);
1767 
1768 	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1769 }
1770 
1771 #ifdef CONFIG_64BIT
1772 /***************** 64-bit real-mode calls ***********/
1773 
1774 struct wide_stack {
1775 	unsigned long arg0;
1776 	unsigned long arg1;
1777 	unsigned long arg2;
1778 	unsigned long arg3;
1779 	unsigned long arg4;
1780 	unsigned long arg5;
1781 	unsigned long arg6;
1782 	unsigned long arg7;
1783 	unsigned long arg8;
1784 	unsigned long arg9;
1785 	unsigned long arg10;
1786 	unsigned long arg11;
1787 	unsigned long arg12;
1788 	unsigned long arg13;
1789 	unsigned long frame_marker[2];	/* rp, previous sp */
1790 	unsigned long sp;
1791 	/* in reality, there's nearly 8k of stack after this */
1792 };
1793 
1794 long real64_call(unsigned long fn, ...)
1795 {
1796 	va_list args;
1797 	extern struct wide_stack real64_stack;
1798 	extern unsigned long real64_call_asm(unsigned long *,
1799 					     unsigned long *,
1800 					     unsigned long);
1801 
1802 	va_start(args, fn);
1803 	real64_stack.arg0 = va_arg(args, unsigned long);
1804 	real64_stack.arg1 = va_arg(args, unsigned long);
1805 	real64_stack.arg2 = va_arg(args, unsigned long);
1806 	real64_stack.arg3 = va_arg(args, unsigned long);
1807 	real64_stack.arg4 = va_arg(args, unsigned long);
1808 	real64_stack.arg5 = va_arg(args, unsigned long);
1809 	real64_stack.arg6 = va_arg(args, unsigned long);
1810 	real64_stack.arg7 = va_arg(args, unsigned long);
1811 	real64_stack.arg8 = va_arg(args, unsigned long);
1812 	real64_stack.arg9 = va_arg(args, unsigned long);
1813 	real64_stack.arg10 = va_arg(args, unsigned long);
1814 	real64_stack.arg11 = va_arg(args, unsigned long);
1815 	real64_stack.arg12 = va_arg(args, unsigned long);
1816 	real64_stack.arg13 = va_arg(args, unsigned long);
1817 	va_end(args);
1818 
1819 	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1820 }
1821 
1822 #endif /* CONFIG_64BIT */
1823